
Accommodating Scalability in Warehouse View Selection Problem Using Partial

Combined Cube Lattice*

C.I. Ezeife and Anna Meng
School of Computer Science

University of Windsor
Windsor, Ontario
Canada N9B 3P4

cezeife@uwindsor.ca
Tel: (519) 253-3000 ext. 3012; FAX: (519) 973-7093

Abstract

As the number of warehouse dimensions increases, the number of main subviews
on a cube lattice increases exponentially. When warehouse dimension hierarchies are
taken into consideration in the view selection problem, the total number of subviews on
the combined data cube lattice gets even larger. The problem goal is to select an
appropriate set of materialized views including dimension views, that minimizes total
query response time, given a set of common warehouse queries and some storage
constraints.

This paper uses the concept of partial combined cube lattice and warehouse
common queries to reduce the number of warehouse views considered in the view-
selection problem when the number of dimensions of the data cube increases and
dimension hierarchies are included. An algorithm based on a more practical cost model
than simply the number of rows in a database table, is also presented for view selection.

Keywords: Data Warehouse Views, Dimension Hierarchies, Partial Combined Cube

lattice, Performance benefit.

1. Introduction
Typically, a data warehousing system is designed to support on-line analytical

processing (OLAP) and decision support systems, which allow business executives and

managers to query huge, integrated data for better and more competitive business

decisions. A data warehouse is a collection of subject-oriented, integrated, non-volatile

and time-variant data [In96, BS97]. The warehouse data is organized around major

subjects of an enterprise and not around its functions as the online transactional

processing system (OLTP) does. For example, the OLTP system of an insurance

* This research was supported by the Natural Science and Engineering Research Council (NSERC) of
Canada under an operating grant (OGP-0194134) and a University of Windsor grant.

1

company might store customer data on premiums in one database, and customer data on

claims in another database, both of which store only current data. An integrated data

warehouse for this insurance company which is organized around the major subjects

customer, policy, premium and claim, can list the claim made by each customer, the

premium paid by each customer for each policy over a period of time. Since data

warehouses contain consolidated data, perhaps, from several operational databases over

potentially long periods of time, they tend to be orders of magnitude larger than

operational databases. Enterprise data warehouses are projected to be hundreds of

gigabytes to terabytes in size. The workloads (applications accessing the data warehouse)

are quite query intensive with mostly ad hoc, complex queries that can access millions of

records and perform many table scans, joins and aggregations. Thus, query throughput

and response time are more important than transaction throughput [CD97].

Data warehouse issues include its architecture, algorithms and tools for

integrating selected data from multiple databases or other information sources into a

single repository [Wi95]. Many queries over data warehouses require aggregate views or

summary data, which can be obtained by joining many large tables. The size of the data

warehouse and the complexity of queries can cause queries to take very long to execute,

and this delay is unacceptable in most decision support systems. One technique for

improving warehouse query response time is pre-computation and storing

(materialization) of aggregate views. Gray et al. [Gretal96] uses the data cube concept to

represent all 2n possible aggregate subviews for an n-dimensional warehouse fact table.

However, as changes are made to the data sources, all the warehouse views that depend

on this data need to be updated to reflect the changed state of the data sources [MQM97,

Zhetal95, Hu97]. When warehouse dimension hierarchies are also considered for

materialization, the number of warehouse aggregate views becomes very huge. Storing

all these huge warehouse views may not be feasible owing to storage space constraints

and increased maintenance cost, as well as query response time.

Since OLAP queries are complex and the volume of data is large, there is need to

balance the time-space trade-off in order to make the system usable. Carefully selecting a

set of data cube main views, dimension views and indexes to materialize contributes to

finding this needed balance between maintenance cost, storage space and query response

2

time [Ez00]. Thus, given a set of queries and some storage space constraint, the decision

on which aggregate views to materialize in a data warehouse to minimize response time

and maintenance cost remains a challenging research issue.

1.1 Related Work

Gray et al. in [Gretal96] uses the concept of the data cube to present a multidimensional

representation of a set of aggregate measures. An n-dimensional data cube can be used to

represent a data warehouse with n dimensional attributes. Each of the 2n aggregate views

of this fact table can be computed by aggregating relevant cells of the data cube and are

thus considered the 2n subviews of the cube. For example, using an example university

warehouse with the main fact table gradepoint (studentid, course#, term, gpa) which

stores the gradepoint average of each course taken by each student for several years for

every term, the data cube that stores this fact table information is given in Figure 1.

Figure 1: A 3- dimensional datacube for Student, Course and Term

The cube cell with aggregate grade point average (gpa) of 4 represents the tuple of the

fact table with student id s003, course# cs101 and for fall term. With this 3-dimensional

data cube, the 8 possible subviews are SCT (standing for the view which computes the

gpa for each studentid for each course and for each term). This view is the same as

represented by the cells of the cube above. The other views are SC, ST, CT, S, C, T and

3

4 3.5 4.5 3.0

S001

S002

S003

studentid

Course#

term

fall

winter
Cs101 cs201 mt111 mt211

ALL. Each of these remaining seven views can be computed by adding up relevant cells

of the cube above. For example, to compute the average GPA of each studentid for each

term (that is view ST), the column filled with data is added up and divided by 4 to obtain

the one for S003 for the fall term and other similar columns are also computed the same

way. In relational OLAP, all the 2n subviews of a data cube are stored in a relational table.

Since these views are sometimes huge, reducing query response time and maintenance

cost is an important research issue.

A lot of algorithms have been proposed for selecting views and indexes of cube views

[Ez97, Guetal97, HRU96, LQA97]. Harinayaran et al. in [HRU96] defines the

relationship between subviews using a lattice framework and defines a greedy algorithm

for selecting a set of views of the data cube. The greedy algorithm starts by selecting the

top level view into the set S. Then, each of the cube views is checked for the one that

yields the maximum benefit considering the views that are already in the set S. The

benefit of a view, v not in the set S is computed as the (number of rows in the smallest

parent u of view already in S minus the number of rows in v) plus the benefit of each

descendant view of v in the cube which can be created using view v. The benefit of all

remaining views in the lattice are computed each time and the view with the highest

benefit is included in the set S. The direct product of the dimension hierarchies and the

fact table yields the combined cube lattice, which includes dimension views (e.g., the

view that computes the cumulative gpa for each student for each year (Sy). Gupta et al.

[Guetal97] extends the greedy algorithm to select both views and indexes. Ezeife in

[Ez00] defines a scheme based on the greedy algorithm for selecting views but which

fragments every selected view horizontally using application access pattern and

frequency. The percentage of all rows of the view accessed on the average by queries and

the frequency of their access is used to re-calculate a new size for the partitioned view.

The new size is used when making future selection. Most of these view selection

techniques work with full cube lattice, a technique that increases computation time

drastically if not only main level views are considered but dimension level views as well.

1.2 Contributions

4

The paper aims at making solutions to view selection problem more scalable as the

number of dimensions of the data cube increases using only the partial combined cube

lattice which reduces the number of views on the full lattice to be considered for

selection. An algorithm is presented which constructs the partial combined cube lattice

from a given set of common warehouse queries and the full combined cube lattice. The

partial combined cube lattice eliminates views that are not relevant to the warehouse

problem using some practical cost/benefit model. The cost/benefit model used

overcomes the limitations of the simple cost model adopted by [HaRaUl96] because it

incorporates factors such as common warehouse queries, access frequencies, dimension

subviews with degrees of table joins needed to compute them if not materialized.

1.3 Outline of the Paper

The rest of the paper is organized as follows. Section 2 presents the discussion of the

proposed technique with an example based on a university academic warehouse system.

This example shows selected views of the system and some queries as well as how

decisions are made regarding the best execution path. Section 3 gives formal presentation

of the partial combined lattice and the selection schemes, section 4 discusses some

performance justification while section 5 presents conclusions.

2. An Example - Discussion of the Proposed Algorithm
This section gives an example to show how a combined cube lattice is defined from the

cube lattice and the dimension hierarchies and it further shows how a partial combined

cube lattice can be generated from the combined cube lattice and common warehouse

queries. Finally, it presents the working of the proposed view selection scheme, which

runs using only partial combined cube lattice. A formal presentation of both the

algorithm for constructing the partial combined cube lattice and selecting the views is

presented in section 3.

Example 2.1 A simple university database keeps track of the grade point average (gpa)

information for students in all the academic terms over a number of years. It has

information on students, the courses they have taken and the term in which they took the

5

courses. Following the star schema, the data warehouse has the following fact and

dimension tables:
gradepointaverage (studentid, course#, term, gpa)
student (studentid, name, gender)
course(course#, coursename)
terminfo (term, year, season)

Studentid Course# Term gpa
C0001 CS212 1996W 12
C0001 CS255 1997W 12
C0001 CS255 1998F 8
C0001 CS315 1997F 13
C0001 CS330 1997F 11
C0002 CS254 1996F 12
C0002 CS254 1996W 5
C0002 CS315 1997F 13
C0002 CS330 1997F 11
C0002 CS367 1998W 12
C0003 CS212 1996W 12
C0003 CS254 1996W 11
C0003 CS255 1997W 11
C0003 CS315 1996F 10
C0003 CS315 1997F 13
C0003 CS330 1997F 12
C0004 CS212 1996W 11
C0004 CS254 1996W 12
C0004 CS255 1997W 11
C0004 CS330 1996F 10
C0004 CS330 1997F 13
C0005 CS212 1996W 10
C0005 CS212 1997W 13
C0005 CS254 1996W 12
C0005 CS255 1996F 11

Figure 2: Sample Warehouse Fact table data

The domain of studentid is c0001, c0002, .., c9999. The domain of course# is

cs100, cs101, …, cs799. The term in which the courses are offered is recorded as yyyyW,

yyyyF or yyyyS to indicate Winter, Fall and Summer terms in each year respectively. The

sample fact table is given as Figure 2, while the dimension tables are given in Figure 3

(excluding the dimension table term).
Studentid Name Gender
C0001 Linda Sharon F
C0002 Scott Johnson M

6

C0003 Edward Green M
C0004 John Smith M
C0005 Mark Clark F

Dimension table student

Course# Course Name
CS104 Computer Concepts
CS212 C++ Programming
CS254 Data Structures
CS255 File Structures
CS315 Database Management Systems
CS330 Operating Systems
CS367 Computer Networks

Dimension table course.

Figure 3: Warehouse Dimension Tables

In referring to the warehouse fact table attributes, a single upper case letter is used to

denote each foreign key attribute as follows: studentid (S), course# (C), term (T). Each

attribute of the dimension tables is also denoted with a single lower case letter as follows:

name in student (n), gender (g), coursename (d), year (y) and season (o).

2.1 Cube Lattice and Dimension Hierarchies

Assume the average gpa is the measure aggregate we are interested in computing in this

data warehouse example, the 3-dimensional data cube for this warehouse has the 28

subviews as SCT (standing for average gpa group by studentid, course# and term), SC,

ST, CT, S, C, T and (). The cube lattice for this data cube is given as Figure 4.

SCT

ST

7

SC CT

S C T

()

Figure 4: The Main Cube for the University Warehouse

The very top view of the lattice, which has group-by attributes on all the dimension keys

is called the base level view. The very bottom one, which has only one row and denoted

as () is called the ALL view. These two views can be generated from the following SQL

statements:

SCT: create view SCT (studentid, course#, term, avggpa) as

select studentid, course#, term, avg(grade) as avggpa

from gradepointaverage

group by studentid, course#, term;

ALL: create view All (avggpa) as

select avg(grade) as avggpa

from gradepointaverage;

The dimension hierarchies (given as Figure 5), from the dimension tables are used to

answer descriptive queries, queries performing drill-down analysis (going from higher

level summarization to lower level, e.g., computing grouping of gpa by term from

grouping by year), or roll-up (summarizing from most detailed to higher level

aggregation) analysis.

Studentid(S)

 Figure 5: Dimension Hierarchies of the University Warehouse

Many queries demand grouping by non-primary key attributes causing the need to join the

fact table with dimension tables. For example, the query "what is the average gpa for

each student for the courses 'Data Structures' and 'File Structures' in 97W", can be

answered with the following SQL query:

Create view Sn (studentid, coursename, avg-grade) as

Select studentid, coursename, avg(grade) as avg-grade

8

Name(n) Gender (g)

none

Course# (C)

Coursename (d)

none

Term (T)

Year (y)
Season (o)

none

From gradepointaverage g, course c

Where g.course# = c.course#

And c.coursename in ('Data Structures','File Structures')

Group by g.studentid, c.coursename;

This type of view that involves joining the fact and dimension tables is called dimension

view, and materializing view Sn would save the cost of performing this huge table join.
The combined cube lattice is a direct product of the cube lattice for the fact table and the

dimension hierarchies [HRUl96]. To construct the combined cube lattice, starting with

the base level view (SCT), first list all the possible main subviews which have group-by

on the primary key attributes denoted with capital letters, and all the dimension subviews,

which have group-by on the non-primary key attributes. Then, connect edges downward

from a parent view or node to its child view or node according to the lattices, to either

reduce one group-by attribute (e.g., SCT -> SC), or substitute one dimension attribute

with the non-primary key attribute (e.g., SCT -> SdT). Repeat the connecting process

until all views are processed. If the edge is drawn due to the substitution of a dimension

attribute, we label that edge with a corresponding lower case letter of the primary key

attribute. The lower case letter on the edge between the parent and child views indicates

that a table join is required with the dimension table of the label to derive the child view

from the parent view.

9

S=studentid, C=course#, T=Term, n=studentname, g=gender, d=coursename

Figure 6: The Combined Cube Lattice of the University Warehouse for only

 dimensions S and C

This lower case letter label is called the table join link. For the sake of simplicity, only

the two dimensions student and course have been combined with the fact table

gradepointaverage in the university warehouse system to give Figure 6.

Note that the total number of views to consider for selection has grown from 8 to 24 for

this 3-dimensional datacube when only 2 dimension hierarchies are considered.

10

SCT

SC SdT nCT
gCT

ssc

Sd
nC gC ST ndT gdT CT

gTnTdTCS nd
gd

n
g d

T

s

s

c

s
s s

c
c

c
s

s
s

c

c
c

s
s

()

2.2 Constructing the Partial Combined Lattice

Although the total number of views in a cube lattice can be very large, only a portion of

them needs to be considered in the warehouse view-selection process due to either storage

space constraints or business requirements. To construct the partial combined cube

lattice, we identify a set of common warehouse queries. Common warehouse queries

have one of the following characteristics: (1) high access frequency (meaning they are

accessed most frequently) or (2) a critical or high query value (meaning they require fast

response time). Note that some queries that have a critical or high query value and are

included in the set of common queries may have low access frequencies. The steps for

generating the partial combined cube lattice given a set of common queries and a full

combined cube lattice are:

1. Identify and mark all youngest views (excluding the ALL view), which can be used to

answer the common queries.

2. From each of the marked views, highlight the edge from this view, v, to its ancestor

views including the table join link denoted by a lower case letter, marking all of its

ancestor views as well.

3. Repeat step 2 for all the marked ancestor views until no more views are left for

marking.

4. Remove all the nodes that have not been marked as well as any dangling edges from

the combined cube lattice. The resultant (marked) combined cube lattice is the partial

combined cube lattice.

Assume the following six queries constitute the common warehouse queries for our

university warehouse example,

Q1: Get the list of all students who have maintained an average gpa of 12 or more in any

term. The view needed is ST.

Q2: Get the average gpa for each cs300 level or above course each term (view CT).

Q3: Get the average gpa for each student on each course taken, listed by studentid and

course name (view Sd).

Q4: Get the average gpa for each female student on each course name taken in each term

(view SdT).

11

Q5: Get the average gpa for both male and female students on each course name in each

term (view gdT).

Q6: Get the average gpa for each student on each course in any term, listed by student

name, course number and the term offered (view nCT).

Suppose the above six queries are the common queries accessed in the university data

warehouse and which have the following access frequencies:

Q1 Q2 Q3 Q4 Q5 Q6

80 90 100 75 80 85

Since a pre-processing procedure had been used to identify these common queries with

these high access frequencies, the veiws that can answer these six common queries are

ST, CT, Sd, SdT, gdT and nCT. The partial combined cube lattice is constructed by first

writing the youngest common views CT, gdT, ST and Sd at the third level as in the full

combined cube lattice. Then, an edge is drawn from each of these views to its ancestor

views specifying the join link as seen on the full combined cube lattice. The process is

repeated until all common views are connected and all ancestors connected to the root

node. The partial combined cube lattice created for the university warehouse is given

below as Figure 7. The number beside the views represent the sizes of the view in terms

of the number of rows.

Figure 7: The Partial Combined Cube Lattice of the University warehouse

12

SCT (25)

SC (20) SdT (25) nCT (25) gCT (17)

Sd (20) ST (19) gdT (17)

c

c
s

s

cs
CT (12)

2.3 Applying the Proposed View Selection Scheme to the Example Warehouse

The proposed view selection scheme first improves on scalability using the concept of the

partial combined cube lattice and then, for selecting the views to materialize, it proceeds

as the greedy algorithm [HRU96] would but considering only views on the partial

combined cube lattice, and using a more practical cost/benefit model for computing the

benefit of selecting any view. In computing the benefit of selecting a view, the greedy

algorithm considers the cost of computing a view as the number of rows in the view.

Thus, the view in the lattice with the maximum benefit is the selected view in each

selection iteration. The benefit of a view is computed as the difference between the cost

of computing its descendant views with it rather than with the smallest view already

selected. Another limitation of the greedy algorithm is that each view on the lattice is

treated equally when computing its benefit. When calculating the benefit gain of a

dimension view, which requires huge table joins, the time required to perform these table

joins is not accounted for.

In order to address these limitations, the proposed selection scheme takes into

consideration the following factors:

 Common queries and their access frequencies are incorporated

 Candidate views associated with a common query, dimension views associated with a

common query as well as the number of table joins needed to answer them are used to

decide higher weight factors to be assigned to these views in order to increase the

chances of they being selected.

The number of table joins needed to compute a dimension view from its ancestor view is

the same as the number of small letter (dimension names) in the view name different

from the ancestor view name. For example, view nCT is computed from its ancestor,

SCT and would need only one table join because of the n letter.

13

Some of the candidate views on the partial combined cube lattice are associated with a

query with known access frequencies while others are not. The following method is used

to determine the access frequencies of views not associated directly with a query.

If u is a candidate view on the partial combined cube lattice not associated with a query,

and u is the immediate, smallest ancestor of the views v1, v2, …, vn with access

frequencies f(v1), f(v2), .. f(vn) respectively. Then, the access frequency of u is the

maximum of the frequency set, that is, f(u) = maximum{ f(v1), f(v2), .. f(vn)}.

Continuing with the running example, the access frequencies of the candidate views SC,

gCT, and SCT are:

F(SC) = max{f(Sd)} = max{100} = 100

F(gCT) = max{f(gdT), f(CT)} = max{80, 90} = 90

F(SCT) = max{f(SC), f(SdT), f(nCT), f(gCT), f(ST)} = max{100, 75, 85, 90, 80} = 100

Assume the least cost view in already selected set S is u. The benefit of a view, v with

respect to S, B(v, S) is given as the benefit for computing the view with itself (Bv) plus

the total benefit of computing each descendant view (w) of v with v, (Bw). To

accommodate other factors, the benefits Bv and Bw have been redefined as follows:
Bv = [cost of (view u) - cost of (view v)] * F(v) * (k + l + 1)
Bw = [cost of (view u) - cost of (view v)] * F(w) * (m-n + 1)
if the cost of v is less than the cost of u, where F(v) is the access frequency of view v, k

is the number of joins needed to compute view v with view u, m is the number of joins

needed to compute view w with view u, while n is the number of joins needed to compute

view w with view v. If the cost of v is bigger than the cost of u, then, Bv and Bw are 0.

Finally, the benefit of the view v with respect to set S, B(v, S) = Bv + for all w) Bw

The proposed view selection scheme runs the greedy algorithm using the re-defined

method given above for computing the benefits of all views on the partial combined cube

lattice. Thus, to select the set of p views from the lattice, it first constructs the partial

combined cube lattice, then, it picks the base level view into set S. Next, it proceeds to

compute the benefit of each view Bv on the partial combined cube lattice, in each of the

14

remaining p-1 iterations. The view with the highest benefit is selected during each

iteration.

Applying the proposed selection scheme to the university warehouse example using the

common queries and the partial combined cube lattice, assume the number of views for

materialization in addition to the base level view SCT is 3. The benefits of the views

during each of the 3 iterations after selecting the top level view are shown below:

First iteration (base level view selected):

S = {SCT}

Second iteration (pick next view with highest benefit):

B(SC, S) = BSc + BSd =((25 - 20) * 100 * 1) + ((25 - 20) * 100 * (1-1+1) = 1000
B(SdT, S) = BSdT + BSd + BST + BgdT = 0
B(nCT, S) = BnCT + BCT = 0
B(gCT, S) = BgCT + BCT + BgdT

= ((25 - 17) * 9 * (1+1)) + ((25-17) * 90 * (0-0+1)) + ((25-17)*80*(2-1+1))

=1440 + 720 + 1280 = 3440
B(Sd, S) = BSd = (25-20) * 100 * (1+1+1) = 1500
B(ST, S) = BST = (25-20) * 100 * (1+1+1) = 960
B(gdT, S) = BgdT = (25-17) * 80 * (2+1+1) = 2560
B(CT, S) = BCT = (25-12) * 90 * (1+1) = 2340

S = {SCT, gCT} because the view gCT with maximum benefit of 3440 is

selected in this round.

Third iteration (pick next view with highest benefit):
B(SC, S) = BSc + BSd =((25 - 20) * 100 * 1) + ((25 - 20) * 100 * (1-1+1) = 1000
B(SdT, S) = BSdT + BSd + BST + BgdT = 0
B(nCT, S) = BnCT + BCT = 0
B(Sd, S) = BSd = (25-20) * 100 * (1+1+1) = 1500
B(ST, S) = BST = (25-20) * 100 * (1+1+1) = 960

15

B(gdT, S) = BgdT = (17-17) * 80 * (1+1+1) = 0
B(CT, S) = BCT = (17-12) * 90 * (1+1) = 900

S = {SCT, gCT, Sd} because the view Sd with maximum benefit of 1500 is

selected in this round.

Fourth iteration (pick next view with highest benefit):
B(SC, S) = BSc =((25 - 20) * 100 * 1) = 500
B(SdT, S) = BSdT + BSd + BST + BgdT = 0
B(nCT, S) = BnCT + BCT = 0
B(ST, S) = BST = (25-20) * 100 * (1+1+1) = 960
B(gdT, S) = BgdT = (17-17) * 80 * (1+1+1) = 0
B(CT, S) = BCT = (17-12) * 90 * (1+1) = 900

S = {SCT, gCT, Sd, ST} because the view ST with maximum benefit of 960

is selected in this round.
The proposed scheme selects a different set of views than the straight

greedy algorithm which selects the set S = {SCT, gCT, SC, ST}.

3. Formal Presentation of Proposed View Selection Schemes
This section starts by first presenting some formal definitions of the terms used in

presenting the algorithms, then, the algorithms for creating the partial combined cube

lattice and selecting the set of views to materialize are presented.

3.1 Definitions

 Definition 3.1 A Common Warehouse Query is a query with either high access

frequency or high query value because it is a time critical query.

Definition 3.2 An m-join subview w of view u, is a descendant view of u which needs m

table joins to be computed from its ancestor view u.

Definition 3.3 Benefit of a view v with respect to selected set S, B(v,S), is defined as B(v,

S) = Bv + for all w) Bw such that u is the lowest cost view already in S and,

16

Bv = [cost of (view u) - cost of (view v)] * F(v) * (k + l + 1)
Bw = [cost of (view u) - cost of (view v)] * F(w) * (m-n + 1)
if the cost of v is less than the cost of u, where F(v) is the access frequency of view v, k

is the number of joins needed to compute view v with view u, m is the number of joins

needed to compute view w with view u, while n is the number of joins needed to compute

view w with view v.

Definition 3.4 Query Response Time for a query q, (RTq) is defined as RTq = number of

rows in (v) + (1+m) * t, where v is the smallest view that can compute q, and m is the

number of table joins involved in answering q and t is the unit response time for

answering one row of the view.

Definition 3.5 Total Query Response Time for the system (TRTS) is the sum of all the

query response times for each query in the system. That is,

RTq =(I=1)
n (RTqi)= (I=1)

n (number of rows in (v) + (1+m) * t)

3.2 The Formal Algorithm for Creating a Partial Combined Cube Lattice

The steps for creating a partial combined cube lattice is discussed in full with an example

in section 2.2. The formal presentation of the algorithm for generating this partial lattice

is provided as Figure 8.

17

Algorithm 3.1 (Partial_CombCubeLattice(Q, L, L')
Input: A set of common warehouse queries Qi = { Q1 , Q2 , …, Qn}
 The Combined cube lattice Lj = { V1 , V2 , …, Vn}

Output: The partial combined cube lattice L' Lj

begin
L' = {}
// Identify the set of smallest views Vj = { V1 , V2 , …, Vn} that answer the
set of common queries Qi = { Q1 , Q2 , …, Qn}, excluding the ALL view //

 Vp = { } // for keeping ancestor views //
for each view v in Vj do
 Vp = ancestor (v)
 L' = L' Vp

end
// the resulting lattice is the partial combined cube lattice L' //
end

Figure 8: The Partial Combined Cube Lattice Algorithm

3.3 The Formal Algorithm View Selection - Algorithm DH-Greedy

The steps for selecting a set of views using the proposed algorithm, DH-Greedy is

discussed in detail in section 2.3 with an example. It works in a similar way as the greedy

algorithm [HRU96] except that it uses the partial combined cube lattice and common

queries to cut down on the number of views that will have their benefits computed during

each round. Also, the benefit of each view during each round is modified to include

access frequency and join factors and the formulas for computing the benefits are given in

section 3.1. To select n views, it starts by selecting the top level view in the combined

cube lattice into the set S. Then, it calculates the benefit of including each view in the

lattice and picks the view with the highest benefit and the process continues until the

needed number of views are selected. The formal definition of the algorithm dimension

hierarchy greedy (DH-Greedy) being proposed in this paper is given as Figure 9.

18

Algorithm 3.2 (View-Selection-DH Greedy(Q, F, L)
Input: A set of common warehouse queries Qi = { Q1 , Q2 , …, Qn}
 Query access frequencies Fj = { F1 , F2 , …, Fn}
 The Combined cube lattice Lj = { V1 , V2 , …, Vn}
 Number of views to select k
Output: A set of selected views S Lj

begin
S = {}
// construct partial combined cube lattice //
Lj' = Partial_CombCubeLattice (Qi, Lj, Lj')
Let Vj be the set of all candidate views on the partial combined cube lattice
 S = {base level view}
for I = 1 to k-1 do
 for each view v in Vj and v not in S do
 Compute B(v,S), the benefit of view v relative to S
 Let Vs be the view such that B(Vs, S) = Max (B(v, S)
 S = S Vs
 end
end
S = S ALL view
end

Figure 9: The View-Selection DH Greedy Algorithm

4. Performance Analysis
In order to compare the performance of the DH-Greedy algorithm using partial combined

cube lattice and that of the straight greedy algorithm, an experiment was run on two

lattices using both algorithms. The first lattice has 23 views SCT, SC, SdT, nCT, gCT,

Sd, nC, gC, ST, ndT, gdT, CT, S, nd, gd, C, dT, nT, gT, n, g, d, and T with access

frequencies 90, 75, 80, 90, 85, 70, 55, 75, 85, 90, 65, 45, 40, 55, 50, 55, 55, 85, 30, 40,

30, 55, and 20 respectively. The sizes of the 23 views in tuples are respectively 25, 20,

25, 25, 17, 20, 20, 11, 19, 25, 17, 12, 5, 20, 11, 6, 12, 19, 10, 5, 2, 6, and 6. The views

that are common queries among these views are SdT, gCT, Sd, gC, ndT, gdT, CT, gd, nT,

n, g, d, and T. When the greedy algorithm was run on the full combined lattice of this

example case on one hand, and the DH-greedy algorithm was run on the same example

starting with its partial combine cube lattice, for selecting a number of views k, the results

obtained from the two schemes are summarized in Table 1.

19

Number

selected

Greedy Algorithm DH-Greedy algoirthm

4 S={SCT, gCT, S, CT} S={SCT, gCT, n, gC}
5 S={SCT, gCT, S, CT, SC} S={SCT, gCT, n, gC, Sd}
6 S={SCT, gCT, S, CT, SC, gC} S={SCT, gCT, n, gC, Sd, nT}
7 S={SCT, gCT, S, CT, SC, gC, ST} S={SCT, gCT, n, gC, Sd, nT, CT}
8 S={SCT, gCT, S, CT, SC, gC, ST, C} S={SCT, gCT, n, gC, Sd, nT, CT, d}
9 S={SCT, gCT, S, CT, SC, gC, ST, C, gT} S={SCT, gCT, n, gC, Sd, nT, CT, d, SC}

Table 1 : View Selected by Greedy and DH-Greedy Algorithms

The total query response times when different sizes of views are materialized are

calculated using the query response time formula provided in section 2, and the results

obtained are given as Table 2 below.

Number selected Total Query Response

Time (T1).. Greedy alg.

Total Query

Response Time

(T2).. DH-Greedy

Improvement

Ratio=(T1-T2)/T1 *

100%
4 395 tuples 381 tuples 3.54
5 385 tuples 361 tuples 6.23
6 365 tuples 318 tuples 12.88
7 353 tuples 308 tuples 12.75
8 343 tuples 294 tuples 14.29
9 341 tuples 294 tuples 13.78

Table 2: Query Response Times of Greedy and DH-Greedy Algorithms

From the results, it can be seen that the proposed algorithm provides consistently better

total query response time than the greedy algorithm with an average improvement of

approximately 10.68%. Obviously the gain depends on a number of factors including

number of dimension views in the lattice, access frequencies of common queries and the

number of common queries and thus would vary with different cases.

5. Conclusions and Future Work
This paper contributes by improving on the scalability of warehouse view selection

algorithms through the concept of partial combined cube lattice, while incorporating real

life factors like access frequencies of queries and common warehouse queries in the

selection process to make it more practical. In order to accomplish the paper's objective,

20

an algorithm is presented for constructing the partial combined cube lattice from a given

set of warehouse common queries and full combined cube lattice.

As the number of warehouse dimensions increase, the number of main subviews on a

cube lattice increases exponentially. Generating the partial combined cube lattice allows

consideration of only the relevant views (main and dimension views) for materialization.

Warehouse common queries with high access frequencies and high query values are used

in deciding relevant views and this information, in addition to the number of joins

necessary to compute a dimension view from its ancestor view, are included in the

benefit of a view when considering that view for selection. Future work might consider

extending the approach to handle selection of warehouse indexes as well as investigate

further the benefits of constructing the partial combined lattice.

References

[CD97] Surajit Chaudhuri and Umeshwar Dayal. An Overview of Dat Warehousing and

OLAP Technology. In Sigmod Record, Vol. 26, No. 1, March 1997.
[BS97] Alex Berson and Stephen Smith. Data Warehousing, Data Mining and OLAP.

McGraw-Hill 1997.
[Ez97] C.I. Ezeife. A Uniform Approach For Selecting Views and Indexes in a Data

Warehouse. In Proceedings of the 1997 International Database Engineering

and Applications Symposium, Montreal, Canada, IEEE publication, Aug. 1997.
 [Ez00] C.I. Ezeife. Selecting and Materializing Horizontal Partitioned Warehouse

Views. Revised and re-submitted to the Elsevier journal of Data and

Knowledge Engineering, Jan. 2000.
[Gretal96] J. Gray, A. Bosworth, A.Layman, and H.Pirahesh. Data Cube: A Relational

Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Totals.

Proceedings of the 12th International Conference on Data Engineering, pp. 152-

159, 1996.
[Guetal97] Himanshu Gupta, Venky Harinarayan, Anand Rajaraman, and Jeffrey Ullman.

Index selection for OLAP. In International Conference on Data Engineering,

Burmingham, U.K., 1997.

21

[HRU96] Venky Harinarayan, Anand Rajaraman, and Jeffrey Ullman. Implementing Data

Cubes Efficiently. In ACM SIGMOD International Conference on Management

of Data, June 1996.
[Hu97] N. Huyn. Multiple View Self-Maintenance in a Data Warehousing

Environment. Proceedings of the 23rd VLDB conference, Athens, Greece, 1997.
[In96] W.H. Inmon. Building the Data Warehouse. John Wiley Symand [] Sons, Inc.

second edition, 1996.
[LQA97] W. Labio, D.Quass and B. Adelberg. Physical Database Design for Data

Warehousing. Proceedings of the International conference on Data

Engineering, Binghamton, UK, April 1997.
[MQM97] I. Mumick, D. Quass, and B. Mumick. Maintenance of Data Cubes and

Summary Tables in a Warehouse. Proceedings of the ACM SIGMOD

conference, Tucson, Arizona, May 1997.
 [Wi95] J. Widom. Research Problems in Data Warehousing. In Proceedings of the 4th

International Conference on Information and Knowledge Management (CIKM),

November 1995.
[Zhetal95] Y. Zhuge , H. Garcia-Monlina, J. Hammer and J.Widom. View Maintenance

in a Warehousing Environment. Proceedings of the ACM SIGMOD conference,

pp. 316-327, 1995.

22

