
SSM : A Frequent Sequential Data Stream Patterns Miner

C.I. Ezeife∗, Mostafa Monwar
School of Computer Science, University of Windsor,

cezeife@uwindsor.ca, woddlab@uwindsor.ca
http://www.cs.uwindsor.ca/∼cezeife

Abstract

Data stream applications like sensor network data, click
stream data, have data arriving continuously at high speed
rates and require online mining process capable of deliv-
ering current and near accurate results on demand without
full access to all historical stored data. Frequent sequen-
tial mining is the process of discovering frequent sequential
patterns in data sequences as found in applications like web
log access sequences. Mining frequent sequential patterns
on data stream applications contend with many challenges
such as limited memory for unlimited data, inability of algo-
rithms to scan infinitely flowing original dataset more than
once and to deliver current and accurate result on demand.
Existing work on mining frequent patterns on data streams
are mostly for non-sequential patterns. This paper proposes
SSM-Algorithm (Sequential Stream Mining-algorithm), that
uses three types of data structures (D-List, PLWAP tree and
FSP-tree) to handle the complexities of mining frequent se-
quential patterns in data streams. It summarizes frequency
counts of items with the D-List, continuously builds PLWAP
tree and mines frequent sequential patterns of batches of
stream records, maintains mined frequent sequential pat-
terns incrementally with FSP tree. The proposed algorithm
can be deployed to analyze E-commerce data where the pri-
mary source of data is click stream data.

Keywords Web Sequential Mining, Stream Mining,
Customer Access Sequence, Frequent Sequential patterns,
Click Steam Data

1 Introduction

A data stream is a continuous, unbounded, and high-
speed flow of data items. Applications generating large

∗This research was supported by the Natural Science and Engineering
Research Council (NSERC) of Canada under an Operating grant(OGP-
0194134) and a University of Windsor grant.

amounts of data streams, include network monitors, traf-
fic monitors, ATM transaction records in banks, sensor net-
work monitor, web logs and web click streams, and trans-
actions in retail chains. Mining data in such applications
is referred to as stream mining. Stream sequential min-
ing adds many complexities to traditional mining require-
ments, which are: 1) the volume of continuously arriving
data is massive and cannot all be stored and scanned for
mining, 2) there is insufficient memory, 3) the mining al-
gorithm does not have the opportunity to scan the entire
original dataset more than once, as the whole dataset is not
stored, 4) a method for delivering considerably accurate re-
sult on demand is needed. 5) in order to mine sequential
patterns in streams like click stream data, there is need to
keep Customer Access Sequences (CAS) in the order they
arrive. CAS is the sequential buying or product viewing or-
der by a customer, e.g., (TV, radio, jean pants, TV, shirt,
TV). Keeping CAS order intact for each transaction and
mining frequent sequential patterns from them presents ad-
ditional complexities. Simply mining a set of items would
treat the CAS sequence example above as the set (TV, ra-
dio, jean pants, shirt) and the order is not important as is the
focus for such non-sequential mining algorithms like FP-
stream algorithm [Giannella et al., 2003]. So, the SSM-
Algorithm implements a continuous process that extracts
frequent CAS from incoming stream in one pass, mines se-
quential patterns, stores the patterns compactly and quickly.
While many sequential mining algorithms (e.g., PLWAP
[Ezeife & Lu, 2005]) mine statically pre-processed data
like web log data containing hundreds of records, the SSM-
Algorithm, dynamically processes one customer sequence
after the other to form batches of records to progressively
mine. Then, a data structure, called D-LIST, which main-
tains dynamically, the total frequency counts of all items
that have passed through the stream, is used. D-List col-
lects and updates frequency of all items passing through
streams and is used for computing the frequent 1-item list
for each batch after updating the D-List with the streams
of the batch. A busy website generates a huge amount of
click stream data everyday. Each click stream data series

reflects a customer’s buying interest. For an E-commerce
company, detecting future customers based on their sequen-
tial mouse movements on the content page would help sig-
nificantly to generate more revenue. There are some re-
cent studies on mining data streams, classification of stream
data [Domingo & Hulten, 2000], online classification of
data streams [Las, 2002], clustering data streams [Guna et
al., 2000], web session clustering [Gunduz & Ozsu, 2003],
approximate frequency counts over data streams [Manku &
Motwani, 2002], mining frequent patterns in data stream
at multiple time granularities [Giannella et al., 2003], and
multi-dimensional time series analysis [Chen et al., 2002],
temporal pattern mining in data streams
[Teng, Chen & Yu, 2003] but more work is needed on min-
ing frequent sequential patterns in data streams.

1.1 Contributions

Considering the importance of sequential mining in data
streams, this paper proposes the SSM-Algorithm, a sequen-
tial stream miner that extends the functionality of PLWAP
to make it compatible in data stream environment using ad-
ditional efficient data structures D-List and FSP-tree.

1.2 Related Work

Han et al. in [Han et al., 2004] proposed the FP-
Tree algorithm to generate frequent pattern itemsets. Fre-
quent sequential pattern mining algorithms include the GSP
[Srikanth & Aggrawal, 1996], which is Apriori-like, Pre-
fixSpan [Pei et al., 2001], a pattern-growth method, the
WAP [Pei et al., 2000], which is based on the FP-Tree
but used for mining sequences, the PLWAP [Ezeife & Lu,
2005], [Ezeife et al., 2005], which is the position-coded,
pre-order linked version of WAP that eliminates the need
for repetitive re-construction of intermediate trees during
mining. PLWAP tree algorithm first builds each frequent
sequential pattern from database transactions from ”Root”
to leaf nodes assigning unique binary position code to each
tree node and performing the header node linkages pre-
order fashion (root, left, right). Both the pre-order link-
age and binary position codes enable the PLWAP to di-
rectly mine the sequential patterns from the one initial WAP
tree starting with prefix sequence, without re-constructing
the intermediate WAP trees. To assign position codes to a
PLWAP node, the root has null code, and the leftmost child
of any parent node has a code that appends ‘1’ to the posi-
tion code of its parent, while the position code of any other
node has ‘0’ appended to the position code of its nearest
left sibling. The PLWAP technique presents a much better
performance than that achieved by the WAP-tree technique,
making it a good candidate for stream sequential mining.
Data stream algorithms include the Lossy counting algo-

rithm [Manku & Motwani, 2002], which is used for fre-
quency counting in data streams. FP-Stream algorithm [Gi-
annella et al., 2003] is used to mine frequent patterns in
data stream. Previously, landmark model [Manku & Mot-
wani, 2002] was introduced that mines frequent patterns in
data stream by assuming that patterns are measured from
the start of the stream up to current moment. The authors of
FP-Stream also extended their framework to answer time-
sensitive queries over data stream. Teng et al. proposed
FTP-Algorithm [Teng, Chen & Yu, 2003] to mine frequent
temporal patterns of data streams. FTP-DS scans online
transaction flows and generate frequent patterns in real time.
Sliding window model is used in this paper. Data expires
after N time units since its arrival.

2 The Proposed SSM Sequential Stream
Mining Algorithm

On continuous arrival of data streams, the SSM-
Algorithm (sequential stream mining-algorithm) forms
sized batches dynamically by updating and storing on the
D-List structure, frequency countsf of each item meeting
the defined support boundaries ofe ≤ f , given the tol-
erance error support thresholde. D-List uses hash chain
indexing to maintain incoming elements and their frequen-
cies and is very efficient in such stream applications like
E-commerce, where thousands of items are used, and brand
new items get posted to the E-commerce site while unpop-
ular items get discontinued from the site on a regular basis.
Proposed algorithm handles dynamically sized batches and
provides added flexibility to suit the rate of stream flow.
FP-Stream [Giannella et al., 2003] or Lossy Counting al-
gorithm [Manku & Motwani, 2002] use fixed size batches.
The SSM-Algorithm next performs batch mining with the
PLWAP sequential mining technique and constantly stores
frequent sequential pattern result on a compact tree (the
FSP-tree), that is able to deliver results on demand. SSM-
Algorithm uses previously introduced efficient PLWAP-tree
algorithm to find frequent sequential patterns. Thus, SSM
takes advantage of the preordered linkage and position cod-
ing of PLWAP-tree in order to eliminate the cost of recon-
struction and computation time of intermediate trees during
mining, unlike the FP-tree [Han et al., 2004]. The SSM-
Algorithm uses the FSP-tree for storing mined batch fre-
quent sequential patterns. The FSP tree is a simple form of
pattern-tree [Giannella et al., 2003] that is introduced inFP-
Stream algorithm. The produced result by SSM-Algorithm
does not cross pre-defined error threshold and delivers all
frequent sequential patterns that have user defined mini-
mum support. The use of buffer mechanism in SSM re-
stricts memory usage to a specific size. In other words, we
use a small fixed size buffer in memory that handles contin-
uous incoming data streams.

2

Algorithm 1 (Sequential Stream Miner:Mines Frequent
Sequential Stream Patterns)

Algorithm SSM()
Input: (1) Minimum support threshold (s) where0 < s < 1,

(2) Maximum support error threshold (e) where0 < e < s,
(3) Size of D-List (Size)

Output: 1) Frequent sequential patterns
Temp variables: exit = true, i=0,

num-records (total number of database records);
Begin

While (exit) // exit when user wants
Begin
1. i = i + 1 // indicates which batch or cycle
2. Create-Batch(CAS) //creates a batch of CAS

2.1 ScanBi and generate candidate
1-sequences orC1Bi

3. Update D-List[Size] withC1Bi

// Hash index based structure creation
4. Generate-Frequent-Pattern(FSBi

)
with PLWAPB1

// FP generation
5. Update-FSP-tree(FPBi

)
// Update method for FSP-tree
6. If user wants result, then from FSP-tree,
get all FSP with count≥ (s-e)* num-records
7. Maintain-Structures()
//i.e prune D-List and FSP, drop PLWAP,
8 If user wants to exit, exit = false;
End

End

Figure 1. The Main Sequential Stream Mining
(SSM-Algorithm)

The proposed sequential data stream algorithm, SSM is
given below as algorithm 1.

2.1 Steps in Sequential Stream Mining
System

The main components and steps of the SSM-Algorithm
is shown in Figure 2. Step 1: Buffer is basically a staging
area where preprocessed transaction IDs and stream se-
quences like customer access sequences (CAS) arrive. We
treat a buffer as a long empty string initially with limited
size of about 50MB. Once the stream starts coming, they
are added into the buffer. For example, (100, a b d a c),
(101, a b c a c), Here, 100 is the transaction ID and the
letters (a b d a c) following transaction ID 100 are item IDs
for this transaction. Lossy Counting Algorithm [Manku
& Motwani, 2002], uses buffer mechanism to deal with
incoming data stream. On the other hand, FP-Stream [Gian-
nella et al., 2003] uses main memory to handle data stream.

Figure 2. The Main Components of the SSM
Stream Miner

While the stream sequences arrive at the Buffer area, each
record is processed and placed in the current batch. The
system mines a batch once it contains the minimum number
of records set for a batch, and it continuously checks the
buffer for more records every 1 minute (or a different value
can be set to check the buffer based on application needs),
if there are not enough records to form a batch. If there are
enough records in the buffer, the maximum batch size is
used in creating the current batch for mining. Thus, as soon
as there is a batch with number of records equal tob, where
minimum Batch size ≤ b ≤ maximum Batch size,
the batch is mined. The SSM-Algorithm does not know
how many click stream items it will be dealing with
before forming each batch. For extremely busy stream
environment where streams of data are arriving at faster
rate than can be accommodated by the buffer, the buffer
could either be increased, shut off for some time when too
full and re-opened when de-congested. Another solution
is to re-route non-accommodated arriving streams to a
holding area, where they can be processed later during slow
period. Our model can be used to find frequent sequential
patterns of visited pages for a site as well.
Step 2: Batching Engine forms batches of stream sequences
like the CAS (customer access sequences) data from the
buffer. For example, a batch is a number (n) of customer
access sequences similar ton record sequences ofn distinct
transaction IDs. The size of the batch depends on the
incoming stream. The batch size of the SSM system is
not fixed, unlike Lossy Counting Algorithm [Manku &
Motwani, 2002], or FP-Stream [Giannella et al., 2003].
Step 3: Mining Algorithm or SSM-algorithm uses three
data structures: D-List, PLWAP-tree and FSP-tree. It scans
records of each batch,Bi, uses the counts of the items in
this batch to update the item counts of items in the D-List.
It then computes the cumulative support counts of D-List
items to find overall frequent 1-items of this batch,L1Bi

(that is 1-item sequences with support in the database so
far received after including counts of items in batchBi,
that are greater than or equal to the minimum support
threshold,s). Then, all items in the batch records that are
not in theL1Bi

list are removed from the stream sequences
to create the batch frequent sequence,FSBi

, used for
batch mining. On arrival, the items are stored in D-List
structure (a hash indexed array structure for storing all
items with cumulative support count greater than or equal
to the tolerance error support count,e). D-List keeps each

3

item’s ID and their frequency in a hash chain that stores
each unique item in a D-List hash bucket corresponding to
the item-id modulus number of buckets. Only items whose
frequent support count are greater than or equal to the total
number of stream sequences that have passed through the
database via all already processed batches multiplied by
the percentage maximum tolerance error, e, are kept in
the D-List. While items with support count less than this
value are deleted from the D-List, those with count greater
than or equal to the total number of stream records times
(minimum support (s) minus tolerance error (e)) are kept
in the L1Bi

list. The use of tolerance error to reduce the
count of items kept in the D-List allows for handling items
that may have been small (that is, not frequent) previously,
and whose cumulative count would not be available if they
suddenly turn frequent. Once the D-List is constructed, the
performance of insertion, updating and deletion of nodes
are faster through this hash chain structure. Thus, this
structure contributes to processing speed and efficiency.
PLWAP-tree is constructed by taking frequent subse-
quences from the batch, PLWAP-algorithm is used to mine
frequent sequential patterns and the sequential patterns are
stored into FSP-tree incrementally. This process continues.
When the next batch arrives, items are extracted from
the batch and used to update frequencies of those items
in the D-List if the items are already registered in the
D-List. Otherwise, if the arriving items in the new batch
are new elements to the D-List, they are inserted. Perform
PLWAP-mining by extracting frequent subsequences from
the current batch. If the obtained frequent patterns are
already in FSP-tree, the frequencies of those patterns are
updated in the tree, otherwise, they are inserted into the
tree as new patterns. PLWAP-tree or Pre-ordered Linked
WAP-tree was introduced in [Ezeife & Lu, 2005], [Ezeife
et al., 2005]. The basic idea behind the PLWAP tree
algorithm is using position codes and pre-order linkage
on the WAP-tree [Pei et al., 2000] to speed up the process
of mining web sequential patterns by eliminating the
need for repetitive re-construction of intermediate WAP
trees during mining. Eliminating the re-construction of
intermediate WAP trees also saves on memory storage
space and computation time. Given a set of frequent
sequences of a stream batch,FSBi

, the PLWAP tree is first
constructed by inserting each sequence from root to leaf,
incrementing the count of each item node every time it is
inserted. Each node also has a position code from root,
where the root has null position code and the position code
of any other node has ‘1’ appended to the position code of
its parent node if this node is the leftmost child node, but
it has ’0’ appended to the position code of its nearest left
sibling if not the leftmost child node. After construction,
the L1Bi

list is used to construct pre-order header linkage
nodes for mining. The mining of the PLWAP tree is prefix

based in that it starts from the root and following the header
linkages, it uses the position codes to quickly identify item
nodes of the same type (e.g., item a) on different branches
of the tree at that level of the tree and if the sum of the
counts of all these items (e.g.a node) on different branches
of the tree is greater than or equal to the accepted minimum
support count (number of records * (s - e)), then, this item
is confirmed frequent and appended to the previous prefix
frequent stream sequence.
Frequent Sequential Pattern-tree or FSP-tree is a simple
form of Pattern-tree [Giannella et al., 2003] for storing
result structure. The sequences and their counts are simply
inserted from root to leaf where the count of the sequence
is assigned to the leaf of the frequent pattern. The FSP tree
is maintained with both footer linked lists that has linkage
to all leaf nodes for pruning nodes from leaf not meeting
required support count, and from the Root for inserting
newly found frequent sequential patterns.

3 An Example Application of the SSM
Stream Miner

Assume a continuous stream with first stream batchB1

consisting of stream sequences as: [(abdac, abcac, babfae,
afbacfcg)]. Assume the minimum support, s is 0.75 (or
75%) and the tolerance error e, is 0.25 (or 25%).
The task is to continuously compute the frequent sequential
stream patterns, FSP, of the streams as they arrive.
Step 1: The algorithm first computes the candidate 1-item
of the batch asC1B1

= {a:4, b:4, c:3, d:1, e:1, f:2, g:1} from
the stream records as they arrive. Then, it updates the D-List
with the C1B1

, keeping items with support count greater
than or equal to (number of records times s) on theL1B1

list, but keeping only items with minimum tolerance sup-
port count of (number of records * e) or more on the D-List.
Since this is the first batch with only 4 records, the tolerance
minimum support cardinality is: 4 * (0.75 - 0.25) = 2. Thus,
all items with support greater than or equal to 2 should be
large and inL1B1

. The D-List minimum error support cardi-
nality is 4 * (0.25) = 1. Thus, all items with support greater
or equal to 1 are kept in the D-List while those with sup-
port count greater than or equal to 2 are also in theL1B1

list. TheL1B1
= {a:4, b:4, c:3, f:2}. The D-List after read-

ing the batchB1 is shown as Figure 3. Note that since the
stream sequence being used in this example are those of
E-commerce customer access sequence (CAS), the SKU (a
special unique item code) for the items (a,b,c,d,e,f,g) given
as (2, 100, 0, 202, 10, 110, 99) are used in the hash function
(item-id modulus number of buckets) (for this example 100
buckets assumed) to find the bucket chain for inserting the
item in the D-List. Since theC1B1

has been used to update
the D-List, which was used for computing the currentL1B1

4

Figure 3. The D-List After Batch B1

and the frequent sequenceFSB1
, C1B1

can now be dropped
to save on limited memory.
Step 2: Now that theFSB1

had been found, the next step
entails using theseFSB1

to construct thePLWAPB1
tree

and mining the tree to generate frequent stream sequential
patterns for this batch. During mining, the minimum toler-
ance support of s-e or 0.50 for this example is used. The
mining method recursively mines frequent sequential pat-
terns from the tree to generate frequent sequential patterns
for batchB1 (or FPB1

) with frequency of(s − e) ∗ |B1| =
0.50 * 4 = 2). The foundFPB1

= {a:4, aa:4, aac:3, ab:4,
aba:4, abac: 3, abc: 3, ac: 3, acc:2, af: 2, afa: 2, b: 4, ba:
4, bac: 3, bc: 3, c: 3, cc: 2, f: 2, fa: 2}. The constructed
PLWAP tree is as given in Figure 4.
Step 3: Construct FSP-tree and insert allFPB1

into FSP-
tree without pruning any items for the first batchB1 to ob-
tain Figure 5. When the next batch,B2 of stream sequences,
(abacg, abag, babag, abagh) arrives, the number of stream
records in the batch is used to update the total number of
stream records in the database to 8. The SSM algorithm
then proceeds with updating the D-List using the stream se-
quences. After updating the D-List, it deletes all elements
not meeting the minimum tolerance support of|D| * e (or
8 * 0.25 = 2) from the D-List, and keeps all items with
|D| ∗ (s − e) = 8 ∗ 0.5 = 4 frequency counts in theL1B2

.
The L1B2

is then used to compute the frequent sequence
FSB2

, which is used to constructPLWAPB2
, mined to

generate theFSPB2
. This FSPB2

is used for obtaining
frequent sequential patterns on demand. This process con-
tinues with incoming batches likeB3 with stream sequences
(abcg, aegd, abfag, afeg) to give the final frequent sequen-
tial patterns of FP ={a:12,aa:8, ab:10, aba:8, abg:7, ag:9,
b:10, ba:8, bg:7, g:9}.

Figure 4. The PLWAP Tree of Batch B1

Figure 5. The FSP Tree After Batch B1

5

Table 1. Execution Times (Sec) of SSM-
Algorithm and FP-Stream at s=0.0045 and e=
0.0004

SSM-Algorithm FP-Stream Alg
Dataset Average Total Average Total
Dataset CPU time CPU time CPU time CPU time

per batch per batch per batch
T10K 4.85 9.7 7.25 14.5
T20K 4.4 18.03 6.5 26
T40K 4.37 35.01 5.75 46
T60K 6.25 75 11.66 139.92
T80K 5.69 91.04 10.56 168.99

4 Experimental and Performance Analysis

This section reports the performance of proposed SSM
algorithm. SSM is implemented in Java. The experi-
ments are performed on a 2.8 GHz (Celeron D proces-
sor) machine with 512 MB main memory. The operat-
ing system is Windows XP professional. The datasets are
generated using the publicly available synthetic data gen-
eration program of the IBM Quest data mining project
at: http://www.almaden.ibm.com/software/quest/. A data
loader program is incorporated with SSM to load streams of
datasets into the Buffer from the source. The loader loads a
transaction, waits 1 ms and then loads the next transaction.
The parameters for describing the datasets are: [T] = Num-
ber of transactions; [S] = Average Sequence length for all
transactions; [I] = Number of unique items. For example,
T20K;S5;I1K represents 20000 transactions with average
sequence length of 5 for all transactions and 1000 unique
items.

The test was performed by running a series of ex-
periments using five different datasets (T10K;S3;I2K,
T20K;S3;I2K, T40K;S3;I2K, T60K;S3;I2K,
T80K;S3;I2K). It can be seen that the sizes of the 5
test datasets increased from 10K, 20K, 40K, 60K and 80K
for two thousand unique items and average sequence length
of 3. User defined support is set at 0.0045 (.45%) for a min-
imum support error e, of 0.0004(0.04%). The performance
analysis showing the execution times of the proposed SSM
Algorithm in comparison with the FP-Stream algorithm on
the above datasets is summarized in Table 1.

For testing, the support was lowerered to 1% because
there are no items in the datasets that have support of over
1%. From the experimental results in Table 1, it can be
seen that SSM requires less time than FP-Stream because
SSM-Algorithm uses PLWAP-tree structure and PLWAP-

Table 2. Execution Times (Sec) of SSM-
Algorithm and FP-Stream at s=0.0035 and
e=0.0003

SSM-Algorithm FP-Stream Alg
Dataset Average Total Average Total
Dataset CPU time CPU time CPU time CPU time

per batch per batch per batch
T10K 6.06 12.12 10.56 21.12
T20K 6.81 27.27 11.77 47.08
T40K 6.9 55.27 12.55 100.4
T60K 7.0 84.02 12.44 149.28
T80K 6.93 111.01 12.23 195.68

Algorithm to generate patterns, and thus, does not require
to construct intermediate trees to mine frequent sequential
patterns. For this reason, FP-Growth requires more storage,
more computation time than PLWAP. For both algorithms,
the average time of batches varies from batch to batch. It
does not go higher constantly. We can say that average time
of a batch is dependent on the data of the datasets. It is not
related to the size of the datasets. In this experiment a batch
is holding approximately 5000 transactions. A number of
experiments similar to the one in Table 1 at a minimum
support of less than 1% were run on the datasets and the
result of a second experiment on the same datasets but at a
minimum support s of 0.0035 (0.35%) and error e of 0.0003
(0.03%) is shown in Table 2.

From the tables and for both algorithms, it can be seen
that the computation times increase with decreasing min-
imum support because more items will be frequent, mak-
ing the trees to be mined, bigger and finding more frequent
sequential patterns. An experiment was also run on the
three algorithms, PLWAP, FP-Stream and the newly pro-
posed algorithm, SSM-Algorithm on a sample data with the
purpose of confirming the correctness of the implementa-
tion of the SSM-Algorithm. The dataset had 4 transactions
(Tid, Sequence) as (100, 10 20 30 40), (200, 10 20 40 30),
(300, 20 30 50 60), (400, 20 10 70 30). Note that although
PLWAP algorithm is for sequential mining, it does not mine
stream sequences but SSM does and although, FP-Stream
algorithm mines frequent streams patterns, it does not mine
frequent stream sequential patterns For this reason, our im-
plementation of the FP-Stream found more patterns than are
found by both the SSM and the PLWAP because of the dif-
ferent natures of frequent sequential stream miner and fre-
quent sequential miner. PLWAP and the SSM algorithm
found the same frequent sequential patterns of ((10), (20),
(20,30), (30)). As PLWAP is already an established algo-

6

rithm and the result of SSM matches with that of PLWAP,
this confirms that although the SSM-Algorithm was pro-
cessing streams of data, it processed them correctly and
computed the frequent sequential patterns.

5 Conclusions and Future Work

SSM-Algorithm is proposed to support continuous
stream mining tasks suitable for such new applications as
click stream data. It is a complete system that fulfills all
of the requirements for mining frequent sequential patterns
in data streams. SSM-Algorithm can be deployed for min-
ing E-commerce’s click stream data. Features of the SSM-
Algorithm include use of (1) the D-List structure for effi-
ciently storing and maintaining support counts of all items
passing through the streams, (2) the PLWAP tree for ef-
ficiently mining stream batch frequent patterns, and (3)
the FSP tree for maintaining batch frequent sequential pat-
terns. The use of the support errore serves to reduce on
irrelevant use of memory for short-memoried stream appli-
cations. Experiments show the SSM algorithm produces
faster execution times than running the FP-Stream on simi-
lar datasets. Future work should consider using sliding win-
dow techniques on the SSM to create batches and candidate
1-sequences. Sliding window method may save batch cre-
ation and candidate generation time. SSM-Algorithm gen-
erates frequent sequential patterns based on frequency of
items. It is possible to add multiple dimensions (e.g. time
dimension) or constraints along with frequency to discover
interesting patterns in data streams. It is also possible to
incrementally update the PLWAP tree during the mining of
each batch rather than dropping and re-creating.

References

[Chen et al., 2002] Chen, Y. and Dong, G. and Han, J. and
Wah, W.B. and Wang, J. Multidimensional regres-
sion analysis of time-series data streams. proceedings
of the 28th VLDB conference, pages 323-334, Hong
Kong, China.

[Domingo & Hulten, 2000] Domingos, P. and Hulten, G.
2000. Mining high-speed data streams. proceedings of
the 2000 ACM SIGKDD Int. Conf. knowledge Dis-
covery in Database (KDD’00), pages 71-80.

[Ezeife & Lu, 2005] Ezeife, C.I. and Lu, Yi. 2005. Min-
ing Web Log sequential Patterns with Position Coded
Pre-Order Linked WAP-tree. the International Journal
of Data Mining and Knowledge Discovery (DMKD),
Vol. 10, pp. 5-38, Kluwer Academic Publishers, June

[Ezeife et al., 2005] Ezeife, C.I. and Lu, Yi and Liu, Yi.
PLWAP Sequential Mining: Open Source Code pa-

per. proceedings of the Open Source Data Mining
Workshop on Frequent Pattern Mining Implementa-
tions in conjunction with ACM SIGKDD, Chicago,
IL, U.S.A., pp. 26-29.

[Giannella et al., 2003] Giannella, C. and Han, J. and Pei,
J. and Yan, X. and Yu, P.S. 2003. Mining Frequent Pat-
terns in Data Streams at Multiple Time Granularities,
in H. Kargupta, A. Joshi, K. Sivakumar, and Y. Yesha
(eds.), Next Generation Data Mining, 2003.

[Guna et al., 2000] Guna, S. and Meyerson, A., and
Mishra, N. and Motwani, R. Clustering data
streams:Theory and Practice. TKDE special issue on
clustering, vol 15.

[Gunduz & Ozsu, 2003] Gunduz, S. and Ozsu, M.T. A web
page prediction model based on click-stream tree rep-
resentation of user behavior. SIGKDD, Page 535-540.

[Han et al., 2004] Han, J. and Pei, J. and Yin, Y. and Mao,
R. 2004. Mining frequent patterns without candidate
generation: a frequent pattern tree approach. Data
Mining and Knowledge Discovery, 8, 1, Page 53-87.

[Las, 2002] Last, M. 2002. Online classification of nonsta-
tionary data streams. Intelligent Data Analysis, Vol. 6,
No. 2, Page 129-147.

[Manku & Motwani, 2002] Manku, Gurmeet Singh. and
Motwani, Rajeev. 2002. Approximate frequency
counts over data streams. proceedings of the 28th
VLDB conference, Hong Kong, China.

[Pei et al., 2000] Pei, Jian and Han, Jiawei and Mortazavi-
asi, Behzad and Zhu, Hua. 2000. Mining Access Pat-
terns Efficiently from web logs. Proceedings 2000
Pacific-Asia conference on Knowledge Discovery and
data Mining,Pages 396-407, Kyoto, Japan.

[Pei et al., 2001] Pei, J. and Han, J. and Mortazavi-Asl, B.
and Pinto, H. and Chen, Q. and Dayal, U. and Hsu,
M.C. 2001. PrefixSpan: Mining Sequential Patterns
Efficiently by Prefix-Projected Pattern Growth. In Pro-
ceedings of the 2001 International Conference on Data
Engineering (ICDE’01), Heidelberg, Germany, pages
215-224.

[Srikanth & Aggrawal, 1996] Srikanth, Ramakrishnan and
Aggrawal, Rakesh. 1996. Mining Sequential Patterns:
generalizations and performance improvements. Re-
search Report, IBM Almaden Research Center 650
Harry Road, San Jose, CA 95120, Pages 1-15.

[Teng, Chen & Yu, 2003] Teng, W. and Chen, M. and Yu,
P. 2003. A regression-based temporal pattern mining
scheme for data streams. In proceedings of the 29th
VLDB conference, Berlin, Germany.

7

