
Discovering Influential Nodes from Trust Network

Sabbir Ahmed
University of Windsor

School of Computer Science

Windsor, Ontario

ahmedp@uwindsor.ca

C.I. Ezeife†
University of Windsor

School of Computer Science

Windsor, Ontario

cezeife@uwindsor.ca

ABSTRACT

The goal of viral marketing is that, by the virtue of mouth to

mouth word spread, a small set of influential customers can

influence more customers. Influence maximization (IM) task is

used to discover such influential nodes (or customers) from a

social network. Existing algorithms for IM adopt Greedy and

Lazy forward optimization approaches which assume only

positive influence among users and availability of influence

probability, the probability that a user is influenced by another.

In this work, we propose the T-GT model, which considers both

positive (trust) and negative (distrust) influences in social trust

networks. We first compute positive and negative influences by

mining frequent patterns of actions performed by users. Then, a

local search based algorithm called mineSeedLS for node add,

exchange and delete operations, is proposed to discover influential

nodes from trust networks. Experimental results shows that our

approach outperforms Greedy based approach by about 35%.

Categories and Subject Descriptors

H.2.8 [Database Applications]: Data Base Application – Data

Mining.

General Terms

Algorithms, Measurement, Economics, Experimentation.

Keywords

Social Network, Trust Network, Viral Marketing, Data Mining,

Submodular Function.

1. INTRODUCTION
Viral Marketing is the process of targeting the most influential

users in the social network so that these customers can start a

chain reaction of influence driven by word-of-mouth, so that with

a small marketing budget a large population of a social network

can be reached or influenced. For example a phone manufacturer

wants to promote their new phone model and have limited budget

for the marketing campaign.

To get maximum possible benefit out of the limited budget the

company may want to choose a small group with largest

influence, so that this small ‘influential’ group can influence

greater number of potential customers. Selecting such influential

nodes from a social network graph is an interesting research

challenge that has received a good deal of attention in recent years

[1]. Kempe et al. [6] formalize Influence Maximization problem in

terms of diffusion models (definition below), such as Linear

threshold (LT) model and Independent Cascade (IC) model

adopted from mathematical sociology. They also presented a

generalized model called General Threshold (GT) model which is

an extension of IC and LT models.

Diffusion Model - A diffusion model, also known as propagation

model, describes the entire diffusion process and determines

which nodes will be activated due to the influence spread through

the social network.

Diffusion models, in general, model the spread of influence or the

diffusion process, through a social network represented by a

directed graph G(V,E), where V is the set of all users (also called

nodes) in the social network and E is the set of directed edges

between these nodes. In these diffusion models a node or user is

said to be active if the node adopts a product (or performs an

action) or inactive if the node does not adopt a product (or

performs an action). Given a social network graph G(V,E), a

diffusion model M and an initial set of active vertices S ⊆ V, the

influence spread of set S, denoted σM(S), is the expected number

of vertices to become active, under the influence of vertices in set

S, once the diffusion process is over. All existing diffusion

models, such as IC and LT [6], requires additional parameters for

each directed edge in E, such as influence probability, along with

social network graph G(V,E), to determine or compute influence

spread.

Influence probability – Given a social network graph G(V,E),

influence probability, denoted as p(u,v) (such that u ∈ V, v ∈ V and

(u,v) ∈ E) is the probability of node v to perform some action

under the influence of user u.

Using these notations Kempe et al. [6] defines the k-best influence

maximization problem as follows:

Problem 1 - Given a social network graph G(V,E) along with

influence probabilities of all edge in E, a diffusion model M and a

number k such that k ≤ |V|, find a set S such that S⊆ V, |S|≤k and

the influence spread, that is σM(S), is maximum.

† This research was supported by the Natural Science and

Engineering Research Council (NSERC) of Canada under an

operating grant (OGP-0194134) and a University of Windsor

grant.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

SAC’13, March 18-22, 2013, Coimbra, Portugal.

Copyright 2013 ACM 978-1-4503-1656-9/13/03…$10.00.

121

From viral marketing perspective the parameter k is the budget of

how many individuals we want to target and is given as input by

the end user. The selected set S is also referred to as “seed set”.

Kempe et al. [6] proves that the optimization problem (problem 1)

is NP-hard. However, they show that σM(.) function is submodular

and monotone. This actually means that under IC and LT models,

the effect or the marginal gain (expressed as σM (S ∪ {v}) - σM

(S)); of adding a new node to a seed set S is smaller than that of

adding the same node to a subset of S. A submodular function σ is

said to be monotone if we have σ(S) ≤ σ (S ∪{v}) for all elements

v and sets S ⊆ V. That is adding an element to a set does not

decrease the value of the function σ(.).

According to Nemhauser et al. [13] any submodular monotone

function can be solved using natural greedy algorithm with a (1-

1/e) approximation guarantee. That is due to the submodular and

monotone property of σM(.) function, the greedy solution will

produce result which is at least 63% of the optimal. The greedy

algorithm for influence maximization requires 2 inputs as follows

[5][6]:

a) A directed social network graph G(V,E) and

b) Influence Probability of each edge in E.

A major issue that is largely ignored in the works in influence

maximization, such as [2][6], is the question – How we can

compute Influence Probability? In most of the works such as

[2][6], it is assumed that the network itself and influence

probabilities are known and given to the IM algorithm as input. A

social network graph G can be easily constructed if the data is

explicitly available [5]. However influence probabilities are not

explicitly available. To tackle this issue researchers are now

looking into ways to mine influence probabilities from Action Log

of users in a social network [5]. Action log is a relation,

Actions(User, Action, Time). It contains tuples [5], such as (u, a,

t), which means that user u (such that u ∈ V) performed action a,

at time t.

All the work in the area of influence maximization, such as

[2][3][6], consider only positive influence among users in a social

network. That is, techniques for influence maximization only

consider how much a node has influence on another node to

perform a certain task. However, in real life scenario a node can

also have some degree of negative influence on another node,

especially by a user who he/she does not trust. Furthermore, viral

marketing is different from other strategies of marketing, because

it is based on trust among close families and friends [3]. Existing

diffusion models for IM are modeled such a way that a node’s

probability of performing an action (or adopting a product) will

increase as the number of his/her friends performing the same

action increases. However, we argue that, a node’s probability of

performing an action (e.g., Buy iPhone 4S) should also decrease

if its distrusted neighbours, also buy iPhone 4S.

1.1 Contributions and Outline
Motivated by the issues discussed above, the problem we tackle is

as follows:

Problem Definition – Find Influential Nodes from a directed trust

network graph, G(V,E) where every edge (u,v) of E is directed and

labelled either positive (trust) or negative (distrust), and given an

Action Log, Actions(User, Action, Time) such that every user u in

User column of action log table is member of V.

To solve the above problem we make the following contributions

in this research:

1) We propose a new diffusion model named Trust-General

Threshold (TGT) model which incorporates both positive and

negative influence probabilities based on trust relationship among

users in trust network.

2) Based on this new TGT model we propose a new influence

maximization framework for trust network, called Trust-

Influential Node Miner (T-IM), which takes trust network data

and action log to find influential nodes.

3) To compute influence probabilities we propose to mine action

log to find frequent patterns of action performed by trusted and

distrusted neighbours and use it to compute both positive and

negative influence probability using Bernoulli distribution.

4) We claim that influence spread under TGT model is non-

monotone sub modular function and define the problem of finding

influential nodes from trust network as maximization of non-

monotone submodular function problem.

5) We propose a new algorithm, mineSeedLS, involving local

search based on Lee et al. [9] to solve IM under our proposed

TGT model.

6) Perform experiments and analysis of our proposed solution

using real life data set collected from Epinions

(www.epinions.com) [12] and Wikipedia (www.wikipedia.com).

In terms of quality of influential nodes selected, our experiments

shows that mineSeedLS outperforms greedy based solutions by

almost 35%.

Note that the main problem tackled in this paper is to define and

solve influence maximization considering both positive and

negative influence among the users in a trust network to find

influential nodes. Section 2 provides relevant background and

related works. In section 3 we propose a new diffusion model,

called Trust-General Threshold (TGT) Model, which is an

extension of general threshold model by Kempe et al. [6]. In

section 4 we provide the solution framework of the problem.

Section 5 reports the results of our experiments and section 5

provides concluding remarks and future works in this area.

2. RELATED WORK
Domingos and Richardson in [4] and [11], introduce the problem

of identifying influential customers by taking into account their

network value. The network value of a customer in a social

network is the profit due to additional sales to customers he or she

may influence to buy [4][11]. Their goal is to provide a solid

foundation for viral marketing problem, which exploits network

value of customers.

Kempe et al. [6], motivated by the work of Domingos and

Richardson [4][11], tackled the viral marketing problem using

several commonly used diffusion models, such as the Linear

Threshold, Independent Cascade and General Threshold Models.

Using these models they formulated the viral marketing problem

as the influence maximization problem which is a discrete

optimization problem and proved it to be NP-Hard. However, they

presented further proof to show that the influence maximization

problem can be solved with good approximation using a natural

greedy approach. This is due to the fact the influence spread

function is submodular and monotone under proposed diffusion

models [6].

122

In [6], Kempe et al. presented the greedy algorithm. The

algorithm requires computing marginal gain of influence spread of

every node v, σM(S ∪ {v}) - σM(S), in each iteration. The node with

highest marginal gain is 'greedily' added to the seed set until

number of nodes in seed set reaches k. Although simple, the

greedy algorithm of Kempe et al. [6] is computationally expensive

and not scalable to large social network. According to Chen et al.

[2][3] the greedy algorithm would fail or become unfeasible to

extract influential nodes from large social network graph with

more than 500K edges even on modern server machine. The

computationally expensive step of the greedy algorithm is where

we select the node that provides the largest influence spread. To

be able to do this we need to compute influence spread of each

and every nodes, which can be quite time consuming if the

number of nodes and edges in the social network graph is very

large. Most of the work, such as work of Leskovec et al. [10] and

of Chen et al. [2][3], that followed in the area of influence

maximization attempt to tackle the efficiency issue of the greedy

approach. However, this is to be noted that tackling scalability is

not within scope of this research and so we keep the discussion on

this issue limited.

Existing algorithms for influence maximization, such as Greedy

[6] and ‘Lazy Forward’ [10] based algorithms, requires that the

influence probability is known and given to the algorithm as input

along with a social network graph. A social network graph can be

easily constructed if the relationship (among users in a social

network) data is explicitly available. However influence

probabilities are not explicitly available. In most of the literature

reviewed influence probabilities are assumed and given as input

[5].

To tackle this, researchers are recently looking into data mining

techniques [5] to mine influence from user’s action log. These

techniques in general takes Action Log, which is a relation

Actions (User, Action, Time), along with a social graph G(V, E).

Action log are extracted from log of user activity in a social

network site databases. Tuples in Action log table contains, for

e.g. (u, a, t), indicating that user u (such that u ∈ V) performed

action a, at time t. Recent researches show that such action log

can provide traces of influence among users in a social network

[5]. For example if a user v rate “Mission Impossible” movie and

later v’s friend u does the same, and then the action of rating the

movie “Mission Impossible” propagates from user v to user u.

3. TGT MODEL

3.1 General Threshold Model
Recall that general threshold (GT) model [6] is a generalized

model of LT and IC models which is defined as follows. Let us

consider an inactive user u and the set of its active neighbors S

(that is all nodes in S already performed certain task). To

determine if u will activate (or perform the task), we first

compute , which is the joint influence probability of S on u

[5]. If ≥ , where is the activation threshold of user u,

according to GT model we conclude that u activates [5]. The joint

probability is computed as follows [5][6], where is the

influence probability of any node v on another node u:

 ∈ (1)

Figure 1: Example of social network graph with influence

probabilities as weight on edges

3.2 Trust-General Threshold Model
In case of trust based network the above joint probability equation

is appropriate only if we consider only trusted neighbours of node

u. Let us consider two scenarios for node C in figure 1. Let us

assume that node C trusts node E. Also node C distrusts node A.

In the first scenario, let us consider node E gets activated at time t.

Also let us assume the influence probability =0.3. So

according to equation 1, the probability of node C getting

activated, i.e. . In the second

scenario, let us consider node E and A get activated at time t.

Since node E is the only trusted neighbour of node C the

probability of node C getting activated in second scenario is also,

i.e. . In the second scenario, we

should also consider any negative influence on node C by node A,

because C does not trust A. If few of trusted friends of a user

adopt a product, the probability of him/her to also adopt a product

should not stay the same if few distrusted user also adopt the

product.

To accommodate such negative influence while computing ,
we introduce the notion of negative influence probability.

Negative influence probability is the probability, denoted as
 ,

of a user u not getting activated due to negative influence of node

v. Here, we assume that
 if node u trusts node v. That is,

there is no negative influence on a node by any of its trusted

neighbours. Similarly, we also assume positive influence

probability, from here on denoted as
 , is 0 if node u does not

trust user v. That is, there is no positive influence by any of its

distrusted neighbours.

Let S+ be all the trusted active neighbours of node u and S- be the

distrusted active neighbours of node u. Let us say S = S+ ∪ S- .To

determine whether u will activate given that all nodes in S are

active, we first compute
 and

 . To be able to do

this we simply use the equation 1 individually for S+ and S-. That

is:

 ∈ (2)

 ∈ (3)

 is the positive joint influence probability, which is the

probability of node u performing an action under influence of its

trusted neighbours. And
 is the negative joint influence

probability, which is the probability of node u not performing an

action under negative influence of its distrusted neighbours.

According to the proposed TGT model we say a node becomes

active if:

 AND

123

Where and are thresholds that are chosen uniformly at

random for each node. Thresholds, and , essentially

represents the latent tendencies of nodes to adopt (or not to adopt)

a product when their trusted and distrusted neighbours do. These

are randomly chosen to model the unavailability of these values in

real life [8]. To find influential nodes based on the TGT model we

need to estimate influence spread denoted as σTGT(S), the expected

number of nodes influenced by a given set of nodes. Influence

spread of given set S is counted as follows [6][7]:

i. First a list of currently active nodes, H, is created.

That is H initially consists of all the nodes in S

ii. Then for each neighbours of every nodes in S,

positive and negative joint influence probabilities

are computed according to equation 1 and 2.

iii. For every node u, outside S, that becomes active

according to TGT model, is added to H.

iv. For each neighbour of u that became active in

previous step, the positive and negative joint

influence probabilities are computed according to

equations 2 and 3.

v. If more nodes become active then, repeat step iii. If

no more nodes become active then the diffusion

process stops here. The influence spread, σTGT(S),

is basically the total number of nodes in H.

3.3 Influence Maximization under TGT
Influence maximization under existing diffusion models such as

LT and IC can be solved with Greedy [6] or Lazy Forward

optimization [10] with 63% approximation guarantee. However

these approaches rely on the fact that the influence spread

function, σ(.), is monotone and submodular. In contrast the

influence spread function, denoted as σTGT(S), under the new

proposed TGT model is non-monotone. That is, adding a node (or

user) may not result in influence spread to increase in TGT model.

To show this let us consider the following scenario. Let S is the

initially activated seed set and ∂(S) are the nodes that were

successfully activated by the seed set S. That is the influence

spread, σ(S), is actually the number of nodes in ∂(S) or |∂(S)|. Now

let us consider a node w that has a negative influence (due to

distrust) on two nodes u and v which is in ∂(S). Now adding w to

S will cause the probability of u and v getting activated to

decrease according to equation 4 and will not get activated. This

will cause the influence spread of S+{w}, i.e. σTGT(S+{w}), to

decrease as |∂(S)-2| < |∂(S)|. Therefore, we claim that influence

spread function is non-monotone. So, to solve influence

maximization under TGT model, the approximation guarantee by

Greedy approaches by [6] and [10] is not applicable. However, we

show that the spread function under TGT model is still sub

modular. This claim based on the following theorem of Kleinberg

[8].

Theorem 1 [8]: For any instance of the General Threshold Model

in which all the threshold functions are submodular, the resulting

influence spread function, σ(.), is submodular.

Note that the threshold functions in TGT model are basically

equations 2 and 3 which happen to be submodular [5]. Therefore,

we define the problem of finding influential nodes from trust

network as a problem of maximizing non-monotone submodular

function under budget constraints. So, we use local search based

algorithm by Lee et al. [9] to extract influential nodes from trust

network. Local search algorithms are commonly used to solve

computationally hard optimization problems that can be

formulated as finding a solution which maximizes a criterion,

among a number of solutions. Local search algorithms typically

start with a small solution based on certain criteria. Then, it

applies local changes to the current solution, such as adding an

element or removing an element, until a solution deemed optimal

is found or certain criteria (example budget) is met.

4. SOLUTION FRAMEWORK
We now discuss the overall proposed solution framework, called

Trust-Influential Node Miner (T-IM), for discovering influential

node from trust network. Following are the inputs to T-IM

framework:

i. Action Log Table (Table 1) – Contains tuples, for

example (a, u, t), which indicates that node u

performed action a, at time t.

ii. Trust Data (Table 2) – Contains tuples, for

example (u, v, trust). If trust is 1 it indicates that

node u trusts node v. If trust is -1 it indicates that

node u does not trust node v.

iii. Budget – Number of influential nodes to be

extracted.

Table 1: Action Log Table example

Action User Time

a u1 5

a u2 6

a u3 8

a u4 11

b u2 4

b u3 5

b u5 8

c u2 11

c u5 12

c u1 18

The proposed solution consists of following three main steps

listed below. Note that in the rest of this paper and in the

algorithms presented, we denote adding an element v to any set S

by S = S + {v}. Similarly, we denote removing an element v from

any set S by S = S-{v}. Also, V-S is the set of elements which are

in set V but not in set S.

Step 1 – First, we construct a social network graph G(V,E) using

the Trust Data table. For each tuple (u, v, trust) it adds nodes v

and u to set V of social network graph G(V,E). It adds an edge

(v,u) to set E of the social network graph. This is because if u

trusts (or distrusts) v then there is an influence (positive or

negative) of node v on node u. Example of the social network

graph constructed from sample trust table 2 is shown in figure 2.

The influence probabilities labeled in figure 2 is computed in the

next step.

124

Table 2: Trust Data example

U V Trust

u1 u2 1

u1 u3 -1

u2 u1 1

u2 u4 -1

u2 u5 -1

u4 u1 1

u4 u2 -1

u5 u2 1

u5 u3 1

Step 2 – In this second step the action log is mined to extract

patterns of actions, which are required to compute the influence

probabilities. Then, influence probabilities are computed using

these patterns (discussed in section 4.1) for each edge (u,v) in E of

social network graph we constructed in Step 1.

Step 3 – This is the main and final step of our proposed

framework which takes social network graph G(V,E), the trust

matrix TM, and Influence Matrix IM to extract influential nodes.

To mine influential nodes (or seed set) using local search based

technique, we use algorithm called mineSeedLS. Detail of this

algorithm is given in section 4.2.

4.1 Learning Influence Probability
To estimate these probabilities we use action log and extract

pattern of user behavior. To do this we extract two types of

frequent patterns from the action log. The first pattern we extract,

we call it Positive Frequent Action Pattern, is the number of

actions performed by any node u after the same actions were

performed by all trusted neighbors of u. This is similar to

extracting frequent item set in frequent pattern mining. In frequent

pattern mining we are interested to find items which appear

frequently in data.

Let us say a node u performs number of actions after its

trusted neighbor v and node v performs total of tasks in total.

We compute positive influence probability of node v on node u by

using dividing by . In frequent pattern mining this is also

known as confidence which is interpreted as the probability of u

performing an action after v. Note that unlike traditional frequent

pattern mining we are also interested in computing number of

times a node does not perform a task after its distrusted neighbour.

Therefore, we extract second pattern, we call it Negative Frequent

Action Pattern, which counts the number of actions not performed

by any node u after the same actions were performed by a

distrusted neighbor of u. Let us say a node u does not perform

 number of actions after its distrusted neighbor v and node v

performs total of tasks in total. We compute negative influence

probability of node v on node u by using dividing by . To

illustrate this, let us consider that in a trust social network, a node

u trusts another node v and also distrusts another node w. Now, let

us assume that according to action log node v performs a total of 3

actions. And out of these 3 actions 2 actions were performed by u

after node v (trusted neighbor of u) performs these same actions.

So, the probability of node u performing a task after node v

performs the same action is 2/3 = 0.66. This is the positive

influence probability of node v on node u. That is,
 = 0.66.

Based on this, for any nodes u and v, if is the number of

actions performed by u after node v and is the number of

actions performed by node v positive influence probability of

node v on node u can be expressed as:

Now let us further consider that a node w (distrusted neighbour of

u) performs 4 tasks in total and out of this, only 1 task was

performed by u after w. That is, u did not perform 3 out of 4 tasks

performed by w. So, the negative influence probability of node w

according Bernoulli distribution (citations please) is 3/4 = 0.75.

Based on this, for any nodes u and v, if is the number of

actions not performed by u after node v and is the number of

actions performed by node v, negative influence probability of

node v on node u can be expressed as:

Note that to compute influence probabilities as discussed above,

we need to learn required parameters, such as , , and

from action log. Once both positive and negative influence

probabilities are learned from action log, we are in the position to

discover influential nodes from trust network under TGT model.

Table 3: of each node v from Action Log in table 1

v u1 u2 u3 u4 u5

 2 3 2 1 2

Table 4: computed from Action Log in table 1

v u

u2 u1 1

u2 u3 2

u1 u2 1

u1 u4 1

u2 u5 1

u3 u5 2

Table 5: computed from Action Log in table 1

v u

u3 u1 2

u5 u3 2

u4 u2 1

u5 u2 2

u2 u4 2

125

u1 u5

u2

u4

u3

0.5 [+]

0.33 [+]

0.5 [+]

0.33 [+]

0.67 [+]

0.67 [+]

1 [-]

1 [-]

1 [-]

1 [-]

0.67 [-]

Figure 2: Social network graph (using trust data in table 2) where

each edge is labeled with influence probabilities and indicates if it

is positive ‘[+]’ or negative ‘[-]’

4.2 Discovering Influential Nodes
Now we present the algorithm which mines for influential nodes,

called mineSeedLS (Algorithm 1). It takes social network graph

G(V,E) with influence probabilities (figure 2) and an integer

budget. The algorithm returns set of influential nodes, S, such that

S is a subset of V and |S|<= budget. The algorithm starts by

initializing seed set S to NULL (Line 1). In line 2 the algorithm

computes influence spread of each node v according to TGT

model, σTGT({v}). Note that the influence spread σTGT({v}) is

computed as discussed in 3.2. Node with highest spread v is added

to the set S. Then the algorithm starts the following local changes

(Line 3) to current seed set S in attempt to improve influence

spread.

i. Delete (Line 4) - If removing any node v in S increase

the influence spread, then node v is removed from S.

ii. Add (Line 5) – If adding any node v not in S increase

the influence spread, then node v is added to S.

iii. Swap (Line 6) – If removing any node u in S and adding

a node v not in S, increases the influence spread, then

node u is removed from S and node v is added to S.

Local search continues until any of the above local changes yields

no further improvement.

4.2.1 Example
Now let us show how mineSeedLS() algorithm finds influential

nodes as we discussed above using the an example social network

graph in figure 2. Note that to compute influence spread under

TGT model as discussed in section 3.2 we need to assign

thresholds, and , which are randomly assigned. For

simplicity let us assume that for each node, threshold and

is set to 0.3 and 0.6. Also let us assume that our budget is 2, that

is, we are looking for 2 influential nodes.

First the algorithm will compute spread of each node as singleton.

The node with maximum spread will be picked and stored into the

set S. Table 6 below shows the spread of each node of graph in

figure 2. As node u1 has the highest spread, it will be picked and

added to the set of influential nodes S. So, at this point set S

contains node u1 and its spread is 3. Now, the local search is

going to start. The delete operation is skipped as there is only 1

node in the set S. Since our budget is 2 the algorithm continues to

see if adding any node results in improving the spread. It picks

node u2 as σTGT (S + {u2}) = 4 > 3 (note that σTGT(S) was 3).

So, the set of influential set has two nodes {u1, u2}. Note that the

spread of current set S is now 4. Then, it continues to check if

swapping (or exchanging) any node in S with any node in V (but

not already in S) yields any improvement in spread.

Algorithm 1 mineSeedLS

Input: Directed Graph G(V,E), Budget

Output: Set of influential nodes, S, such that |S| < Budget

1. Set S to NULL

2. Compute spread of each node v ∈ V, σTGT({v}), and pick which

 yields highest spread and added to S.

3. Local Search on S to improve the selection by:

4. Delete node v, such that v ∈ S if

σTGT(S-{v}) > σTGT(S)
5. Add node v, such that v ∈ V-S, if |S| < Budget

σTGT(S+{v}) > σTGT(S)

6. Swap node u, u ∈ S with node v, v ∈ V-S if

σTGT(S+{v}-{u}) > σTGT(S)

7. Continue Step 3 while above local improvement in influence

 spread applies.

8. Return S

Table 6: Spread of each nodes in figure 2.

Node v u1 u2 u3 u4 u5

σTGT({v}) 3 2 2 1 1

The spread of set S as a result of removing node u2 and replacing

it with node u3 is 5, that is, σTGT (S – {u2} + {u3}) = 5. This is

actually an improvement from previous spread of 4. So, node u2

is dropped and node u3 is added to set S, which now is {u1, u3}.

The algorithm will continue to search for any further

improvement. First, it checks if dropping any element from S

improves the spread or not. Since σTGT (S – {u1}) =3 and σTGT (S –

{u2}) =2 and does not improve the previous spread of 5, no

element is dropped. Also the size of S is now 2 which is our

budget, so the algorithm will not look for adding any new node. It

will further check if swapping any node in S with any node in V

(but not already in S) yields any improvement in spread. No

exchange yields any improvement from pervious spread 5. So, the

algorithm stops at this point and returns the set S = {u1, u3}

which manages to achieve total gross spread of 5.

5. EXPERIMENTAL EVALUATION

5.1 Dataset

5.1.1 Epinions Dataset
Epinions.com is a product review site where users can read

reviews about a variety of products or can join to begin writing

reviews. Users of the Epinions.com can declare whether to ''trust''

or “distrust” each other. In this research we use Epinions dataset,

provided by [12] and downloaded from http://www.trustlet.org

that has two types of information. The first dataset consists of

trust and distrust information. In this dataset we identified about

95, 318 nodes with 11,56,753 edges. However, since our main

goal is to show that quality of nodes selected by mineSeedLS is

better than that of greedy based solution under TGT model and

also any network with nodes more than 10,000 may run for days,

we select a small snap shot from the dataset comprising of

approximately 10,000 nodes. The second dataset consists of rating

information. Epinions users can post review on any certain

126

product. Other users can rate these reviews from 5 (“Very

Helpful") to 1 (“Not Helpful") etc. We use this dataset to extract

action log of users in the network. Whenever a user rates a review

it is considered as an action performed by the users. Rating of

each object is first classified as ‘High’ (if the rating is between 3-

5) and ‘Low’ (if the rating is between 1-2). We consider two that

users perform the same action if they rated the same object as

‘High’ or ‘Low’.

5.1.2 Wikipedia Dataset
Wikipedia is a very popular free online encyclopaedia which is

maintained and written by volunteers around the world. A small

part of such contributors are ‘administrators’, who have access to

additional technical features that help in maintenance. Users of

Wikipedia can vote for or against another user to become

administrator. The data set we collected from ‘The Koblenz

Network Collection’ (http://konect.uni-koblenz.de/) consists of

network of users from the English Wikipedia that voted for and

against each other in admin elections. Nodes represent individual

users of Wikipedia. And edges represent votes, which can be

positive ("for" vote) and negative ("against" vote). In the dataset

we have about 8,297 nodes and about 107,071 edges.

Unfortunately there was no ‘Action Log’ available for this dataset.

So we assigned influence probability uniformly and randomly to

each edge.

5.2 Algorithms compared
The goal of our experiments is to show that influence spread

achieved by our MineSeedLS algorithm improves influence

spreads that can be achieved by standard approaches like CELF of

[10]. We compared influence spread, number of nodes activated

by seed set discovered, achieved by our proposed T-IM

framework with the following approaches:

CELF-TGT: This is the greedy algorithm of [6] with the

CELF optimization [10].

Degree-TGT: For comparison, we also compare our

approach with a simple heuristic that selects the top k vertices

with the highest degrees [6] [2]. Since we are dealing with trust

network we select vertices with largest positive in degree.

5.3 Comparing Influence Spread
Figure 3 shows the influence spreads of various algorithms on

trust network graph generated from Wikipedia dataset. Our T-IM

performs very closely to CELF-TGT for smaller seed sets (<10).

However, it outperforms CELF-TGT for seed set size > 15. It also

outperforms Degree-TGT for all seed set sizes. Also in Epinions

dataset the spread achieved by T-IM outperforms both Degree and

CELF based solutions (Figure 4). As expected CELF performs

inconsistently in both datasets and in some cases it even performs

below the Degree based solution.

5.4 Comparing Run Time
To compare runtime of mineSeedLS with CELF and Degree

based heuristic, we recorded time required to select influential

nodes of different sizes. Figure 5 reports the runtime comparison

on Epinions dataset. Degree heuristic performs almost in constant

time. MineSeedLS takes longer than CELF as the size of the

required set of influential nodes increases in both datasets. This

shows the room for improvement of mineSeedLS in terms of

scalability. As mentioned earlier, scalability was not focus of this

work; however there are several ways to make the approach more

scalable. We discuss some of these approaches in the next section.

Figure 3: Influence spread of various algorithms in Wikipedia

Dataset

Figure 4: Influence spread of various algorithms in Epinions

Dataset

Figure 5: Running time of different algorithms on Epinions

Dataset under TGT model

6. CONCLUSIONS
Analyzing information diffusion and social influence in social

networks has various real-world applications. Influence

maximization (IM) in viral marketing is an example of such an

important application. In this research we tackled the influence

maximization problem in trust network. We argue that to find

influential nodes from a trust network we need to model the

diffusion process by considering both positive and negative

influence exerted by trusted and distrusted neighbours. Motivated

by this, we introduce a new diffusion model, called Trust-General

127

Threshold (TGT) model, where both positive and negative

influence exists. We showed that unlike existing diffusion models,

influence maximization under proposed TGT model is a problem

of maximizing non-monotone sub-modular function.

To learn influence probabilities, which are required parameters for

TGT model, we mine action logs to extract frequent patterns of

actions performed by users in trust network. Using these we

estimate both positive and negative influence probabilities

required for the TGT model. Then we propose an algorithm,

called mineSeedLS, using local search technique [9] to find

influential nodes. We ran experiments on real life dataset

collected from Epinions and Wikipedia to show that quality of

nodes selected by our proposed mineSeedLS outperforms existing

benchmark algorithms such as CELF [10] by almost 35%.

However, as expected, the scalability of minedSeedLS is not

suitable for large social network. Previously, scalability is tackled

in Influence Maximization under various models such as LT and

IC [2][3]. In the future we want to adopt some of these methods in

our TGT model to make it more scalable.

7. REFERENCES
[1] Bonchi, F., Castillo, C., Gionis, A., and Jaimes, A. 2011.

Social network analysis and mining for business applications.

ACM Trans. Intell. Syst. Technol. 2, 3 (May), 22:1–22:37.

[2] Chen, W., Wang, Y., and Yang, S. 2009. Efficient influence

maximization in social networks. In Proceedings of the 15th

ACM SIGKDD international conference on Knowledge

discovery and data mining. KDD ’09. ACM, New York, NY,

USA, 199–208.

[3] Chen, W. Wang, C. and Wang, Y. 2010. Scalable influence

maximization for prevalent viral marketing in large-scale

social networks. In Proceedings of the 16th ACM SIGKDD

international conference on Knowledge discovery and data

mining (KDD '10). ACM, New York, NY, USA, 1029-1038.

[4] Domingos, P. and Richardson, M. 2001. Mining the network

value of customers. In Proceedings of the seventh ACM

SIGKDD international conference on Knowledge discovery

and data mining. KDD ’01. ACM, New York, NY, USA, 57–

66.

[5] Goyal, A., Bonchi, F., and Lakshmanan, L. V. 2010.

Learning influence probabilities in social networks. In

Proceedings of the third ACM international conference on

Web search and data mining. WSDM ’10. ACM, New York,

NY, USA, 241–250.

[6] Kempe, D., Kleinberg, J., and Tardos, E. 2003. Maximizing

the spread of influence through a social network. In

Proceedings of the ninth ACM SIGKDD international

conference on Knowledge discovery and data mining. KDD

’03. ACM, New York, NY, USA, 137–146.

[7] Kimura, M. and Saito, K. 2006. Tractable models for

information diffusion in social networks. In Knowledge

Discovery in Databases: PKDD 2006. Lecture Notes in

Computer Science, vol. 4213. Springer Berlin / Heidelberg,

259–271. 10.1007/11871637.

[8] Kleinberg, J. Cascading behavior in networks: algorithmic

and economic issues. Cambridge University Press, 2007.

[9] Lee, J., Mirrokni, V. S., Nagarajan, V., and Sviridenko, M.

2009. Non-monotone submodular maximization under

matroid and knapsack constraints. In Proceedings of the 41st

annual ACM symposium on Theory of computing (STOC

'09). ACM, New York, NY, USA, 323-332.

[10] Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C.,

VanBriesen, J., and Glance, N. 2007b. Cost-effective

outbreak detection in networks. In Proceedings of the 13th

ACM SIGKDD international conference on Knowledge

discovery and data mining. KDD ’07. ACM, New York, NY,

USA, 420–429.

[11] Richardson, M. and Domingos, P. 2002. Mining knowledge-

sharing sites for viral marketing. In Proceedings of the eighth

ACM SIGKDD international conference on Knowledge

discovery and data mining. KDD ’02. ACM, New York, NY,

USA, 61–70.

[12] Massa, P. and Avesani, P. Trust metrics in recommender

systems. Massa, P. and Avesani, P. 2007. Trust-aware

recommender systems. In Proceedings of the 2007 ACM

conference on Recommender systems. RecSys ’07. ACM,

New York, NY, USA, 17–24.

[13] Nemhauser, G. L., Wolsey, L. A. and Fisher, M. L. An

analysis of approximations for maximizing submodular set

functions, Mathematical Programming 14, 1978, 265–294.

128

	MAIN MENU
	Help
	Search
	Search Results
	Print
	Author Index
	Keyword Index
	Table of Contents

