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ABSTRACT
This paper proposes WIDS, a wireless intrusion detection
system, which applies data mining clustering technique to
wireless network data captured through hardware sensors
for purposes of real time detection of anomalous behavior in
wireless packets. Using hardware sensors to capture network
packets enables detection of attacks before they reach access
points and ensures all packets transmitted in the networks
are analyzed for a more complete attack detection. The pro-
posed mining based technique for wireless network intrusion
detection contributes by reducing the need for training data,
reducing false positives and increasing the effectiveness of
attack detection on networks with few (one to twenty) con-
nections.

The proposed WIDS design approach involves real time
pre-processing of sensor data using a density-based, Local
Sparsity Coefficient (LSC) outlier detection algorithm to as-
sign anomaly scores to the connection records. Connection
records with low anomaly scores are used as initial starting
cluster centre positions for building clusters. The algorithm
continuously derives minimum deviation as the maximum of
distances between all pairs of cluster centre positions. New
records which have their distances from the closest cluster
more than the minimum deviation, are tagged as anomaly
and moved to alert cluster. One major result of this paper
is detection of MAC spoofing attacks by tracking sequence
numbers, which ensures duplicate or spoofed (stolen) MAC
addresses are not used in the network.
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1. INTRODUCTION
Intrusion attacks can result in loss of important and con-

fidential data or information that may have disastrous effect
on businesses or individuals. A typical example of wireless
attack is data or file theft [11] by hackers, through unau-
thorized access to wireless network. This unauthorized ac-
cess can be done by decrypting the wired encryption pri-
vacy (WEP) key for securing wireless networks by using a
war driving software like Netstumbler. Once the WEP key
is decrypted, the hacker places illegal wireless access point
(WAP). With the created WAP, the network is compromised
and the attacker has access to corporate network. In addi-
tion to different intrusion prevention practices, such as data
protection (e.g., encryption), user verification (e.g., pass-
word, fingerprints, and biometrics), an intrusion detection
system can also be used as another barrier to guard com-
puter systems. An Intrusion Detection System (IDS) is any
system that is able to detect non-permitted deviations (or
security violations) [2]. An IDS can be either host-based
for monitoring system calls or logs, or network-based for
monitoring the flow of network packets. Modern IDSs are
usually a combination of these two approaches. Traditional
IDSs [2] are also classified as misuse or anomaly detection
systems. While misuse detection systems (e.g., Norton anti-
virus) identify patterns of traffic or application data pre-
sumed to be malicious using well-known attacks or weak
points of the system, anomaly detection systems (e.g., com-
mon Firewalls) compare activities against a ‘normal’ base-
line. One problem with the misuse detection systems is that
it is not capable of detecting new attacks, unlike anomaly
detection systems which are capable of detecting new at-
tacks. However, the main problem with these traditional
IDS’s is that they need human intervention. Security ex-



perts spend a lot of time analyzing all known intrusions
using their domain knowledge and hand-coding signatures
(patterns) for those intrusions. Another issue is that these
IDS’s need to be updated whenever new intrusions become
known, otherwise they are not able to detect the intrusion.
The use of wireless links renders the network susceptible
to attacks ranging from passive eavesdropping to active in-
terfering. Unlike wired networks, where an adversary must
gain physical access to the network wires or pass through
several lines of defense (firewalls and gateways), attacks on
a wireless network can come from all directions and target
any node. Wireless networks are not only susceptible to
TCP/IP-based attacks (such as IP Spoofing, TCP Session
Hijacking, SYN Flood) native to wired networks, they are
also subject to a wide array of 802.11-specific threats. The
IEEE 802.11 specifications represent an over-the-air inter-
face between a wireless client and a base station or between
two wireless clients.

1.1 Wireless LAN Architecture and Attacks
Wireless Local Area Network (WLAN) is based on IEEE

802.11 standards. The 802.11 applies to the lower layers,
namely Data Link Layer and Physical Layer (PHY) of the
wireless open system interconnect (OSI) network model.
WLAN’s allow for three different ways to configure a net-
work: ad-hoc or Independent Basic Service Set (IBSS), in-
frastructure or Extended Service Set (ESS), and a mixture
of both or Basic Service Set (BSS). In ad-hoc network, con-
nection is established for the duration of one session and
requires no base station (computer). Computers (or sta-
tions, e.g., laptops) discover others within range and estab-
lish communication. A wireless access point (WAP or AP)
is a device that connects wireless communication devices
together to form a wireless network. When a WAP is intro-
duced in IBSS, the network becomes BSS and the AP acts
as a master to control the stations within that BSS.

Stations that want to join a Basic Service Set (BSS) have
to first authenticate themselves and then associate them-
selves with the BSS. The association will let the station know
what transmission rate(s) are available as well as other pa-
rameters of the BSS. When the station wants to leave BSS,
it will disassociate from the BSS and if it wants to join again,
it has to re-authenticate and re-associate with the AP. The
two authentication mechanisms provided in WLAN are open
authentication and shared key authentication, which require
clients to provide a secret key to authenticate to an AP by
communicating with frames.
Format of a Wireless Packet
Communication between stations and AP occur through
packets (or frames). A typical wireless packet has the fol-
lowing information for data attributes:
1. Wireless Packet Information (this has about 6 sub fields
like signal level, noise level, etc.)
2. 802.11 (this has about 20 sub fields for attributes like
frame control id, duration, control type, source MAC ad-
dress, sequence number, service set identifier (SSID), etc.)
3. Encrypted Data (this has sub fields for Key number,
frame body).
4. Raw Data (in coded or encrypted form).
Some of the important fields in the wireless packet include:
sequence number, used to terminate endpoint and to en-
sure packets arrive in sequence. The Media Access Control

address (MAC) or Ethernet Hardware Address (EHA) or
hardware address or adapter address is a quasi-unique iden-
tifier attached to most network adapters. It is a number
that acts like a name for a particular network adapter, for
example, the network cards (or built-in network adapters) in
two different computers will have different names, or MAC
addresses. Service Set Identifier (SSID) is a code attached
to all packets on a wireless network to identify each packet
as part of that network. All wireless devices attempting to
communicate with each other must share the same SSID.

Types of Wireless Network Attacks
Wireless network attacks belong to five classes
(1) Access Control Attacks (e.g., WEP attack, war-driving
attacks, Rogue Access points, MAC spoofing): These at-
tacks penetrate a network by using wireless or evading WLAN
access control measures like MAC filters.
(2) Confidentiality Attacks (e.g., WEP key-cracking, Man-
in-the-middle): These attacks intercept private information
sent over wireless associations by capturing data frames.
(3) Integrity Attacks (e.g., Replay and 802.11 Frame Injec-
tion): These attacks send forged, control, management or
data frames over wireless networks to mislead the recipient
or facilitate another type of attack (e.g., DoS)
(4) Authentication Attacks (e.g., Application Login Theft):
Attacker captures user credentials (e.g., e-mail address and
password) from cleartext application protocols like Win-
Sniffer (http://www.winsniffer.com/) installed by attacker
through back door.
(5) Availability Attacks (e.g., RF Jamming): These attacks
impede delivery of wireless services to legitimate users, ei-
ther by denying them access to WLAN resources or by crip-
pling those resources.

1.2 Related Work on Data Mining Based Net-
work IDS

A data mining approach to network intrusion detection
provides an opportunity to learn the behaviors of network
users by mining the data trails of their activities. While re-
cent research e.g., Clustering [12], MADAM ID [7], ADAM
[3], MINDS [5], [7] have investigated data mining for intru-
sion detection, considerable challenges remain unexplored.
This involves intrusion detection models for wireless net-
works not requiring hard-to-get training data in wired net-
work environment, as well as intrusion detection that has
no prior knowledge of relationships between attack types
and attributes of the network audit data [4]. One of the
most recent wired IDS by Zhong et al. [12] applied multiple
centroid-based unsupervised Online K-Means clustering al-
gorithm for intrusion detection, with a simple yet effective
self-labeling heuristic for detecting attack and normal clus-
ters of network traffic audit data. Some of the drawbacks of
this Zhong et al. work are: they used only metrics available
in the recorded wireless logs rather than all that are theo-
retically required to model common wireless attacks. Our
work addresses this constraint. Secondly, the assumption
that the largest cluster is attack free does not always strictly
hold true during DOS attacks, and the authors acknowledge
it. Thirdly, this clustering-based intrusion detection cannot
detect intrusions or anomalies in real time and therefore not
suitable in a sensor network. Other modified systems simi-
lar to Zhong et al. that suffer from some of these drawbacks
include system by [9]. Applying a density-based outlier de-



tection algorithm to the problem of intrusion detection has
proved to be beneficial and has been explored in parts of
such systems as MINDs [5]. Some of MINDs’ connections
are fed to the anomaly detection modules that use a local
outlier approach (LOF) detection algorithm [6] to assign a
score that reflects how anomalous the connection is, com-
pared to the normal network traffic. However, MINDs ana-
lyzes data from one source point (CISCO router), and this is
not suitable for wireless networks where attacks come from
different directions. MINDS algorithm is not designed for
streaming data. MINDS cannot scale to very large network
traffic data sets due to the streaming nature of network data.
LOF depended on training data. MINDS mode of operation
is offline.

LOF and LSC Outlier Detection Algorithms
The two outlier detection algorithms mostly related to this
work are the density-based clustering algorithms, LOF [6]
(local outlier factor) and LSC (local sparsity coefficient) [1]
algorithms. LOF is a density based outlier detection al-
gorithm, which assigns each data object in the data set, a
degree of being outlier. This degree is called the local out-
lier factor (LOF) of a data object. LOF is able to capture
both outliers (p1 an outlying object at a distance close to a
very dense but small cluster, but shorter than the neighbor-
ing distances of a second non-dense but large cluster) and
(p2 an outlying object far from the dense cluster) due to
the fact that it considers the density around the points not
basically the simple distance. Based on LOF, a degree of
being an outlier is assigned to each data object (connection
records). The LOF of a specific data sample K represents
the average of the ratios of the density of the example K and
the density of its neighbors. LOF requires the neighborhood
around all data points be constructed and this involves cal-
culating pairwise distances between all data points, which is
an O(n2) process. This makes it computationally infeasible
for millions of data points. To address this problem, systems
like MINDs, based on LOF algorithm, sample a training set
from the data and compare all data points of this small
set. As training data are generally unavailable, we choose
to use local sparsity coefficient outlier detection algorithm
(LSC-Mine) [1] since LSC algorithm is a density based out-
lier technique similar to LOF that eliminates some of these
drawbacks of the LOF algorithm. LSC algorithm detects
outliers based on the distances of objects from their near-
est neighbors without actually computing their reachability
distances and local reachability densities as done by LOF.
This addresses the problem of huge repetitive computation
and comparison for every object before the few outliers are
detected. Expensive computations might make scalability
of these techniques to important applications, like quick in-
trusion detection infeasible. Given the data objects, and an
integer K representing the number of neighbors each object
can have, the local sparsity coefficient, LSC algorithm out-
puts a ranked list of n objects with highest LSC scores. The
higher the LSC score of an object, the more outlying the ob-
ject is. The LSC-Mine algorithm goes through the following
seven steps. (1) Compute the k-distance of each object, (2)
Find k-distance neighborhood of each object, (3) Compute
local sparsity ratio of each object, (4) Compute the prun-
ing factor of each object, (5) Obtain the candidate set, (6)
Compute LSC using the candidate set, (7) Rank outliers as
those with the highest local sparsity coefficients. A high

local sparsity coefficient indicates the neighborhood around
an object is not crowded and hence a higher potential of the
object being an outlier whereas a low local sparsity coeffi-
cient indicates a crowded neighborhood and hence a lower
outlying potential for the object.

1.3 Contributions
This paper proposes a Wireless Network Intrusion De-

tection System (WIDS), which detects MAC spoofing at-
tack (the brain behind 90% of wireless intrusions), by track-
ing packet sequence numbers. WIDS detects attacks with
few connections (e.g., one to twenty) that may be confi-
dentiality and integrity attacks and is able to reduce false
positive results. WIDS system scientific solution approach,
entails applying a hybrid of a density-based and distance
based outlier detection clustering algorithm to wireless net-
work connection records promptly captured with a set of
proprietary Network Chemistry hardware sensors. Connec-
tion records with low anomaly scores (e.g., bottom 30% of
ranked anomaly scored records) represent normal clusters
while those with high anomaly scores represent intrusions.
One of the limitations of existing IDSs addressed by the pro-
posed work is that the existing IDSs build network profiles
of clients and only flag alerts when there are significant de-
viations, causing attacks with few connections (e.g., one to
twenty) to pass through undetected.

1.4 Outline of the Paper
Section 2 presents the proposed Wireless Intrusion De-

tection System, WIDS. Section 3 presents the experimental
evaluation of our prototype system and section 4 presents
conclusions and future work.

2. THE PROPOSED WIRELESS INTRUSION
DETECTION SYSTEM

Detection of distributed attacks is still a problem for present
day IDS and most IDSs are only able to detect PROBE and
DOS attacks (and a few other attacks that make use of large
number of connections). Attacks that take place using a few
(one to twenty) connections are hard to detect by present
day IDS (ADAM, MINDS). Having explored all the different
wireless attacks and the vulnerabilities, this paper proposes
a wireless intrusion detection system (WIDS) to detect these
attacks (WEP key cracking, DOS, War driving, MAC Spoof-
ing) and cover the vulnerabilities. WIDS is designed to run
in an environment where millions of packets are generated
basically every minute.

2.1 Components of the Proposed WIDS Intru-
sion Detection System

The proposed wireless network intrusion detection system,
WIDS, consists of a wireless Access Point (AP), one or more
Network Chemistry RF Sensors and an Oracle database as
shown in Figure 1.

Clients connect to the wireless networks through the ac-
cess point. The Radio Frequency (RF) sensors [8] are used
to capture network packets that clients send to the access
point. Sensors are purpose-built devices that provide con-
tinuous RF surveillance and data aggregation to manage
the security of our network. Sensors receive and analyze
802.11 packets, analyze the data, and send processed data
to the server, where the information is further analyzed and



Figure 1: The Proposed WIDS System Architecture

stored. For the Sensors to perform their function, we in-
stalled and configured RFprotect Server and Client soft-
ware. The RFprotect Server analyzes, stores, and integrates
data from Sensors. The Server comprises the RFprotect En-
gine, a database of known stations, experts, location anal-
ysis, alerts, and reported events. The Server consolidates
and analyzes wireless traffic, generates alerts and maintains
a database for the RFprotect console users. The Console
(client) provides the information presentation and operator
controls for RFprotect. The Console is the main suite of
tools for viewing and managing the information provided
by the RFprotect Server and Sensors, and provides views
of wireless activity, security alerts, and RF environmental
analysis. We use the Console for customizing alert noti-
fication, configuring authorized stations and Sensors; and
shielding against rogue associations. Multiple consoles can
be connected to the Server.

Hardware/Software for Sensor Installation and Con-
figuration
There is need for a server and a client machine although
both server and client software for the sensor installation
can reside on the same machine. Our set up involves a sen-
sor server on a personal computer with Windows 2003 Server
Operating System, 1 GHZ dual processor, 1 GB RAM, Com-
paq Disk Array SCSI DISC used to prevent loss of data, the
Network Chemistry sensor server software called
RFprotectServerSetup-5-0-6-5.exe, which includes the database
software (Firebird). Our sensor client is on a separate per-
sonal computer with Windows XP Operating System, 3.0
GHZ CPU, 1 GB RAM, 60 GB of Hard disk, the Network
Chemistry sensor client software, called RFprotectClientSetup-
5-0-6-5.exe, which is used to visualize the data captured by
the sensor. Two other needed software on the sensor client
are (1) Packetyzer, which is an open-source packet capture
software, and (2) CommView for WIFI [10], which is a wire-
less packet capture software as well as a sniffer.

The sensor server and client set-up process involves first
installing the sensor server software, RFprotectServerSetup
and choosing the default Firebird database, before installing
the client RFprotectClient software choosing all default set-
tings.

Once the sensor server and client software are installed,
the sensors need to be configured so that they can detect

all wireless networks around them and send data to the sen-
sor server Firebird database and to configure the sensor, we
launch the RFprotectClient, and choose the server to con-
nect to (e.g., localhost), type the username (e.g., SYSDBA),
password (e.g., masterkey) once connected to a server, then
we select the RFProtect Console. Then, we select a sensor
to add, configure its parameters and a server address for the
sensor so that the sensor can communicate with the server.
Monitoring and Capturing Packets
Once the sensors are configured, they are able to detect all
wireless networks around them. Packetyzer is a packet cap-
ture program that is installed with the Network Chemistry
RFprotect software. Thus, Packetyzer has been used to cap-
ture packets in Woddlab. The RFprotect is a signature-
based Intrusion protection system for 802.11a/b/g wireless
connections that is used to detect rogue devices, intrusion
and DOS attacks. It is not capable of detecting new or
unknown attacks unless the signatures of those attacks are
updated in the RFprotect server.

Sample wireless packets are captured with sensor in our
Woddlab lab showing captured beacon frames. A beacon
frame is a packet sent by a wireless access point (on a reg-
ular basis) in a wireless infrastructure mode operation to
allow wireless clients within the vicinity to detect the Sta-
tion Set Identifier (SSID) of the wireless networks. SSID
defines the name of the wireless network that all the wireless
clients associate with. The first address field in the beacon
frame is the destination address. This field has a value of
“ff:ff:ff:ff:ff:ff”, this value indicates that the packet is to be
sent to all stations. The third address field is the BSS ID
(Basic Station System ID) field which contains the MAC ad-
dress for the wireless side of the access point. Another field
to note in this packet is the sequence number field, which
is incremented by one every time the wireless station emits
a packet. Thus, since the sequence number for this beacon
frame packet is 4025, the next packet that will be emitted
by this wireless station would then be 4026. Promptly an-
alyzing these attributes of captured wireless packets with
our data mining (clustering) based proposed technique will
detect wireless intrusions.

Pre-processing Sensed Packets from Sensor Database
One of the core contributions of this paper is that of select-
ing features that can effectively detect wireless attacks. At-
tackers look for open ports as a passage through which to
enter the network and launch their attacks. It means that
features like Ports (source and destination), MAC address
(source and destination), Total number of packets and the
size of the packet sent in a T time interval, play vital roles
in detecting attacks. We use CommView for WIFI (wireless
fidelity), a powerful wireless network monitor and analyzer
for 802.11 a/b/g/n networks to pre-process captured wire-
less sensor logs in WLAN traffic.

With CommView for WIFI, sensed packets are exported
into a .CSV file. The data in .CSV format are then cleaned
and processed by converting missing values to zero. We also
removed features like IP address, since wireless clients roam
about continuously, their IP addresses change as they roam
from one AP to another. We use MAC addresses instead
of IP address to track records of each client. With SQL-
Loader utility in Oracle, the data are loaded into an Oracle
database using the appropriate script file entries.
From CommView for WIFI statistics report of network ac-



tivities, we derived connection records like total number of
packets, packet bytes sent, and number of RTS retries, which
help us in detecting attacks with few (one or twenty) connec-
tions, as well as DOS attacks. Features extracted from the
sensor log include Time, Src/Dest IP, Packet size, BSSID,
Frame type/ Subtype, Rate, Client AP sequence number,
Signal, ESSID, Source type, Channel.

2.2 The Proposed WIDCA Algorithm
The main algorithm based on the LSC outlier detection al-

gorithm, for clustering and identifying outlying or abnormal
connection wireless records, which is used by the proposed
WIDS system as shown in Figure 1 is Wireless Intrusion De-
tection Clustering Algorithm (WIDCA), shown formally as
Algorithm 1. Given the wireless record-set, a set of records
containing wireless data with parameters (mac address, no
of packets sent, no of packets received, packet byte, chan-
nel, signal, rate, errors, retries, packet size, receiving time),
the WIDCA algorithm outputs spoofed address, rogue APs,
alert clusters with anomaly records by going through the
following three steps.
Step 1: Calculates all MAC addresses with large gaps in se-
quence number as spoofed and any change in MAC/channel
pair AP as rogue and this it does by calling an algorithm for
performing sequence number capture (see Sequence-number-
capture Algorithm 2).
Step 2: Using the LSC-Mine outlier detection algorithm,
compute outlying connections as the top strongly ranked
outliers and use them as clustering centroids (LSC-Mine de-
tails provided in the related work section).
Step 3. Using our Online Wireless clustering algorithm,
identify anomalous records as those that have their distances
from their closest cluster more than the minimum deviation
distance, D as anomaly (see Wirelesscluster Algorithm 3).
D is the maximum of the distances between pairs of cluster
centroids.
The formal presentation of the main WIDCA algorithm is
given as Algorithm 1.

Algorithm 1. (WIDCA: Detecting Anomalous Wireless
Packets)

Algorithm WIDCA()
Input: records, r, a set of wireless records with parameters

(mac address, no of packets sent, no of packets
received, packet byte channel, signal, rate,
errors, retries, packet size, receiving time)

Output: spoofed address, rogue APs, alert clusters
as anomaly records

begin
// find spoofed MAC addresses as those with large gaps
in sequence number and change in MAC/channel pair AP
as rogue, see algorithm 2
(1) Spoofed MAC/AP addresses = Sequence-number-capture(records);
(2) Initial cluster centroids = LSC-Mine(record-set)
// 30% bottom records with low LSC scores have low anomaly
// scores and are initial centroids //
(3) Anomalous Packet = Call wirelesscluster(anomaly records)
// Records with distance from the closest cluster more
// than minimum deviation, D, are anomalous.
end

Algorithm 2. (Sequence-number-capture: find rogue MAC
and APs)

Algorithm Sequence-number-capture()

Input: network packets
Output: sequence numbers, MAC address paired with

channel for clients and AP
begin
While(TRUE)

begin
1. Scan the network and cross check the APMAC

Address and channel with the list of authorized
APMAC addresses and channel pairs in the network;
Raise alert if they do not match;
obtain network packet n from sensors; extract
time for receiving, sequence numbers, MAC address

2. for each client and AP with channel
compare current sequence number with the last
sequence number.
raise alert if the difference is more than 30;

end
end

Algorithm 3. (wirelesscluster: online clustering with LSC
centroids)

Algorithm Wirelesscluster()
Input: A set of data vectors M= M1,. . . ,Mn,

small learning rate ρ,
number of clusters K, initial centroids, C

Output: Set of intrusion clusters distance
from others ≥ minimum deviation, V

begin
1. Initialize centre positions with set of
data vectors M1,. . . ,Mn of connection
values with low ranking scores from LSC-Mine
2. Minimum Deviation Distance D = maximum distance
between all pairs of centroids
3. For each record, r, compute its K distances to
the K centre positions
4. Select the closest cluster, H, to record r,
where distance between r and H is d
5. If d ≤ minimum-deviation D, then
5.1 begin

5.1.1 Insert record, r into closest cluster H
5.1.2 Update the centroid properties of cluster H
for each xn attribute value in r
New centroid of H = previous centroid +
ρ(xn - previous centroid)
5.1.3 calculate new minimum deviation, D

5.1 end
5.2 else if d > minimum-deviation then
Move records r, to alert

end

2.3 Application of WIDCA Algorithm on Sam-
ple Data

Example 1: Given seven records M1 to M7 representing
seven wireless connection records, show how the proposed
WIDCA algorithm can be used to cluster these records as
either normal or intrusive.

Solution 1: After identifying rogue MAC and AP addresses
in step one of Algorithm 1, WIDCA, the records are passed
to step 2. The LSC outlier algorithm next assigns anomaly
scores to the records and selects the 30% bottom low out-
lying records or more normal records as initial centroids for
running the Wirelesscluster algorithm (a type of online K-
means algorithm where the initial centroid is not randomly
selected and the minimum deviation distance D is changed
each time a record is assigned to a cluster).



Table 1: Distances between 5 of 7 Example Records

M1 M2 M3 M4 M5

M1 0 88012 6 54 395705
M2 88012 0 88018 87958 307693
M3 6 88018 0 60 395711
M4 54 87958 60 0 395651
M5 395705 307693 395711 395651 0

When LSC-Mine is called in step 2 of WIDCA, it starts
by computing K-distance of the 7 records with K assumed
to be 4. K is the minimum number of objects desired to
be in a neighborhood of an object O. K-distance of M, is
the maximum distance from object M when every object in
the data set is considered to have at least K-neighbors. A
pre-processing of connection records (5 records shown) to
translate attribute values to numeric distance values yields
the distance between objects as shown in Table 1. Table
values for M6 and M7 are respectively M6(12, 88000, 18,
42, 395693, 0, 167) and M7(179, 87833, 185, 125, 395, 526,
167, 0). LSC-Mine then, selects the first 4 (since K=4) dis-
tinct minimum distances from all objects M1 to M7. For
example, for M1, they are: 6, 54, 12, 179. Next, LSC-
Mine selects the maximum of the first 4 minimum distances
as the K-distance(M1)=max(6, 54, 12, 179) = 179. The
K-distances of the other objects are obtained in a similar
fashion. Step 2 of the LSC-Mine algorithm finds K-distance
neighborhood of M denoted (Nk(M)), which contains every
object with distance not greater than K-distance (M). The
rationale for computing the K-distance neighborhood is to
find the nearest neighbors of each object. For instance, K-
distance neighborhood of M1 contains M3, M4, M6 and M7

since K-distance (M1) is 179. Similarly, the Nk(M2 . . . M7)
are obtained. Step 3 of the LSC-Mine computes the local
sparsity ratio of an object M denoted as lsrk(M), which
is the ratio of the cardinality of the result obtained by di-
viding the number of objects in the neighborhood of M by
the sum of all the actual distances in that neighborhood.
lsr(M) = |NK(M)|/(P

o∈NK
distofNk). The distance of an

object Xi is the Euclidean distance of Xi from other data
points Yj and is computed as:

distof Xi =
p

(
P

(Xi−Yj)
2). The lsrk (M1) = 4/89 =0.045,

where 4 is the number of object in the neighborhood of M1

and 89 is the sum of the M1 neighborhood distances. The
LSC(M) is computed as the average ratio of the local spar-
sity ratio of M to that of its K-nearest neighbors. LSC(M1

= ((lsrk(M2) + lsrk(M4) + lsrk(M6) + lsrk(M7)) / 4. The
LSC for M1 . . . M7 are computed to be respectively: 0.029,
18004.39, 1.38, 1.49, 3409.27, 1.18, 3.73. This leads to an
LSC ranking showing the strongest outliers ranked 1st and
the weakest ranked 7th as: M5 being the 1st scored outlier,
the 2nd is M2, the 3rd is M7, the 4th is M4, the 5th is M3,
the 6th is M6 and the 7th is M1.

Thus, since the WIDCA algorithm uses the bottom 30%
of ranked outliers as initial centroids for clustering, M1, M6,
and M3 are used for initial centroids as they represent the
most records that are free of intrusions. The minimum de-
viation distance D is computed with these three records as
M = 572.31. For each new connection record, WIDCA se-
lects the closest cluster to place it in if the record value

Table 2: Detection Rate Results of 3 Algorithms
Attacks WIDCA Snort-W K-Means
Confi(5) 100% 80% 100%
Access(5) 100% 60% 100%
Avail(11) 82% 73% 36%
Integ(5) 100% 100% 100%
Authen(9) 100% 67% 100%
Detect 94% 74% 80%
Rate(35)

is not more than the minimum deviation, D. If it is more
than D, it is moved to the alert cluster. For example, new
record M14 with attribute values 265712, 88214, 10226569,
5654318, 289271, 5933, 98, 5.5 will go to the alert cluster.
The new record M15 with values 10, 2, 8, 131, 2, 0, 43, 1 is
inserted into the closest normal cluster C1 and the new cen-
troid for C1 is re-computed as: 7 + 0.05(10-7), 3 + 0.05(2-3),
348 + 0.05(8-348), 225 + 0.05(131-225), 7 + 0.05(2-7), 0 +
0.05(0-0), 79 + 0.05(43-79), 1 + 0.05(1-1). New minimum
deviation (M) is calculated by computing the distance from
new C1, C2 and C3. The process will be repeated for other
records. The alert cluster is examined by a human analyst
for any new intrusion signatures to be added to the attack
database.

3. TESTING AND IMPLEMENTATION EN-
VIRONMENT

Our prototype WIDS system is developed in Java lan-
guage under windows platform. The experiment is divided
into three parts. We tested our system along with one other
system by using crafted wireless intrusions, to see how many
intrusions each system can find. In the second part, the ef-
ficiency of the two systems is tested by using continuous
crafted wireless intrusions and comparing the CPU usage
on the computer that is hosting the IDS system. In the
third part, we tested our system in a real network by using
crafted intrusions to see how it performs in real world. Our
testing environment consists of 3 computers as: C1 is run-
ning our system (WIDCA) software implementations with
hardware Sensor configured as described in Section 3. Snort-
Wireless is installed in C2 and C3 is Online K-Means [12].
We have a laptop booted with BackTrack network security
suite (http://www.remote-exploit.org/backtrack.html) from
where we launch our attacks. BackTrack is a Linux tool dis-
tributed as a Live CD and includes over 300 security tools
that we used in crafting attacks. All the computers were
connected through a wireless router, which ensures that the
hardware Sensor captures all traffic including: 1. Confiden-
tiality Attacks, 2. Access Control Attacks, 3. Availability
Attacks, 4. Integrity Attacks, and 5. Authentication At-
tacks.

We measured the accuracy of the detection by using Detection-
Rate defined as: Detection Rate = (Number of Intrusions
found )/ (Total number of Intrusions). Table 2 shows the
results of our experiment comparing our WIDCA algorithm
with Snort-Wireless with On-line K-Means algorithm.

Testing for False Positives
In this experiment, we tested to see if there is reduction in



Table 3: Detection Rate Results Between 3 Algo-
rithms

Packets WIDCA Snort-W Zhong’s
23445, Detected: 30 Detected: 23 Detected: 25
(30 attacks, false alarm: false alarm: false alarm:
23415 normal) attack: 231 732 attack: 471

the number of false positives in our system. In false positive,
a system flags an alert when in reality there is no attack. To
perform this, we crafted normal and attack packets which
we launched in our network. The results are shown in Table
3. We have to note here that we increased the rate at which
some of these packets were sent so that it looks like a DoS
attack when in reality the packets are normal. As can be
seen, our system flags few normal packets as attacks com-
pared with the two other systems (Snort and Zhong et. al.
2005 clustering approaches). The nature of the packets may
have contributed to the reason the third system (Zhong et.
al. 2005 clustering approach) has a high false positive.

4. CONCLUSIONS AND FUTURE WORK
This paper developed a clustering wireless intrusion de-

tection system for anomaly and misuse detection. The pro-
posed system uses the LSC outlier detection algorithm to
assign anomaly score to wireless records, and uses a new
clustering algorithm without any training data to detect dif-
ferent groups of wireless attacks. The paper also shows the
advantages of using Hardware Sensor to monitor real-time
traffic in order to improve intrusion response time. Exper-
iments show that our system can detect intrusions without
undergoing any training and has a higher detection rate than
SNORT-Wireless and Online K-Means. It also has reduced
false positive rate and more scalable than the two other sys-
tems. Our system can also adapt to different wireless envi-
ronment and with greater flexibility. There are still rooms
for improvement in our system in the following areas: 1.
Explore using LSC continuously to update clusters as new
records arrive to possibly increase intrusion detection rate.
2. Being able to detect wired attack. One possibility is
to capture wired metrics (features) and include it in our
anomaly analysis.
3. Even though we capture our data in real-time and can
still detect some attacks in real-time (MAC Spoofing and
Rogue AP), our anomaly analysis is still done offline. How-
ever, as shown in Section 3, almost (90%) of all attacks in
wireless networks involve spoofing MAC addresses, thus, our
system is capturing most wireless attacks.
4. Scale the system to handle large wireless network with
labeled anomaly and normal wireless data with lots of APs
and clients.
5. Being able to label detected attacks with names, currently
only attacks with known signature can be labeled.
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