SSM : A Frequent Sequential Data Stream Patterns Miner

C.l. Ezeifé¢ Mostafa Monwar
School of Computer Science, University of Windsor,
cezeife@uwindsor.ca, woddlab@uwindsor.ca
http://www.cs.uwindsor.ca/cezeife

Abstract amounts of data streams, include network monitors, traf-
fic monitors, ATM transaction records in banks, sensor net-
Data stream applications like sensor network data, click work monitor, web logs and web click streams, and trans-
stream data, have data arriving continuously at high speed actions in retail chains. Mining data in such applications
rates and require online mining process capable of deliv- is referred to as stream mining. Stream sequential min-
ering current and near accurate results on demand without ing adds many complexities to traditional mining require-
full access to all historical stored data. Frequent sequen- ments, which are: 1) the volume of continuously arriving
tial mining is the process of discovering frequent sequnti data is massive and cannot all be stored and scanned for
patterns in data sequences as found in applications like webmining, 2) there is insufficient memory, 3) the mining al-
log access sequences. Mining frequent sequential patterngjorithm does not have the opportunity to scan the entire
on data stream applications contend with many challengesoriginal dataset more than once, as the whole dataset is not
such as limited memory for unlimited data, inability of algo stored, 4) a method for delivering considerably accurate re
rithms to scan infinitely flowing original dataset more than sult on demand is needed. 5) in order to mine sequential
once and to deliver current and accurate result on demand. patterns in streams like click stream data, there is need to
Existing work on mining frequent patterns on data streams keep Customer Access Sequences (CAS) in the order they
are mostly for non-sequential patterns. This paper propose arrive. CAS is the sequential buying or product viewing or-
SSM-Algorithm (Sequential Stream Mining-algorithm)ttha der by a customer, e.g., (TV, radio, jean pants, TV, shirt,
uses three types of data structures (D-List, PLWAP tree andTV). Keeping CAS order intact for each transaction and
FSP-tree) to handle the complexities of mining frequent se-mining frequent sequential patterns from them presents ad-
guential patterns in data streams. It summarizes frequencyditional complexities. Simply mining a set of items would
counts of items with the D-List, continuously builds PLWAP treat the CAS sequence example above as the set (TV, ra-
tree and mines frequent sequential patterns of batches ofdio, jean pants, shirt) and the order is not important asss th
stream records, maintains mined frequent sequential pat-focus for such non-sequential mining algorithms like FP-
terns incrementally with FSP tree. The proposed algorithm stream algorithm [Giannella et al., 2003]. So, the SSM-
can be deployed to analyze E-commerce data where the pri-Algorithm implements a continuous process that extracts
mary source of data is click stream data. frequent CAS from incoming stream in one pass, mines se-
guential patterns, stores the patterns compactly and lguick
Keywords Web Sequential Mining, Stream Mining, While many sequential mining algorithms (e.g., PLWAP
Customer Access Sequence, Frequent Sequential patterngfEzeife & Lu, 2005]) mine statically pre-processed data
Click Steam Data like web log data containing hundreds of records, the SSM-
Algorithm, dynamically processes one customer sequence
after the other to form batches of records to progressively
mine. Then, a data structure, called D-LIST, which main-
tains dynamically, the total frequency counts of all items
that have passed through the stream, is used. D-List col-
A data stream is a continuous, unbounded, and high-lects and updates frequency of all items passing through
speed flow of data items. Applications generating large streams and is used for computing the frequent 1-item list
This research was ted by the Natural Scien o i for each batch after updating the D-List with the streams
Research Council (Nség?)oofeCagadae unadgraan %Ze?Zt;rg]; gms?;g Of_ the batch. A busy website gener&_‘tes a huge amount_ of
0194134) and a University of Windsor grant. click stream data everyday. Each click stream data series

1 Introduction

reflects a customer’s buying interest. For an E-commercerithm [Manku & Motwani, 2002], which is used for fre-
company, detecting future customers based on their sequenguency counting in data streams. FP-Stream algorithm [Gi-
tial mouse movements on the content page would help sig-annella et al., 2003] is used to mine frequent patterns in
nificantly to generate more revenue. There are some re-data stream. Previously, landmark model [Manku & Mot-
cent studies on mining data streams, classification ofrstrea wani, 2002] was introduced that mines frequent patterns in
data [Domingo & Hulten, 2000], online classification of data stream by assuming that patterns are measured from
data streams [Las, 2002], clustering data streams [Guna ethe start of the stream up to current moment. The authors of
al., 2000], web session clustering [Gunduz & Ozsu, 2003], FP-Stream also extended their framework to answer time-
approximate frequency counts over data streams [Manku &sensitive queries over data stream. Teng et al. proposed
Motwani, 2002], mining frequent patterns in data stream FTP-Algorithm [Teng, Chen & Yu, 2003] to mine frequent
at multiple time granularities [Giannella et al., 2003]dan temporal patterns of data streams. FTP-DS scans online
multi-dimensional time series analysis [Chen et al., 2002] transaction flows and generate frequent patterns in real tim
temporal pattern mining in data streams Sliding window model is used in this paper. Data expires
[Teng, Chen & Yu, 2003] but more work is needed on min- after N time units since its arrival.

ing frequent sequential patterns in data streams.

2 The Proposed SSM Sequential Stream

Considering the importance of sequential mining indata o, continuous arrival of data streams. the SSM-
streams, this paper proposes the SSM-Algorithm, a sequenagorithm (sequential stream mining-algorithm) forms

tial stream miner that extends the functionality of PLWAP g;,aq patches dynamically by updating and storing on the

to make it compatible in data stream environment using ad-p_| jst structure, frequency countf each item meeting
ditional efficient data structures D-List and FSP-tree. the defined support boundaries of< f, given the tol-

erance error support threshadd D-List uses hash chain
1.2 Related Work indexing to maintain incoming elements and their frequen-
cies and is very efficient in such stream applications like

Han et al. in [Han et al., 2004] proposed the FP- E-commerce, where thousands of items are used, and brand
Tree algorithm to generate frequent pattern itemsets. Fre-new items get posted to the E-commerce site while unpop-
guent sequential pattern mining algorithms include the GSPular items get discontinued from the site on a regular basis.
[Srikanth & Aggrawal, 1996], which is Apriori-like, Pre- Proposed algorithm handles dynamically sized batches and
fixSpan [Pei et al., 2001], a pattern-growth method, the provides added flexibility to suit the rate of stream flow.
WAP [Pei et al.,, 2000], which is based on the FP-Tree FP-Stream [Giannella et al., 2003] or Lossy Counting al-
but used for mining sequences, the PLWAP [Ezeife & Lu, gorithm [Manku & Motwani, 2002] use fixed size batches.
2005], [Ezeife et al., 2005], which is the position-coded, The SSM-Algorithm next performs batch mining with the
pre-order linked version of WAP that eliminates the need PLWAP sequential mining technique and constantly stores
for repetitive re-construction of intermediate trees dgri frequent sequential pattern result on a compact tree (the
mining. PLWAP tree algorithm first builds each frequent FSP-tree), that is able to deliver results on demand. SSM-
sequential pattern from database transactions from "Root” Algorithm uses previously introduced efficient PLWAP-tree
to leaf nodes assigning unique binary position code to eachalgorithm to find frequent sequential patterns. Thus, SSM
tree node and performing the header node linkages pretakes advantage of the preordered linkage and position cod-
order fashion (root, left, right). Both the pre-order link- ing of PLWAP-tree in order to eliminate the cost of recon-
age and binary position codes enable the PLWAP to di- struction and computation time of intermediate trees durin
rectly mine the sequential patterns from the one initial WAP mining, unlike the FP-tree [Han et al., 2004]. The SSM-
tree starting with prefix sequence, without re-constrygctin - Algorithm uses the FSP-tree for storing mined batch fre-
the intermediate WAP trees. To assign position codes to aquent sequential patterns. The FSP tree is a simple form of
PLWAP node, the root has null code, and the leftmost child pattern-tree [Giannella et al., 2003] that is introduceldih
of any parent node has a code that appends ‘1’ to the posi-Stream algorithm. The produced result by SSM-Algorithm
tion code of its parent, while the position code of any other does not cross pre-defined error threshold and delivers all
node has ‘0’ appended to the position code of its nearestfrequent sequential patterns that have user defined mini-
left sibling. The PLWAP technique presents a much better mum support. The use of buffer mechanism in SSM re-
performance than that achieved by the WAP-tree technique stricts memory usage to a specific size. In other words, we
making it a good candidate for stream sequential mining. use a small fixed size buffer in memory that handles contin-
Data stream algorithms include the Lossy counting algo- uous incoming data streams.

Algorithm 1 (Sequential Stream Miner:Mines Frequent pg, Batch
Sequential Stream Patterns) strean Proces

Algorithm SSM ()

Input: (1) Minimum support threshold (s) whefe< s < 1, Figure 2. The Main Components of the SSM
(2) Maximum support error threshold (e) whére< e < s, Stream Miner
(3) Size of D-List (Size)

Output: 1) Frequent sequential patterns

Temp variables: exit = true, i=0,

num-records (total number of database records); While the stream sequences arrive at the Buffer area, each
Begin record is processed and placed in the current batch. The
While (exit) // exit when user wants system mines a batch once it contains the minimum number
Begin of records set for a batch, and it continuously checks the
1.i=1i+1//indicates which batch or cycle buffer for more records every 1 minute (or a different value
2. Create-Batch(CAS) //creates a batch of CAS can be set to check the buffer based on application needs),

2.1 ScanB; and generate candidate
1-sequences @t ;.

3. Update D-List[Size] withlBi

/l Hash index based structure creation

4. Generate-Frequent-Pattefi{s,)

if there are not enough records to form a batch. If there are
enough records in the buffer, the maximum batch size is
used in creating the current batch for mining. Thus, as soon
as there is a batch with number of records equaél iehere

with PLW APg, I/ FP generation mz’nimumTBat_ch_size < b < maximum_Batch_size,
5. Update-FSP-tre&(Ps,) the batch is mined. The SSM-Algorithm does not know
I/ Update method for FSP-tree how many click stream items it will be dealing with
6. If user wants result, then from FSP-tree, before forming each batch. For extremely busy stream
get all FSP with count (s-e)* num-records environment where streams of data are arriving at faster
7. Maintain-Structures() rate than can be accommodated by the buffer, the buffer
/li.e prune D-List and FSP, drop PLWAP, could either be increased, shut off for some time when too
8 If user wants to exit, exit = false; full and re-opened when de-congested. Another solution
End is to re-route non-accommodated arriving streams to a
End holding area, where they can be processed later during slow
period. Our model can be used to find frequent sequential
patterns of visited pages for a site as well.
Figure 1. The Main Sequential Stream Mining Step 2: Batching Engine forms batches of stream sequences
(SSM-Algorithm) like the CAS (customer access sequences) data from the

buffer. For example, a batch is a number (n) of customer
access sequences similamtoecord sequences ofdistinct
transaction IDs. The size of the batch depends on the
The proposed sequential data stream algorithm, SSM 'Smcommg stream. The batch size of the SSM system is
given below as algorithm 1. not fixed, unlike Lossy Counting Algorithm [Manku &
Motwani, 2002], or FP-Stream [Giannella et al., 2003].
2.1 Steps in Sequential Stream Mining Step 3: Mining Algorithm or SSM-algorithm uses three
System data structures: D-List, PLWAP-tree and FSP-tree. It scans
records of each batcl3;, uses the counts of the items in
The main components and steps of the SSM-Algorithm this batch to update the item counts of items in the D-List.
is shown in Figure 2. Step 1: Buffer is basically a staging It then computes the cumulative support counts of D-List
area where preprocessed transaction IDs and stream sdtems to find overall frequent 1-items of this batdh,
guences like customer access sequences (CAS) arrive. Wéhat is 1-item sequences with support in the database so
treat a buffer as a long empty string initially with limited far received after including counts of items in batBh,
size of about 50MB. Once the stream starts coming, theythat are greater than or equal to the minimum support
are added into the buffer. For example, (100, a b d a c),threshold,s). Then, all items in the batch records that are
(101,abcac),.... Here, 100 is the transaction ID and thenot in theL , list are removed from the stream sequences
letters (abdac) foIIowmg transaction ID 100 are item IDs to create the batch frequent sequené&,, used for
for this transaction. Lossy Counting Algorithm [Manku batch mining. On arrival, the items are stored in D-List
& Motwani, 2002], uses buffer mechanism to deal with structure (a hash indexed array structure for storing all
incoming data stream. On the other hand, FP-Stream [Gianditems with cumulative support count greater than or equal
nella et al., 2003] uses main memory to handle data streamto the tolerance error support couat, D-List keeps each

item’s ID and their frequency in a hash chain that stores based in that it starts from the root and following the header
each unique item in a D-List hash bucket corresponding tolinkages, it uses the position codes to quickly identifyrite
the item-id modulus number of buckets. Only items whose nodes of the same type (e.g., item a) on different branches
frequent support count are greater than or equal to the totabf the tree at that level of the tree and if the sum of the
number of stream sequences that have passed through theounts of all these items (e.g.node) on different branches
database via all already processed batches multiplied byof the tree is greater than or equal to the accepted minimum
the percentage maximum tolerance error, e, are kept insupport count (humber of records * (s - €)), then, this item
the D-List. While items with support count less than this is confirmed frequent and appended to the previous prefix
value are deleted from the D-List, those with count greater frequent stream sequence.

than or equal to the total number of stream records timesFrequent Sequential Pattern-tree or FSP-tree is a simple
(minimum support (s) minus tolerance error (e)) are kept form of Pattern-tree [Giannella et al., 2003] for storing
inthe L, , list. The use of tolerance error to reduce the result structure. The sequences and their counts are simply
count of items kept in the D-List allows for handling items inserted from root to leaf where the count of the sequence
that may have been small (that is, not frequent) previously, is assigned to the leaf of the frequent pattern. The FSP tree
and whose cumulative count would not be available if they is maintained with both footer linked lists that has linkage
suddenly turn frequent. Once the D-List is constructed, theto all leaf nodes for pruning nodes from leaf not meeting
performance of insertion, updating and deletion of nodesrequired support count, and from the Root for inserting
are faster through this hash chain structure. Thus, thisnewly found frequent sequential patterns.

structure contributes to processing speed and efficiency.

PLWAP-tree is constructed by taking frequent subse-

quences from the batch, PLWAP-algorithm is used to mine 3 A Example Application of the SSM
frequent sequential patterns and the sequential pattezns a Stream Miner

stored into FSP-tree incrementally. This process conginue

When the next batch arrives, items are extracted from

the batch and used to update frequencies of those items ASSUMe a continuous stream with first stream baigh
in the D-List if the items are already registered in the consisting of stream sequences as: [(abdac, abcac, babfae,

D-List. Otherwise, if the arriving items in the new batch afbacfcg)]. Assume the minimum support, s is 0.75 (or

are new elements to the D-List, they are inserted. Perform/>70) and the tolerance error , is 0.25 (or 25%). _
PLWAP-mining by extracting frequent subsequences from The task is to continuously compute the frequen; sequential
the current batch. If the obtained frequent patterns areS'6am patterns, FSP, of the streams as they arrive.
already in FSP-tree, the frequencies of those patterns areslfer? L Thhe algorltfm 1.‘|rst computes th? C?“d'd?fte 1-item
updated in the tree, otherwise, they are inserted into theOf the batchas’y,, ={a:4, b4, c:3,d:1, e:1, £:2, gjfrom
tree as new patterns. PLWAP-tree or Pre-ordered Linkedth_e stream records as thgy arrive. Then, it updates the D-Lis
WAP-tree was introduced in [Ezeife & Lu, 2005], [Ezeife WIth the C1,, . keeping items with support count greater
et al., 2005]. The basic idea behind the PLWAP tree than or equal to (number of records times s) on thg,
algorithm is using position codes and pre-order linkage ISt But keeping only items with minimum tolerance sup-

on the WAP-tree [Pei et al., 2000] to speed up the proceSSport count of (number of records * €) or more on the D-List.
of mining web sequential patterns by eliminating the Since this is the first batch with only 4 records, the toleeanc

need for repetitive re-construction of intermediate WAP Minimum supportcardinality is: 4*(0.75 - 0.25) = 2. Thus,
trees during mining. Eliminating the re-construction of all itéms with support greater than or equal to 2 should be

intermediate WAP trees also saves on memory storage2f9€ and ileBl' The D-Listminimum error support cardi-
space and computation time. Given a set of frequentn""l'ty is4*(0.25)=1. 'I_'hus, all |tgms W,'th support'greater
sequences of a stream batétg ., the PLWAP tree is first or equal to 1 are kept in the D-List while thosg with sup-
constructed by inserting each sequence from root to Ieaf,Fort_?r?uzt gre_ater.;hzzor'gq?al t1c_’h2 zIaDreL_aIsoflnm§1d
incrementing the count of each item node every time it is 1St- TheL1,, ={a:4, b4, ¢:3, f:2. The D-List after read-
inserted. Each node also has a position code from root, "9 the batchBy is shown as Figure 3. Note that since the
where the root has null position code and the position code

stream sequence being used in this example are those of
of any other node has ‘1’ appended to the position code of E-COmmerce customer access sequence (CAS), the SKU (a
its parent node if this node is the leftmost child node, but

special unique item code) for the items (a,b,c,d,e,f,@yiv
it has '0’ appended to the position code of its nearest left as (2’_100’ 0,202, 10, 110, 99) are used in t_he hash function
sibling if not the leftmost child node. After construction, (Itém-id modulus number of buckets) (for this example 100
the L, list is used to construct pre-order header linkage

buckets assumed) to find the bucket chain for inserting the
nodes for mining. The mining of the PLWAP tree is prefix item in the D-List. Since th€’;,, has been used to update

the D-List, which was used for computing the currént,

CAS ES

abdac abac 9 *@»
e e

afbacfcg afbacfc

BI1 (first batch)

10 @l (2 [l
99 *

D-List

Figure 3. The D-List After Batch B;

and the frequent sequenge, , C1,, can now be dropped
to save on limited memory.

Step 2: Now that thé"Sp, had been found, the next step
entails using thesé&'Sp, to construct theP LW APg, tree
and mining the tree to generate frequent stream sequential Figure 4. The PLWAP Tree of Batch B,
patterns for this batch. During mining, the minimum toler-

ance support of s-e or 0.50 for this example is used. The

mining method recursively mines frequent sequential pat-

terns from the tree to generate frequent sequential pattern

for batchB; (or F Pg,) with frequency of(s — ¢e) * | B1| =

0.50 * 4 = 2). The foundt'Pp, = {a:4, aa:4, aac:3, ab:4,

aba:4, abac: 3, abc: 3, ac: 3, acc:2, af: 2, afa: 2, b: 4, ba:

4, bac: 3, bc: 3, c: 3, cc: 2, f: 2, fa:}2 The constructed

PLWAP tree is as given in Figure 4. @

Step 3: Construct FSP-tree and insertfalPp, into FSP-
tree without pruning any items for the first batth to ob- @
tain Figure 5. When the next batch; of stream sequences,

(abacg, abag, babag, abagh) arrives, the number of stream / \
records in the batch is used to update the total number of

stream records in the database to 8. The SSM algorithm @ @ @

then proceeds with updating the D-List using the stream se- !
guences. After updating the D-List, it deletes all elements ‘

not meeting the minimum tolerance support bf * e (or @ ;

8 * 0.25 = 2) from the D-List, and keeps all items with ;] 4 3
|D] (s — e) = 8% 0.5 = 4 frequency counts in thé, , . |

The Lq,_ is then used to compute the frequent sequence ‘ i : ‘

FSg,, sahich is used to construd® LW APg,, mined to EH
generate th&"'SPp,. This F.SPg, is used for obtaining

frequent sequential patterns on demand. This process con- Figure 5. The FSP Tree After Batch B;
tinues with incoming batches lik@; with stream sequences

(abcg, aegd, abfag, afeq) to give the final frequent sequen-

tial patterns of FP {a:12,aa:8, ab:10, aba:8, abg:7, ag:9,

b:10, ba:8, bg:7, g

Table 1. Execution Times (Sec) of SSM- Table 2. Execution Times (Sec) of SSM-

Algorithm and FP-Stream at s=0.0045 and e= Algorithm and FP-Stream at s=0.0035 and
0.0004 €=0.0003
SSM-Algorithm FP-Stream Alg SSM-Algorithm FP-Stream Alg
Dataset| Average | Total Average | Total Dataset| Average | Total Average | Total
Dataset| CPU time | CPU time| CPU time | CPU time Dataset| CPU time | CPU time | CPU time | CPU time
per batch | per batch | per batch per batch | per batch | per batch
T10K | 4.85 9.7 7.25 14.5 T10K | 6.06 12.12 10.56 21.12
T20K 4.4 18.03 6.5 26 T20K 6.81 27.27 11.77 47.08
T40K | 4.37 35.01 5.75 46 T40K | 6.9 55.27 12.55 100.4
T60K | 6.25 75 11.66 139.92 T60OK | 7.0 84.02 12.44 149.28
T80OK | 5.69 91.04 10.56 168.99 T8OK | 6.93 111.01 12.23 195.68
4 Experimental and Performance Analysis Algorithm to generate patterns, and thus, does not require

to construct intermediate trees to mine frequent sequentia

This section reports the performance of proposed SSMpatterns. For this reason, FP-Growth requires more stprage
algorithm. SSM is implemented in Java. The experi- more computation time than PLWAP. For both algorithms,
ments are performed on a 2.8 GHz (Celeron D proces-the average time of batches varies from batch to batch. It
sor) machine with 512 MB main memory. The operat- does not go higher constantly. We can say that average time
ing system is Windows XP professional. The datasets areof a batch is dependent on the data of the datasets. It is not
generated using the publicly available synthetic data gen-related to the size of the datasets. In this experiment dbatc
eration program of the IBM Quest data mining project is holding approximately 5000 transactions. A number of
at: http://www.almaden.ibm.com/software/quest/. A data experiments similar to the one in Table 1 at a minimum
loader program is incorporated with SSM to load streams of support of less than 1% were run on the datasets and the
datasets into the Buffer from the source. The loader loads aresult of a second experiment on the same datasets but at a
transaction, waits 1 ms and then loads the next transactionminimum support s of 0.0035 (0.35%) and error e of 0.0003
The parameters for describing the datasets are: [T] = Num-(0.03%) is shown in Table 2.
ber of transactions; [S] = Average Sequence length for all From the tables and for both algorithms, it can be seen
transactions; [I] = Number of unique items. For example, that the computation times increase with decreasing min-
T20K;S5;11K represents 20000 transactions with averageimum support because more items will be frequent, mak-
sequence length of 5 for all transactions and 1000 uniqueing the trees to be mined, bigger and finding more frequent
items. sequential patterns. An experiment was also run on the

The test was performed by running a series of ex- three algorithms, PLWAP, FP-Stream and the newly pro-
periments using five different datasets (T10K;S3;I2K, posed algorithm, SSM-Algorithm on a sample data with the
T20K;S3;12K, T40K;S3;12K, T60K;S3;12K, purpose of confirming the correctness of the implementa-
T80K;S3;12K). It can be seen that the sizes of the 5 tion of the SSM-Algorithm. The dataset had 4 transactions
test datasets increased from 10K, 20K, 40K, 60K and 80K (Tid, Sequence) as (100, 10 20 30 40), (200, 10 20 40 30),
for two thousand unique items and average sequence lengti@300, 20 30 50 60), (400, 20 10 70 30). Note that although
of 3. User defined supportis set at 0.0045 (.45%) for a min- PLWAP algorithm is for sequential mining, it does not mine
imum support error e, of 0.0004(0.04%). The performance stream sequences but SSM does and although, FP-Stream
analysis showing the execution times of the proposed SSMalgorithm mines frequent streams patterns, it does not mine
Algorithm in comparison with the FP-Stream algorithm on frequent stream sequential patterns For this reason, eur im
the above datasets is summarized in Table 1. plementation of the FP-Stream found more patterns than are

For testing, the support was lowerered to 1% becausefound by both the SSM and the PLWAP because of the dif-
there are no items in the datasets that have support of oveferent natures of frequent sequential stream miner and fre-
1%. From the experimental results in Table 1, it can be quent sequential miner. PLWAP and the SSM algorithm
seen that SSM requires less time than FP-Stream becaus®und the same frequent sequential patterns of ((10), (20),
SSM-Algorithm uses PLWAP-tree structure and PLWAP- (20,30), (30)). As PLWAP is already an established algo-

rithm and the result of SSM matches with that of PLWAP, per. proceedings of the Open Source Data Mining

this confirms that although the SSM-Algorithm was pro- Workshop on Frequent Pattern Mining Implementa-
cessing streams of data, it processed them correctly and tions in conjunction with ACM SIGKDD, Chicago,
computed the frequent sequential patterns. IL, U.S.A., pp. 26-29.
. [Giannella et al., 2003] Giannella, C. and Han, J. and Pei,
5 Conclusionsand Future Work J.and Yan, X. and Yu, P.S. 2003. Mining Frequent Pat-
terns in Data Streams at Multiple Time Granularities,
SSM-Algorithm is proposed to support continuous in H. Kargupta, A. Joshi, K. Sivakumar, and Y. Yesha

stream mining tasks suitable for such new applications as (eds.), Next Generation Data Mining, 2003.
click stream data. It is a complete system that fulfills all
of the requirements for mining frequent sequential pagtern
in data streams. SSM-Algorithm can be deployed for min-
ing E-commerce’s click stream data. Features of the SSM-
Algorithm include use of (1) the D-List structure for effi-

ciently storing and maintaining support counts of all items [Gunduz & Ozsu, 2003] Gunduz, S. and Ozsu, M.T. Aweb
passing through the streams, (2) the PLWAP tree for ef- page prediction model based on click-stream tree rep-
ficiently mining stream batch frequent patterns, and (3) resentation of user behavior. SIGKDD, Page 535-540.
the FSP tree for maintaining batch frequent sequential pat-))

terns. The use of the support ermserves to reduce on [Han etal., 2004.] .Han, J. and Pei, J. and .Ym, Y. and.Mao,
irrelevant use of memory for short-memoried stream appli- R. 2004_' Mining frequent patterns without candidate
cations. Experiments show the SSM algorithm produces ggn_erauon: a frequent pattern tree approach. Data
faster execution times than running the FP-Stream on simi- Mining and Knowledge Discovery, 8, 1, Page 53-87.
lar datasets. Future work should consider using sliding win [Las, 2002] Last, M. 2002. Online classification of nonsta-
dow techniques on the SSM to create batches and candidate tionary data streams. Intelligent Data Analysis, Vol. 6,
1-sequences. Sliding window method may save batch cre- No. 2, Page 129-147.

ation and candidate generation time. SSM-Algorithm gen- . .

erates frequent sequential patterns based on frequency O[1Manku & Mo_twam,_2002] Manku, Gurmeet Singh. and
items. It is possible to add multiple dimensions (e.g. time Motwani, Rajeev. 2002. Approxmate frequency
dimension) or constraints along with frequency to discover counts over data streams. proce.edlngs of the 28th
interesting patterns in data streams. It is also possible to VLDB conference, Hong Kong, China.

incrementally update the PLWAP tree during the mining of [Pei et al., 2000] Pei, Jian and Han, Jiawei and Mortazavi-

[Gunaetal., 2000] Guna, S. and Meyerson, A., and
Mishra, N. and Motwani, R. Clustering data
streams:Theory and Practice. TKDE special issue on
clustering, vol 15.

each batch rather than dropping and re-creating. asi, Behzad and Zhu, Hua. 2000. Mining Access Pat-
terns Efficiently from web logs. Proceedings 2000
References Pacific-Asia conference on Knowledge Discovery and

data Mining,Pages 396-407, Kyoto, Japan.
[Chenetal., 2002] Chen, Y. and Dong, G. and Han, J. and|pegj et al., 2001] Pei, J. and Han, J. and Mortazavi-Asl, B.

Wah, W.B. and Wang, J. Multidimensional regres- and Pinto, H. and Chen, Q. and Dayal, U. and Hsu,
sion analysis of time-series data streams. proceedings \.C. 2001. PrefixSpan: Mining Sequential Patterns
of the 28th VLDB conference, pages 323-334, Hong Efficiently by Prefix-Projected Pattern Growth. In Pro-
Kong, China. ceedings of the 2001 International Conference on Data
[Domingo & Hulten, 2000] Domingos, P. and Hulten, G. Engineering (ICDE'01), Heidelberg, Germany, pages

2000. Mining high-speed data streams. proceedings of 215-224.

the 2000 ACM SIGKDD Int. Conf. knowledge Dis- [Srikanth & Aggrawal, 1996] Srikanth, Ramakrishnan and

covery in Database (KDD’00), pages 71-80. Aggrawal, Rakesh. 1996. Mining Sequential Patterns:
[Ezeife & Lu, 2005] Ezeife, C.I. and Lu, Yi. 2005. Min- generalizations and performance improvements. Re-

ing Web Log sequential Patterns with Position Coded search Report, IBM Almaden Research Center 650
Pre-Order Linked WAP-tree. the International Journal Harry Road, San Jose, CA 95120, Pages 1-15.

of Data Mining and Knowledge Discovery (DMKD), [Teng, Chen & Yu, 2003] Teng, W. and Chen, M. and Yu,
Vol. 10, pp. 5-38, Kluwer Academic Publishers, June P. 2003. A regression-based temporal pattern mining
scheme for data streams. In proceedings of the 29th

[Ezeife et al., 2005] Ezeife, C.I. and Lu, Yi and Liu, Yi. VLDB conference, Berlin, Germany.

PLWAP Sequential Mining: Open Source Code pa-

