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ABSTRACT 

The goal of viral marketing is that, by the virtue of mouth to 

mouth word spread, a small set of influential customers can 

influence more customers. Influence maximization (IM) task is 

used to discover such influential nodes (or customers) from a 

social network. Existing algorithms for IM adopt Greedy and 

Lazy forward optimization approaches which assume only 

positive influence among users and availability of influence 

probability, the probability that a user is influenced by another.  

In this work, we propose the T-GT model, which considers both 

positive (trust) and negative (distrust) influences in social trust 

networks. We first compute positive and negative influences by 

mining frequent patterns of actions performed by users. Then, a 

local search based algorithm called mineSeedLS for node add, 

exchange and delete operations, is proposed to discover influential 

nodes from trust networks. Experimental results shows that our 

approach outperforms Greedy based approach by about 35%. 

Categories and Subject Descriptors 

H.2.8 [Database Applications]: Data Base Application – Data 

Mining. 

General Terms 

Algorithms, Measurement, Economics, Experimentation. 

Keywords 

Social Network, Trust Network, Viral Marketing, Data Mining, 

Submodular Function. 

1. INTRODUCTION 
Viral Marketing is the process of targeting the most influential 

users in the social network so that these customers can start a 

chain reaction of influence driven by word-of-mouth, so that with 

a small marketing budget a large population of a social network 

can be reached or influenced. For example a phone manufacturer 

wants to promote their new phone model and have limited budget 

for the marketing campaign.  

To get maximum possible benefit out of the limited budget the 

company may want to choose a small group with largest 

influence, so that this small ‘influential’ group can influence 

greater number of potential customers. Selecting such influential 

nodes from a social network graph is an interesting research 

challenge that has received a good deal of attention in recent years 

[1]. Kempe et al. [6] formalize Influence Maximization problem in 

terms of diffusion models (definition below), such as Linear 

threshold (LT) model and Independent Cascade (IC) model 

adopted from mathematical sociology. They also presented a 

generalized model called General Threshold (GT) model which is 

an extension of IC and LT models.  

Diffusion Model - A diffusion model, also known as propagation 

model, describes the entire diffusion process and determines 

which nodes will be activated due to the influence spread through 

the social network.   

Diffusion models, in general, model the spread of influence or the 

diffusion process, through a social network represented by a 

directed graph G(V,E), where V is the set of all users (also called 

nodes) in the social network and E is the set of directed edges 

between these nodes. In these diffusion models a node or user is 

said to be active if the node adopts a product (or performs an 

action) or inactive if the node does not adopt a product (or 

performs an action). Given a social network graph G(V,E), a 

diffusion model M and an initial  set of active vertices S ⊆ V, the 

influence spread of set S, denoted  σM(S), is the expected number 

of vertices to become active, under the influence of vertices in set 

S,  once the diffusion process is over. All existing diffusion 

models, such as IC and LT [6], requires additional parameters for 

each directed edge in E, such as influence probability, along with 

social network graph G(V,E), to determine or compute influence 

spread.  

Influence probability – Given a social network graph G(V,E), 

influence probability, denoted as p(u,v) (such that u ∈ V, v ∈ V and 

(u,v) ∈ E) is  the probability of node v to perform some action 

under the influence of user u.  

Using these notations Kempe et al. [6] defines the k-best influence 

maximization problem as follows: 

Problem 1 - Given a social network graph G(V,E) along with 

influence probabilities of all edge in E, a diffusion model M and a 

number k such that k ≤ |V|, find a set S such that S⊆ V, |S|≤k and 

the influence spread, that is σM(S), is maximum. 
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From viral marketing perspective the parameter k is the budget of 

how many individuals we want to target and is given as input by 

the end user. The selected set S is also referred to as “seed set”. 

Kempe et al. [6] proves that the optimization problem (problem 1) 

is NP-hard. However, they show that σM(.) function is submodular 

and monotone. This actually means that under IC and LT models, 

the effect or the marginal gain (expressed as σM (S ∪ {v}) - σM 

(S)); of adding a new node to a seed set S is smaller than that of 

adding the same node to a subset of S. A submodular function σ is 

said to be monotone if we have σ(S) ≤ σ (S ∪{v})   for all elements 

v and sets S ⊆ V. That is adding an element to a set does not 

decrease the value of the function σ(.).  

According to Nemhauser et al. [13] any submodular monotone 

function can be solved using natural greedy algorithm with a (1-

1/e) approximation guarantee. That is due to the submodular and 

monotone property of σM(.) function, the greedy solution will 

produce result which is at least 63% of the optimal. The greedy 

algorithm for influence maximization requires 2 inputs as follows 

[5][6]:  

a) A directed social network graph G(V,E) and 

b) Influence Probability of each edge in E.  

A major issue that is largely ignored in the works in influence 

maximization, such as [2][6], is the question – How we can 

compute Influence Probability? In most of the works such as 

[2][6], it is assumed that the network itself and influence 

probabilities are known and given to the IM algorithm as input. A 

social network graph G can be easily constructed if the data is 

explicitly available [5]. However influence probabilities are not 

explicitly available. To tackle this issue researchers are now 

looking into ways to mine influence probabilities from Action Log 

of users in a social network [5]. Action log is a relation, 

Actions(User, Action, Time). It contains tuples [5], such as (u, a, 

t), which means that user u (such that u ∈ V) performed action a, 

at time t. 

All the work in the area of influence maximization, such as 

[2][3][6], consider only positive influence among users in a social 

network. That is, techniques for influence maximization only 

consider how much a node has influence on another node to 

perform a certain task. However, in real life scenario a node can 

also have some degree of negative influence on another node, 

especially by a user who he/she does not trust. Furthermore, viral 

marketing is different from other strategies of marketing, because 

it is based on trust among close families and friends [3]. Existing 

diffusion models for IM are modeled such a way that a node’s 

probability of performing an action (or adopting a product) will 

increase as the number of his/her friends performing the same 

action increases. However, we argue that, a node’s probability of 

performing an action (e.g., Buy iPhone 4S) should also decrease 

if its distrusted neighbours, also buy iPhone 4S.  

1.1 Contributions and Outline 
Motivated by the issues discussed above, the problem we tackle is 

as follows: 

Problem Definition – Find Influential Nodes from a directed trust 

network graph, G(V,E) where every edge (u,v) of E is directed and 

labelled either positive (trust) or negative (distrust), and given an 

Action Log, Actions(User, Action, Time) such that every user u in 

User column of action log table is member of V. 

To solve the above problem we make the following contributions 

in this research: 

1) We propose a new diffusion model named Trust-General 

Threshold (TGT) model which incorporates both positive and 

negative influence probabilities based on trust relationship among 

users in trust network. 

2) Based on this new TGT model we propose a new influence 

maximization framework for trust network, called Trust-

Influential Node Miner (T-IM), which takes trust network data 

and action log to find influential nodes. 

3) To compute influence probabilities we propose to mine action 

log to find frequent patterns of action performed by trusted and 

distrusted neighbours and use it to compute both positive and 

negative influence probability using Bernoulli distribution. 

4) We claim that influence spread under TGT model is non-

monotone sub modular function and define the problem of finding 

influential nodes from trust network as maximization of non-

monotone submodular function problem. 

5) We propose a new algorithm, mineSeedLS, involving local 

search based on Lee et al. [9] to solve IM under our proposed 

TGT model. 

6) Perform experiments and analysis of our proposed solution 

using real life data set collected from Epinions 

(www.epinions.com) [12] and Wikipedia (www.wikipedia.com). 

In terms of quality of influential nodes selected, our experiments 

shows that mineSeedLS outperforms greedy based solutions by 

almost 35%. 

Note that the main problem tackled in this paper is to define and 

solve influence maximization considering both positive and 

negative influence among the users in a trust network to find 

influential nodes. Section 2 provides relevant background and 

related works. In section 3 we propose a new diffusion model, 

called Trust-General Threshold (TGT) Model, which is an 

extension of general threshold model by Kempe et al. [6]. In 

section 4 we provide the solution framework of the problem. 

Section 5 reports the results of our experiments and section 5 

provides concluding remarks and future works in this area. 

2. RELATED WORK 
Domingos and Richardson in [4] and [11], introduce the problem 

of identifying influential customers by taking into account their 

network value. The network value of a customer in a social 

network is the profit due to additional sales to customers he or she 

may influence to buy [4][11]. Their goal is to provide a solid 

foundation for viral marketing problem, which exploits network 

value of customers. 

Kempe et al. [6], motivated by the work of Domingos and 

Richardson [4][11], tackled the viral marketing problem using 

several commonly used diffusion models, such as the Linear 

Threshold, Independent Cascade and General Threshold Models. 

Using these models they formulated the viral marketing problem 

as the influence maximization problem which is a discrete 

optimization problem and proved it to be NP-Hard. However, they 

presented further proof to show that the influence maximization 

problem can be solved with good approximation using a natural 

greedy approach. This is due to the fact the influence spread 

function is submodular and monotone under proposed diffusion 

models [6].  
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In [6], Kempe et al. presented the greedy algorithm. The 

algorithm requires computing marginal gain of influence spread of 

every node v, σM(S ∪ {v}) - σM(S), in each iteration. The node with 

highest marginal gain is 'greedily' added to the seed set until 

number of nodes in seed set reaches k. Although simple, the 

greedy algorithm of Kempe et al. [6] is computationally expensive 

and not scalable to large social network. According to Chen et al. 

[2][3] the greedy algorithm would fail or become unfeasible to 

extract influential nodes from large social network graph with 

more than 500K edges even on modern server machine.   The 

computationally expensive step of the greedy algorithm is where 

we select the node that provides the largest influence spread. To 

be able to do this we need to compute influence spread of each 

and every nodes, which can be quite time consuming if the 

number of nodes and edges in the social network graph is very 

large. Most of the work, such as work of Leskovec et al. [10] and 

of Chen et al. [2][3], that followed in the area of influence 

maximization attempt to tackle the efficiency issue of the greedy 

approach. However, this is to be noted that tackling scalability is 

not within scope of this research and so we keep the discussion on 

this issue limited.  

Existing algorithms for influence maximization, such as Greedy 

[6] and ‘Lazy Forward’ [10] based algorithms, requires that the 

influence probability is known and given to the algorithm as input 

along with a social network graph. A social network graph can be 

easily constructed if the relationship (among users in a social 

network) data is explicitly available. However influence 

probabilities are not explicitly available. In most of the literature 

reviewed influence probabilities are assumed and given as input 

[5].  

To tackle this, researchers are recently looking into data mining 

techniques [5] to mine influence from user’s action log. These 

techniques in general takes Action Log, which is a relation 

Actions (User, Action, Time), along with a social graph G(V, E). 

Action log are extracted from log of user activity in a social 

network site databases. Tuples in Action log table contains, for 

e.g. (u, a, t), indicating that user u (such that u ∈ V) performed 

action a, at time t. Recent researches show that such action log 

can provide traces of influence among users in a social network 

[5]. For example if a user v rate “Mission Impossible” movie and 

later v’s friend u does the same, and then the action of rating the 

movie “Mission Impossible” propagates from user v to user u.  

3. TGT MODEL 

3.1 General Threshold Model 
Recall that general threshold (GT) model [6] is a generalized 

model of LT and IC models which is defined as follows. Let us 

consider an inactive user u and the set of its active neighbors S 

(that is all nodes in S already performed certain task). To 

determine if u will activate (or perform the task), we first 

compute      , which is the joint influence probability of S on u 

[5]. If      ≥   , where    is the activation threshold of user u, 

according to GT model we conclude that u activates [5]. The joint 

probability       is computed as follows [5][6], where      is the 

influence probability of any node v on another node u: 

                  ∈          (1) 

 

Figure 1: Example of social network graph with influence 

probabilities as weight on edges 

3.2 Trust-General Threshold Model 
In case of trust based network the above joint probability equation 

is appropriate only if we consider only trusted neighbours of node 

u. Let us consider two scenarios for node C in figure 1. Let us 

assume that node C trusts node E. Also node C distrusts node A. 

In the first scenario, let us consider node E gets activated at time t. 

Also let us assume the influence probability     =0.3. So 

according to equation 1, the probability of node C getting 

activated, i.e.                      . In the second 

scenario, let us consider node E and A get activated at time t. 

Since node E is the only trusted neighbour of node C the 

probability of node C getting activated in second scenario is also, 

i.e.                      . In the second scenario, we 

should also consider any negative influence on node C by node A, 

because C does not trust A. If few of trusted friends of a user 

adopt a product, the probability of him/her to also adopt a product 

should not stay the same if few distrusted user also adopt the 

product.  

To accommodate such negative influence while computing      , 
we introduce the notion of negative influence probability. 

Negative influence probability is the probability, denoted as     
 , 

of a user u not getting activated due to negative influence of node 

v. Here, we assume that     
    if node u trusts node v. That is, 

there is no negative influence on a node by any of its trusted 

neighbours. Similarly, we also assume positive influence 

probability, from here on denoted as     
 , is 0 if node u does not 

trust user v. That is, there is no positive influence by any of its 

distrusted neighbours.   

Let S+ be all the trusted active neighbours of node u and S- be the 

distrusted active neighbours of node u. Let us say S = S+ ∪ S- .To 

determine whether u will activate given that all nodes in S are 

active, we first compute     
    and     

   . To be able to do 

this we simply use the equation 1 individually for S+ and S-. That 

is: 

    
             

   ∈           (2) 

    
             

   ∈           (3) 

    
   is the positive joint influence probability, which is the 

probability of node u performing an action under influence of its 

trusted neighbours. And     
   is the negative joint influence 

probability, which is the probability of node u not performing an 

action under negative influence of its distrusted neighbours. 

According to the proposed TGT model we say a node becomes 

active if: 

    
       AND 
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Where    and    are thresholds that are chosen uniformly at 

random for each node. Thresholds,    and    , essentially 

represents the latent tendencies of nodes to adopt (or not to adopt) 

a product when their trusted and distrusted neighbours do. These 

are randomly chosen to model the unavailability of these values in 

real life [8]. To find influential nodes based on the TGT model we 

need to estimate influence spread denoted as σTGT(S), the expected 

number of nodes influenced by a given set of nodes. Influence 

spread of given set S is counted as follows [6][7]: 

i. First a list of currently active nodes, H, is created. 

That is H initially consists of all the nodes in S 

ii. Then for each neighbours of every nodes in S, 

positive and negative joint influence probabilities 

are computed according to equation 1 and 2. 

iii. For every node u, outside S, that becomes active 

according to TGT model, is added to H. 

iv. For each neighbour of u that became active in 

previous step, the positive and negative joint 

influence probabilities are computed according to 

equations 2 and 3. 

v. If more nodes become active then, repeat step iii. If 

no more nodes become active then the diffusion 

process stops here. The influence spread, σTGT(S), 

is basically the total number of nodes in H.  

3.3 Influence Maximization under TGT 
Influence maximization under existing diffusion models such as 

LT and IC can be solved with Greedy [6] or Lazy Forward 

optimization [10] with 63% approximation guarantee. However 

these approaches rely on the fact that the influence spread 

function, σ(.), is monotone and submodular. In contrast the 

influence spread function, denoted as σTGT(S), under the new 

proposed TGT model is non-monotone. That is, adding a node (or 

user) may not result in influence spread to increase in TGT model. 

To show this let us consider the following scenario. Let S is the 

initially activated seed set and ∂(S) are the nodes that were 

successfully activated by the seed set S. That is the influence 

spread, σ(S), is actually the number of nodes in ∂(S) or |∂(S)|. Now 

let us consider a node w that has a negative influence (due to 

distrust) on two nodes u and v which is in ∂(S). Now adding w to 

S will cause the probability of u and v getting activated to 

decrease according to equation 4 and will not get activated. This 

will cause the influence spread of S+{w}, i.e. σTGT(S+{w}), to 

decrease as |∂(S)-2| < |∂(S)|. Therefore, we claim that influence 

spread function is non-monotone. So, to solve influence 

maximization under TGT model, the approximation guarantee by 

Greedy approaches by [6] and [10] is not applicable. However, we 

show that the spread function under TGT model is still sub 

modular. This claim based on the following theorem of Kleinberg 

[8]. 

Theorem 1 [8]: For any instance of the General Threshold Model 

in which all the threshold functions are submodular, the resulting 

influence spread function, σ(.), is submodular. 

Note that the threshold functions in TGT model are basically 

equations 2 and 3 which happen to be submodular [5].  Therefore, 

we define the problem of finding influential nodes from trust 

network as a problem of maximizing non-monotone submodular 

function under budget constraints. So, we use local search based 

algorithm by Lee et al. [9] to extract influential nodes from trust 

network. Local search algorithms are commonly used to solve 

computationally hard optimization problems that can be 

formulated as finding a solution which maximizes a criterion, 

among a number of solutions. Local search algorithms typically 

start with a small solution based on certain criteria. Then, it 

applies local changes to the current solution, such as adding an 

element or removing an element, until a solution deemed optimal 

is found or certain criteria (example budget) is met. 

4. SOLUTION FRAMEWORK 
We now discuss the overall proposed solution framework, called 

Trust-Influential Node Miner (T-IM), for discovering influential 

node from trust network. Following are the inputs to T-IM 

framework: 

i. Action Log Table (Table 1) – Contains tuples, for 

example (a, u, t), which indicates that node u 

performed action a, at time t.   

ii. Trust Data (Table 2) – Contains tuples, for 

example (u, v, trust). If trust is 1 it indicates that 

node u trusts node v. If trust is -1 it indicates that 

node u does not trust node v. 

iii. Budget – Number of influential nodes to be 

extracted. 

Table 1: Action Log Table example 

Action User Time 

a u1 5 

a u2 6 

a u3 8 

a u4 11 

b u2 4 

b u3 5 

b u5 8 

c u2 11 

c u5 12 

c u1 18 

 

The proposed solution consists of following three main steps 

listed below. Note that in the rest of this paper and in the 

algorithms presented, we denote adding an element v to any set S 

by S = S + {v}. Similarly, we denote removing an element v from 

any set S by S = S-{v}. Also, V-S is the set of elements which are 

in set V but not in set S. 

Step 1 – First, we construct a social network graph G(V,E) using 

the Trust Data table. For each tuple (u, v, trust) it adds nodes v 

and u to set V of social network graph G(V,E). It adds an edge 

(v,u) to set E of the social network graph. This is because if u 

trusts (or distrusts) v then there is an influence (positive or 

negative) of node v on node u. Example of the social network 

graph constructed from sample trust table 2 is shown in figure 2. 

The influence probabilities labeled in figure 2 is computed in the 

next step.   
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Table 2: Trust Data example 

U V Trust 

u1 u2 1 

u1 u3 -1 

u2 u1 1 

u2 u4 -1 

u2 u5 -1 

u4 u1 1 

u4 u2 -1 

u5 u2 1 

u5 u3 1 

 

 

 

Step 2 – In this second step the action log is mined to extract 

patterns of actions, which are required to compute the influence 

probabilities. Then, influence probabilities are computed using 

these patterns (discussed in section 4.1) for each edge (u,v) in E of 

social network graph we constructed in Step 1.  

Step 3 – This is the main and final step of our proposed 

framework which takes social network graph G(V,E), the trust 

matrix TM, and Influence Matrix IM to extract influential nodes. 

To mine influential nodes (or seed set) using local search based 

technique, we use algorithm called mineSeedLS. Detail of this 

algorithm is given in section 4.2. 

4.1 Learning Influence Probability 
To estimate these probabilities we use action log and extract 

pattern of user behavior. To do this we extract two types of 

frequent patterns from the action log. The first pattern we extract, 

we call it Positive Frequent Action Pattern, is the number of 

actions performed by any node u after the same actions were 

performed by all trusted neighbors of u. This is similar to 

extracting frequent item set in frequent pattern mining. In frequent 

pattern mining we are interested to find items which appear 

frequently in data.  

Let us say a node u performs      number of actions after its 

trusted neighbor v and node v performs total of    tasks in total. 

We compute positive influence probability of node v on node u by 

using dividing      by   . In frequent pattern mining this is also 

known as confidence which is interpreted as the probability of u 

performing an action after v. Note that unlike traditional frequent 

pattern mining we are also interested in computing number of 

times a node does not perform a task after its distrusted neighbour. 

Therefore, we extract second pattern, we call it Negative Frequent 

Action Pattern, which counts the number of actions not performed 

by any node u after the same actions were performed by a 

distrusted neighbor of u. Let us say a node u does not perform 

      number of actions after its distrusted neighbor v and node v 

performs total of    tasks in total. We compute negative influence 

probability of node v on node u by using dividing       by   . To 

illustrate this, let us consider that in a trust social network, a node 

u trusts another node v and also distrusts another node w. Now, let 

us assume that according to action log node v performs a total of 3 

actions. And out of these 3 actions 2 actions were performed by u 

after node v (trusted neighbor of u) performs these same actions. 

So, the probability of node u performing a task after node v 

performs the same action is 2/3 = 0.66. This is the positive 

influence probability of node v on node u. That is,     
  = 0.66. 

Based on this, for any nodes u and v, if      is the number of 

actions performed by u after node v and    is the number of 

actions performed by node v positive influence probability of 

node v on node u can be expressed as: 

    
   

                 
    
  

          
  

Now let us further consider that a node w (distrusted neighbour of 

u) performs 4 tasks in total and out of this, only 1 task was 

performed by u after w. That is, u did not perform 3 out of 4 tasks 

performed by w. So, the negative influence probability of node w 

according Bernoulli distribution (citations please) is 3/4 = 0.75. 

Based on this, for any nodes u and v, if       is the number of 

actions not performed by u after node v and    is the number of 

actions performed by node v, negative influence probability of 

node v on node u can be expressed as: 

    
   

               

     
  

          
  

Note that to compute influence probabilities as discussed above, 

we need to learn required parameters, such as     ,      , and    

from action log. Once both positive and negative influence 

probabilities are learned from action log, we are in the position to 

discover influential nodes from trust network under TGT model. 

Table 3:    of each node v from Action Log in table 1 

v u1 u2 u3 u4 u5 

   2 3 2 1 2 

 

Table 4:     computed from Action Log in table 1 

v u      

u2 u1 1 

u2 u3 2 

u1 u2 1 

u1 u4 1 

u2 u5 1 

u3 u5 2 

 

Table 5:       computed from Action Log in table 1 

v u       

u3 u1 2 

u5 u3 2 

u4 u2 1 

u5 u2 2 

u2 u4 2 
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u1 u5

u2

u4

u3

0.5 [+]

0.33 [+]

0.5  [+]

0.33 [+]

0.67 [+]

0.67  [+]

1 [-]

1 [-]

1 [-]

1  [-]

0.67 [-]

 

Figure 2: Social network graph (using trust data in table 2) where 

each edge is labeled with influence probabilities and indicates if it 

is positive ‘[+]’ or negative ‘[-]’ 

4.2 Discovering Influential Nodes 
Now we present the algorithm which mines for influential nodes, 

called mineSeedLS (Algorithm 1). It takes social network graph 

G(V,E) with influence probabilities (figure 2) and an integer 

budget. The algorithm returns set of influential nodes, S, such that 

S is a subset of V and |S|<= budget. The algorithm starts by 

initializing seed set S to NULL (Line 1). In line 2 the algorithm 

computes influence spread of each node v according to TGT 

model, σTGT({v}). Note that the influence spread σTGT({v}) is 

computed as discussed in 3.2. Node with highest spread v is added 

to the set S. Then the algorithm starts the following local changes 

(Line 3) to current seed set S in attempt to improve influence 

spread. 

i. Delete (Line 4) - If removing any node v in S increase 

the influence spread, then node v is removed from S. 

ii. Add (Line 5) – If adding any node v not in S increase 

the influence spread, then node v is added to S. 

iii. Swap (Line 6) – If removing any node u in S and adding 

a node v not in S, increases the influence spread, then 

node u is removed from S and node v is added to S. 

Local search continues until any of the above local changes yields 

no further improvement.  

4.2.1 Example 
Now let us show how mineSeedLS() algorithm finds influential 

nodes as we discussed above using the an example social network 

graph in figure 2. Note that to compute influence spread under 

TGT model as discussed in section 3.2 we need to assign 

thresholds,    and    , which are randomly assigned. For 

simplicity let us assume that for each node, threshold    and      

is set to 0.3 and 0.6. Also let us assume that our budget is 2, that 

is, we are looking for 2 influential nodes.  

First the algorithm will compute spread of each node as singleton. 

The node with maximum spread will be picked and stored into the 

set S. Table 6 below shows the spread of each node of graph in 

figure 2. As node u1 has the highest spread, it will be picked and 

added to the set of influential nodes S. So, at this point set S 

contains node u1 and its spread is 3. Now, the local search is 

going to start. The delete operation is skipped as there is only 1 

node in the set S. Since our budget is 2 the algorithm continues to 

see if adding any node results in improving the spread. It picks 

node u2 as σTGT (S + {u2}) = 4 > 3 (note that σTGT(S) was 3). 

So, the set of influential set has two nodes {u1, u2}. Note that the 

spread of current set S is now 4.  Then, it continues to check if 

swapping (or exchanging) any node in S with any node in V (but 

not already in S) yields any improvement in spread. 

 

Algorithm 1 mineSeedLS 

Input: Directed Graph G(V,E), Budget 

Output: Set of influential nodes, S, such that |S| < Budget 

1.  Set S to NULL 

2. Compute spread of each node v ∈ V, σTGT({v}), and pick which   

    yields highest spread and added to S. 

3.  Local Search on S to improve the selection by: 

4.  Delete node v, such that v ∈ S if 

σTGT(S-{v}) > σTGT(S) 
5. Add node v, such that v ∈ V-S, if |S| < Budget 

σTGT(S+{v}) > σTGT(S) 

6.  Swap node u, u ∈ S with node v, v ∈ V-S if 

σTGT(S+{v}-{u}) > σTGT(S) 

7. Continue Step 3 while above local improvement in influence  

    spread applies. 

8. Return S 

 

 

Table 6: Spread of each nodes in figure 2. 

Node v u1 u2 u3 u4 u5 

σTGT({v}) 3 2 2 1 1 

 

The spread of set S as a result of removing node u2 and replacing 

it with node u3 is 5, that is, σTGT (S – {u2} + {u3}) = 5. This is 

actually an improvement from previous spread of 4. So, node u2 

is dropped and node u3 is added to set S, which now is {u1, u3}. 

The algorithm will continue to search for any further 

improvement. First, it checks if dropping any element from S 

improves the spread or not. Since σTGT (S – {u1}) =3 and σTGT (S – 

{u2}) =2 and does not improve the previous spread of 5, no 

element is dropped. Also the size of S is now 2 which is our 

budget, so the algorithm will not look for adding any new node. It 

will further check if swapping any node in S with any node in V 

(but not already in S) yields any improvement in spread. No 

exchange yields any improvement from pervious spread 5. So, the 

algorithm stops at this point and returns the set S = {u1, u3} 

which manages to achieve total gross spread of 5. 

5. EXPERIMENTAL EVALUATION 

5.1 Dataset 

5.1.1 Epinions Dataset 
Epinions.com is a product review site where users can read 

reviews about a variety of products or can join to begin writing 

reviews. Users of the Epinions.com can declare whether to ''trust'' 

or “distrust” each other. In this research we use Epinions dataset, 

provided by [12] and downloaded from http://www.trustlet.org 

that has two types of information. The first dataset consists of 

trust and distrust information. In this dataset we identified about 

95, 318 nodes with 11,56,753 edges. However, since our main 

goal is to show that quality of nodes selected by mineSeedLS is 

better than that of greedy based solution under TGT model and 

also any network with nodes more than 10,000 may run for days, 

we select a small snap shot from the dataset comprising of 

approximately 10,000 nodes. The second dataset consists of rating 

information. Epinions users can post review on any certain 
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product. Other users can rate these reviews from 5 (“Very 

Helpful") to 1 (“Not Helpful") etc. We use this dataset to extract 

action log of users in the network. Whenever a user rates a review 

it is considered as an action performed by the users. Rating of 

each object is first classified as ‘High’ (if the rating is between 3-

5) and ‘Low’ (if the rating is between 1-2). We consider two that 

users perform the same action if they rated the same object as 

‘High’ or ‘Low’. 

5.1.2 Wikipedia Dataset 
Wikipedia is a very popular free online encyclopaedia which is 

maintained and written by volunteers around the world. A small 

part of such contributors are ‘administrators’, who have access to 

additional technical features that help in maintenance. Users of 

Wikipedia can vote for or against another user to become 

administrator. The data set we collected from ‘The Koblenz 

Network Collection’ (http://konect.uni-koblenz.de/) consists of 

network of users from the English Wikipedia that voted for and 

against each other in admin elections. Nodes represent individual 

users of Wikipedia. And edges represent votes, which can be 

positive ("for" vote) and negative ("against" vote). In the dataset 

we have about 8,297 nodes and about 107,071 edges. 

Unfortunately there was no ‘Action Log’ available for this dataset. 

So we assigned influence probability uniformly and randomly to 

each edge. 

5.2 Algorithms compared 
The goal of our experiments is to show that influence spread 

achieved by our MineSeedLS algorithm improves influence 

spreads that can be achieved by standard approaches like CELF of 

[10]. We compared influence spread, number of nodes activated 

by seed set discovered, achieved by our proposed T-IM 

framework with the following approaches: 

CELF-TGT: This is the greedy algorithm of [6] with the 

CELF optimization [10].  

Degree-TGT: For comparison, we also compare our 

approach with a simple heuristic that selects the top k vertices 

with the highest degrees [6] [2]. Since we are dealing with trust 

network we select vertices with largest positive in degree. 

5.3 Comparing Influence Spread 
Figure 3 shows the influence spreads of various algorithms on 

trust network graph generated from Wikipedia dataset. Our T-IM 

performs very closely to CELF-TGT for smaller seed sets (<10). 

However, it outperforms CELF-TGT for seed set size > 15. It also 

outperforms Degree-TGT for all seed set sizes. Also in Epinions 

dataset the spread achieved by T-IM outperforms both Degree and 

CELF based solutions (Figure 4). As expected CELF performs 

inconsistently in both datasets and in some cases it even performs 

below the Degree based solution.  

5.4 Comparing Run Time 
To compare runtime of mineSeedLS with CELF and Degree 

based heuristic, we recorded time required to select influential 

nodes of different sizes. Figure 5 reports the runtime comparison 

on Epinions dataset. Degree heuristic performs almost in constant 

time. MineSeedLS takes longer than CELF as the size of the 

required set of influential nodes increases in both datasets. This 

shows the room for improvement of mineSeedLS in terms of 

scalability. As mentioned earlier, scalability was not focus of this 

work; however there are several ways to make the approach more 

scalable. We discuss some of these approaches in the next section. 

 

Figure 3: Influence spread of various algorithms in Wikipedia 

Dataset 

 

Figure 4: Influence spread of various algorithms in Epinions 

Dataset 

 
Figure 5: Running time of different algorithms on Epinions 

Dataset under TGT model 

6. CONCLUSIONS 
Analyzing information diffusion and social influence in social 

networks has various real-world applications. Influence 

maximization (IM) in viral marketing is an example of such an 

important application. In this research we tackled the influence 

maximization problem in trust network. We argue that to find 

influential nodes from a trust network we need to model the 

diffusion process by considering both positive and negative 

influence exerted by trusted and distrusted neighbours. Motivated 

by this, we introduce a new diffusion model, called Trust-General 
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Threshold (TGT) model, where both positive and negative 

influence exists. We showed that unlike existing diffusion models, 

influence maximization under proposed TGT model is a problem 

of maximizing non-monotone sub-modular function.  

To learn influence probabilities, which are required parameters for 

TGT model, we mine action logs to extract frequent patterns of 

actions performed by users in trust network. Using these we 

estimate both positive and negative influence probabilities 

required for the TGT model. Then we propose an algorithm, 

called mineSeedLS, using local search technique [9] to find 

influential nodes. We ran experiments on real life dataset 

collected from Epinions and Wikipedia to show that quality of 

nodes selected by our proposed mineSeedLS outperforms existing 

benchmark algorithms such as CELF [10] by almost 35%.  

However, as expected, the scalability of minedSeedLS is not 

suitable for large social network. Previously, scalability is tackled 

in Influence Maximization under various models such as LT and 

IC [2][3]. In the future we want to adopt some of these methods in 

our TGT model to make it more scalable.  
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