
Predicting Student Performance in an ITS using
Task-driven Features

Ritu Chaturvedi
Mathematical and Computational Science

University of Toronto, Toronto, Canada

Email: ritu.chaturvedi@utoronto.ca

C. I. Ezeife
School of Computer Science

University of Windsor, Windsor, Canada

Email: cezeife@uwindsor.ca

Abstract—Intelligent Tutoring Systems (ITS) are typically
designed to offer one-on-one tutoring on a subject to students
in an adaptive way so that students can learn the subject at
their own pace. The ability to predict student performance
enables an ITS to make informed decisions towards meeting the
individual needs of students. It is also useful for ITS designers
to validate if students are actually able to succeed in learning
the subject. Predicting student performance is a function of two
complex and dynamic factors: (f1) student learning behavior and
(f2) their current knowledge in the subject. Learning behavior
is captured from student interaction with the ITS (e.g. time
spent on an assigned task) and is stored in the form of web
logs. Student knowledge in the subject is represented by the
marks they score in assigned tasks and is stored in a specific
component of the ITS called student model. In order to build an
accurate prediction model, this raw data from student model
and web logs must be engineered carefully and transformed
into meaningful features. Existing systems such as LON-CAPA
predict students performance using their learning behavior alone,
without considering their (current) knowledge on the subject.
Lack of proper feature engineering is evident from the low values
of accuracy of their prediction models. This research proposes a
highly accurate model that predicts student success in assigned
tasks with a 96% accuracy by using features that are better
informed not only about students in terms of the two factors f1
and f2 mentioned above, but also on the assigned task itself (e.g.
task’s difficulty level). In order to accomplish this, an Example
Recommendation System (ERS) is designed with a fine-grained
student model (to represent student data) and a fine-grained
domain model (to represent domain resources such as tasks).

I. INTRODUCTION

An Intelligent tutoring systems (ITS) is a computer system

that tutors students in some domain (e.g. C Programming),

without the physical presence of a teacher. Functions of

an ITS include adaptation or customization and intelligence.

Customization is in terms of presentation of learning mate-

rials (e.g. students with current grades greater than 80% are

assigned task T4, which is of high difficulty level, as opposed

to students with grades less than 50% are assigned task T1,

which is of low difficulty level). Intelligence shown by the

tutoring system is based on the objectives for which the ITS

is designed (e.g. providing support to students through hints

or examples in real time). Every ITS system has a domain

and a student model (unique for every student using the ITS),

in addition to other components (Chaturvedi & Ezeife, 2017).

Domain model defines the expertise required on the subject

(e.g. correct solutions of every example and task used in the

ITS), whereas a student model stores student information (e.g.

his / her marks in every task in the ITS’s domain).

Example-based ITS (Gog & Rummer, 2010; Renkl, 2014)

systems aim to assist students to succeed in assigned tasks

by offering them worked-out example solutions that are most

relevant to the task and that are customized to the student’s

current knowledge (student knowledge is typically represented

by the marks they score in tasks or tests and is stored in

a specific component of the ITS called student model). This

study uses an example-based ITS called Example Recommen-

dation System (ERS) (Chaturvedi & Ezeife, 2017) that requires

tasks and worked-out examples to be structurally similar so

that they can be mined to achieve the desired customization.

A task in ERS is defined to be a gradable question or

instruction assigned to students (e.g. task T1 for the domain of

C programming: ’Write a C program that computes the area

of a triangle, given its base and height.’). Similarly, a worked-

out example (WE) refers to a complete or partial worked-

out solution of a question or instruction (similar to examples

in textbooks). For example, figure 1 shows a worked-out

example E1, which is essentially the solution to the following

instruction: ’Write a program that computes and prints the

value of b, given b = a / b * a % b’. A learning unit (LU) in

ERS is defined as the smallest basic unit of domain knowledge

that a task or worked-out example can be divided into (e.g.

“simple arithmetic expressions” is a LU in the domain of C

Programming). These LUs belong to the domain model of the

ITS and are typically defined by experts. Granularity refers

to the level of detail with which an ITS chooses to represent

its domain resources such as tasks and worked-out examples

(Pardos et al., 2007). Assuming ⊇ is interpreted as “consists

of”, an ITS may choose to represent its worked-out examples

as (choice1: “Lesson ⊇ Examples”) or as (choice2: “Lesson

⊇ Examples ⊇ Learning Units”). Choice1 is an example of

a coarse-grained system, relative to choice2, which is a fine-

grained system. Choice2 can be interpreted as “each lesson

consists of worked-out examples, which are further subdivided

into basic learning units (LUs)” (e.g. lesson L1 consists of

example E1, which has LUs {datatype, printf}). Research

has shown that finer the granularity of ITS student models,

more accurate is the prediction of student performance (Pardos

et al., 2007). In an attempt to design a fine-grained domain

and student model, ERS uses the power of regular expression

2017 IEEE International Conference on Computer and Information Technology

978-1-5386-0958-3/17 $31.00 © 2017 IEEE

DOI 10.1109/CIT.2017.34

168

Figure 1. Worked-out example E1 and its LUs

analysis (Dubé & Feeley, 2000) to extract individual LUs

from its tasks and worked-out examples (Chaturvedi & Ezeife,

2017) and represent them in vector space so that they can be

mined to facilitate ITS functionality such as customization. In

comparison to ERS, existing ITS that attempt to attain a fine-

grained system use extraction methods that are either manual

(Li & Chen, 2009), where experts provide the list of LUs for

each worked-out example in its ITS or use extremely compli-

cated and resource-intensive automated methods (Yudelson &

Brusilovsky, 2005; Mokbel et al., 2013).

Predicting student performance (PSP) in ITS can be very

useful to educators in answering questions such as “Are

students offered the appropriate resources at the right time”

and “What percent of students have difficulty in succeeding

in the subject and what are the reasons?”. The problem of PSP

is also useful to ITS designers in answering questions such as

“What is the likelihood that students will succeed in the given

tasks using the customized resources that are offered by the

ITS?” and “Are the features used for prediction sufficient to

predict student success accurately?”. Our research attempts to

answer the latter 2 questions by designing a predictive model

that uses task-driven and objective features such as average
grade of all LUs that belong to a task and difficulty level of the
task.

A. Outline of the paper

This paper is organized as follows. Section 2 presents

related work and our motivation for this research. Section 3

presents the proposed methodology to predict student success.

This section includes data preparation, processing, list of

proposed features and algorithms to derive or extract them

and the data mining techniques used to build the prediction

model. Section 4 presents the dataset used in the proposed

method, and the results and analysis of the prediction model

built for this study. Section 5 presents conclusions, limitations

and future works.

II. RELATED WORKS

Predicting academic performance of students has been a

challenging problem for intelligent tutoring systems. There

are several ITS that do predict student performacne but they

either lack in the use of state-of-the-art techniques that can

predict student performance accurately or lack in the selection

of appropriate features that should be used to predict student

performance. Minaei-Bidgoli et al., (2003) in their study of an

ITS called LON-CAPA use web-log features to predict student

performance in the final exam as Pass/Fail with a prediction

accuracy of 87%. Features they use include total number of

correct answers that a student has given, student’s success at

the first attempt for each task, total number of attempts made in

each task to get the correct answer and total time spent on each

task until solved. Neither of these features are based on stu-

dent’s knowledge and are not good indicators of the student’s

performance in the final exam. On the contrary, more time

spent by students on tasks may allow them to learn that topic

better, and therefore may lead to a better performance in the

final exam. Another limitation is the absence of student-centric

features such as student’s current performance on the graded

tasks done so far to predict his/her final performance. Thai-

Nghe et al., (2010) use the technique used in recommender

systems for predicting student performance. A recommender

system (RS), in general, is an information filtering method

which links users to items. For example, if there are m users

and n items, a RS will arrange them as an m * n matrix M ,

such that M(i, j) = 1, if user i likes item j; 0 otherwise.

Typically, many entries in M are missing (e.g. when there

is a new user who hasn’t liked any item yet) and the RS

predicts those missing values based on the information of

the other existing users using techniques such as clustering

and collaborative filtering (Markov & Larose, 2007). The

authors in their study map students to users, tasks to items

and then assign a rating to the student-task pairs. A limitation

of mapping the problem of PSP to recommender systems is

that prediction in RS is based on web usage patterns of users,

whereas student models in ITS are more concerned with web

content usage (e.g. student’s knowledge on a given task). Shen

et al., (2010) propose a system very similar to that of Minaei-

Bidgoli et al., (2003) but they use a finer level of granularity to

extract its features specific to each step of a task. Each task is

divided into several steps by experts and student’s knowledge

on each step is predicted. Their system too, like many others,

relies on logged features extracted from student’s interaction

with it, instead of student’s current knowledge on the domain.

McCuaig and Baldwin(2012) predict student success without

using formal assessments such as quiz or exam grades. They

use features such as student’s mean confidence for the overall

semester (by asking students to fill a questionnaire each week),

total number of active days spent using their system and the

average time spent in doing problem sets (students attempt an

ungraded problem set each week) to predict student success

using decision trees. For example, student s1 represented by

<s1, mean confidence = 4, total days active = 40, mean time

spent on problem sets = 5 minutes> is predicted to fail the

course. The low value of prediction accuracy for their method

(70%) can be attributed to the subjective nature of features

such as confidence level (entered by the student) and the lack

of task-oriented features. There is no direct measurement of

student knowledge either, since the problem sets they use

are ungraded. As indicated above, all the existing methods

169

that claim to predict student performance suffer from a major

limitation - improper feature selection. This is due to use

of features that are either subjective to student opinion (e.g.

asking a student for his / her confidence level on the subject)

or rely on interactive features such as ’time to complete a

task’ that do not directly measure student’s knowledge and

tend to give misleading results. For example, time to complete

a task will be recorded as very high in situations where

student starts working on a task but does not logout after

completion (in this scenario, ’time to complete the task’ will

be recorded as high - an (incorrect) indication to the ITS that

the student is struggling with the subject). To mitigate these

limitations, we propose to predict student performance by

extracting or deriving features that are objective, fine-grained,

are well-informed about the tasks students are assigned and

also well-informed about the resources that assist in the task

(such as worked-out examples that assist in completing a

task successfully) and then mine these features using existing

classification algorithms such as decision trees. Examples of

such features include student’s performance on a task’s LUs,

student’s current knowledge on the worked-out examples that

assist in the task, difficulty level of these examples and so

on. This enables us to achieve a higher prediction accuracy

for student success in a task and use the model for decision-

making.

III. PROPOSED METHODOLOGY TO PREDICT STUDENT

SUCCESS

The problem of predicting student performance in this paper

is mapped to the data mining problem of prediction using

features that are task-oriented and student-centric. We state

our hypothesis H1 as:

Hypothesis H1: A student’s performance in online systems

such as ITS can be predicted with a high level of accuracy, if

its domain and student model are represented using a fine level

of granularity such that task-oriented, objective and student-

centric features can be extracted and mined for prediction.

By task-oriented features, we mean features that describe

that task directly (e.g. difficulty level of the task) or indirectly

(e.g. difficulty level of the worked-out examples recommended

for a task). A fine level of granularity enables us to use

objective measures such as marks scored by students on LUs

contained in a task. By student-centric features, we mean those

features that describe the current state of a student’s student

model. Examples of student-centric features are student’s

current overall performance in ERS’s domain and student’s

marks in the worked-out examples suggested by ERS for a

task. The above hypothesis is a sub-hypothesis of a much

broader and pertinent question we answer in our ongoing

research (Chaturvedi & Ezeife, 2017) on the likelihood of

students succeeding in a given task using the worked-out

examples offered to them by ERS. Our assumption is that

students who use ERS, more specifically, those who study the

examples suggested by it have a higher chance of succeeding

in an assigned task (where success is reflected by high grades).

In order to validate H1, we prepare our domain and student

data to suit the data mining techniques we propose to use for

predicting student success. This section describes the task of

data preparation for mining, features used and their extraction

algorithms. Two predictive mining methods are used on the

extracted features : Decision Trees and Naive Bayes methods.

The reason for selecting decision tree analysis for this study

is that decision trees are easy to explain and interpret. They

allow to identify and analyze all possible alternatives for a

decision and to generate rules that could be easily applied to

new unseen data records. Naive Bayes is selected because it is

a simple and an efficient method, and works well with small

datasets (Pang-Ning et al., 2005).

A. Preparing ERS data for prediction

ERS breaks down each worked-out example and task solu-

tion in the domain into basic learning units (LU) they contain

using an algorithm called KERE (Knowledge Extraction using

Regular Expressions) (Chaturvedi & Ezeife, 2017). The main

inputs to KERE are (a) a set of regular expressions RE (de-

fined by ERS domain experts), one for each LU in the domain

of ERS and (2) a worked-out example or task solution wt
represented as a string. KERE compares wt with each regular

expression in RE and generates an output of those LUs whose

regular expressions match wt. For example, figure 1 shows a

worked-out example E1 broken down into individual learning

units, for a small scope in the domain of C programming

(∂) with 8 LUs {L1: variable declaration, L2: assignment

instruction, L3: printf-variables, L4: printf-mixed, L5: printf-

message, L6: scanf, L7: arithmetic expression-simple, L8:

arithmetic expression - compound}. Similarly, KERE breaks

down task T1 shown in figure 2 into 3 learning units it

contains: {L2, L3, L7}. Worked-out examples and tasks in

ERS are designed to share the same structure so that they

can be compared and analysed conveniently. After extracting

the basic LUs of tasks and examples, KERE stores them as

binary vectors of size n, where n is the total number of LUs

in the domain and 1/0 at position i in the vecotr indicates the

presence/absence of learning unit i in the input task solution

or worked-out example wt. For example, task T1 in figure 2

for domain ∂ is stored as a vector [0, 1, 1, 0, 0, 0, 1, 0] and

example E1 in figure 1 is stored as a vector [1, 1, 0, 1, 0, 0,

0, 1]. Students receive scores on each task they are assigned

by ERS. In order to maintain granularity, student model of

each student stores their individual scores in each LU of ERS.

ERS captures the student and domain data through a website

(Chaturvedi et al., 2015) created using Python and its high-

level web framework called Django (Alchin, 2013).

B. Features and their Extraction algorithms

Raw data, usually, is not in a form suitable for prediction

algorithms but features from it can be constructed that allow

these algorithms to learn (Domingos, 2012). Nine features are

carefully chosen for each student Sid and each task T id in

ERS, in order to meet the objectives of the proposed mining

model for PSP. We discard the student Ids since they are not

170

Figure 2. A task solution in ERS designed to have the same structure as its
examples

Figure 3. Partial dataset prepared for PSP - 8 rows shown correspond to
marks scored by 8 students in task T14

required for prediction. Figure 3 shows the first 8 rows of the

dataset prepared for PSP. Features include {feature f1: Sid’s
current overall performance (COP), features f2 and f3: grades

in the worked-out examples suggested by ERS (GSE1 and

GSE2) (we use the top 2 suggested examples in the current

research), features f4 and f5: whether student has visited the

suggested examples (VE1 and VE2), features f6 and f7: time

spent on the suggested examples (DurationSE1 and Dura-

tionSE2), features f8 and f9: difficulty level of the suggested

examples (Difficulty_LevelSE1 and Difficulty_LevelSE2).

Features and algorithms used to derive them are listed next.

1) Feature f1: COP (Current Overall Performance) : Stu-

dent model of each student in ERS stores the marks they

achieve in each learning unit (LU) in ERS’s domain.

COP is derived by finding the average performance of

a student in all the LUs learnt so far.

2) Feature f2 : GSE1 (Grade in the Suggested Example 1):

Algorithm 1 (called GSE) explains the steps required

to derive this feature. ERS students are graded on

assigned tasks and these grades are distributed among

the tasks’s LUs. Features 2 and 3 compute the grades

students score in worked-out examples using the grades

of their LUs. GSE takes as input (1) the current task

T id’s represented as a binary vector of n LUs, (2) each

worked-out example, also represented as a binary vector

of n LUs (GSE stores these vectors as a binary matrix

of size m * n, were m is the total number of worked-

out examples) and (3) student Sid’s current scores in

each LU. Step 1 of GSE searches for those worked-

out examples that are closest to task T id (called as

Listrelevant) using a well-known data mining algorithm

called k-nearest neighbors (Pang-Ning et al., 2005). K-

nearest-neighbor (k-nn) algorithm finds the k nearest

neighbors of a test sample t in a given set S. The core

of k-nn algorithm is the similarity function that it uses

to compare t with each data sample in S. Then, it sorts
these similarity values and picks the top k samples –

these are the k nearest neighbors of test sample t. The
choice of an appropriate similarity function is driven

by the nature of the attributes of the sample dataset.

ERS domain and student model data is chosen to be

asymmetric and binary (Chaturvedi & Ezeife, 2014,

2017). An asymmetric binary attribute regards only the

presence of 1 as significant. In ERS, it is the presence

of a LU in a worked-out example that is significant

and therefore the binary values representing LUs in

each worked-out example or task solution in ERS are

chosen to be asymmetric. We demonstrate this with the

following example. Let E1 = [1, 0, 1, 0, 0, 0, 0] and

E2 = [0, 1, 1, 0, 0, 0, 0], where E1 and E2 are worked-

out examples. If both values 1 and 0 are given equal

importance, then E1 and E2 will be considered as similar

since 5 out of their7 LUs match. But this is misleading.

E1 and E2 are dissimilar (and rightly so) if zeros are

ignored when matching them (only 2 out of 7 LUs

match). With this rationale, all worked-out examples

and task solutions in ERS are represented as vectors of

binary and asymmetric values. The similarity function

that GSE chooses to use for ERS is Jaccard’s coefficient

of similarity (JC), since it ignores the matching zeros in

its formula and therefore caters best to asymmetric and

binary data (such as ERS’s) (Pang-Ning et al., 2005).

JC between two binary vectors x and y is measured as

JC(x, y) =
f11

f11 + f01+f01
(1)

where f11 is the frequency of occcurence of 1 and 1 in

the corresponding bits of x and y, f01 is the frequency

of occcurence of 0 and 1 in the corresponding bits of

x and y and f10 is the frequency of occcurence of

1 and 0 in the corresponding bits of x and y. Terms

f01 and f10 in equation 1 represent the non-matching

attribute pairs. For example, JC(E1, E2) = 1 / 3. Step

2 of GSE fetches the LUs of each of the k worked-out

examples in Listrelevant and stores them in E1_LU. For

example, if Listrelevant for a given task TP1 is [EP2,

EP4], then E1_LU = [LU1, LU2, LU5], assuming that

EP2 consists of these 3 LUs. Step 3 computes the sum

of grades student Sid scores in worked-out example 1

stored in Listrelevant. For example, GSE1 for student

Sid = grade[LU1] + grade[LU2 + grade[LU5].

3) Feature f3: GSE 2 (Grade in the Suggested Example 2)

is extracted using the same algorithm GSE and steps

used for feature 2. Using the same Listrelevant in step

2, E2_LU = [LU3, LU5] and GSE2 in step 3 computed

for student Sid = grade[LU3] + grade[LU5].

4) Feature f4: VE1 (Visited Example 1) is extracted from

the weblogs generated by student interaction with ERS

for worked-out example1 in Listrelevant. It indicates

171

Algorithm 1 GSE (Grade in the Suggested Example)

Input: 1. task T id as a binary vector of size n, 1/0 indicating

presence/absence of LU (where n = number of LUs in the

ITS)

2.LU−EX: binary matrix of size m examples * n LUs

3. gradesSid : vector of size n that holds student Sid’s current
scores in each LU

Output: grade in suggested examples 1 and 2: GSE1 and

GSE2
Other variables: Listrelevant: list of k examples most relevant

to T id
Method:

***begin of GSE

1. Find worked-out examples that are closest to task T id and

store in Listrelevant.
1.1. Compute similarity between task T id and each example

i in LU−EX using Jaccard’s coefficient JC (equation 1).

1.2. Sort JC values computed in step 1.1 in ascending order

and store the corresponding examples of top k (=2) of them

in Listrelevant(lets call them E1 and E2)

2. Find E1’s LUs

E1−LU = LU−EX[E1]
3. Find Sid ’s grade in example E1, n = number of LUs

GSE1 =

n∑

i=1

gradeSid[E1−LU [i]], ∀E1−LU [i] = 1

4. Repeat step 3 for example E2 to find GSE2
***end of GSE

whether a student has visited the suggested example or

not.

5) Feature f5: VE1 (Visited Example 2): same as feature

f4 but for example 2 in Listrelevant.
6) Feature f6 : DurationSE1 is derived by finding the

sum of the time spent (in seconds) on the worked-out

example E1 in Listrelevant.
7) Feature f7 : DurationSE2 is derived in the same way as

feature 6 for worked-out example E2 in Listrelevant.
8) Feature f8: Difficulty_LevelSE1 (Difficulty level of sug-

gested example 1): example1 in Listrelevant is assigned

a difficulty level (E (easy) or D (difficult)) using al-

gorithm findDL (this algorithm was proposed in an

ongoing research (Chaturvedi & Ezeife, 2017)).

9) Feature f9: Difficulty_LevelSE2 (Difficulty level of sug-

gested example 2): example1 in Listrelevant is assigned

a difficulty level (E (easy) or D (difficult)) (same as

feature f8).

10) Target attribute SUCCESS_IN_TASK_YN:

SUCCESS_IN_TASK_YN is assigned a yes, if

a students succeeds in the assigned task and no

otherwise. It is assumed that a student succeeds in a

given task if he/she has achieved a grade of 75 or

higher in it.

C. Data Mining model and techniques used for predicting
student performance

Given a set of data samples, each represented as a tuple (x,y)

where x = (x1, x2, ..xn), (each xi is a feature or attribute

in x), prediction is the task of mapping the attribute set x

into attribute y, where y is termed as its class label (or target

attribute). A predictive data model divides its data into 2

subsets: training and test. Training dataset is used to learn

the model, whereas test dataset is used to test the model.

First the model is built by applying a mining algorithm (such

as decision trees) on the training dataset. Then, this model

is applied to the test dataset and their actual class labels

are compared to the predicted ones to evaluate the model’s

performance. Thereafter, this model can be used to classify

unseen records.

The mining algorithm chosen in this study to build ERS’s

prediction model is decision tree analysis (although we exper-

imented with other prediction algorithms). The reason why

decision tree analysis is selected for this study is that it

allows us to identify and analyze all possible alternatives for a

decision and to generate rules that could be easily applied to

new unseen data records. They are easy to explain and interpret

as well.

IV. RESULTS AND ANALYSIS

In this section, we first describe the dataset used by ERS

for predicting success (section IV-A). Results of predicting

student performance using mining techniques are presented in

section III-C.

A. Dataset used for prediction

The dataset for this study consists of the following from the

domain of C programming: 13 graded tasks, 200 worked-out

examples and 26 learning units (LUs). It also consists of a

small set of 10 students who were registered in Fall 2015 at

the University of Windsor and who consented to participating

in this study. This generates a dataset (D) with 130 records

(one for each student per task); each record has the 10 features

(including the target attribute success) as described in section

III-B.

In order to justify our selection of features further, we

compute the correlation between them using Pearson corre-

lation coefficient. Pearson correlation coefficient (ρ) between

2 features xi and yi is a measure that quantifies the strength

and direction (positive or negative) of the relationship between

them, provided x and y share a linear relationship (Pang-

Ning et al., 2005) and is defined by equation 2. In this

equation, x̄ is the mean of all values of x and ȳ is the

mean of all values of y. For example, (example adapted from

Pang-Ning et al. (2005)), if x = (1, 1, 0, 1, 0, 1) and y

= (1, 1, 1, 0, 0, 1), then x̄ = 4/6 = 0.667; ȳ = 4/6=
0.667;

∑
i(xi − x̄)(yi − ȳ) = 0.333;

∑
i(xi − x̄)2 = 1.333;∑

i(xi − x̄)2 = 1.333; ρ = 0.333/
√
(1.333∗√1.333 = 0.25.

A value of ρ = 0.25 indicates that the correlation between x

and y in this example is a weak relation. In general, ρ is a

value between -1 and +1. Closer the value to 0, weaker is the

172

relationship. A 1 / -1 indicates a perfect positive / negative

relationship. Experiments indicate that the value of ρ for the

feature set used in this study is always higher than +0.62,

implying a moderately strong positive correlation between

them. For example, ρ(durationSE1, COP) = 0.70 indicates

that there is a positive correlation between these 2 features

and that there is a tendancy for feature COP to go high

when durationSE1 goes high. Similarly, ρ(GSE1, COP) =
0.62;ρ(durationSE2, COP) = 0.71; ρ(GSE2, COP) =
0.69.

ρ =

∑
i(xi − x̄)(yi − ȳ)√∑

i(xi − x̄)2
√∑

i(yi − ȳ)2
(2)

There are two concerns with dataset D - first, D obviously

is a small dataset; second, the class label attribute (success)

is imbalanced because it contains more of class label SUC-

CESS_IN_TASK_YN = ’yes’ (113 instances) as compared

to SUCCESS_IN_TASK_YN = ’no’ (17 instances). Although

this is a good indication for a tutoring system (more students

succeeding in tasks), it creates an undesirable bias for clas-

sification algorithms used to predict student performance. In

order to overcome these two concerns (small and imbalanced

dataset), this study uses an existing over-sampling algorithm

called SMOTE (Chawla et al., 2002) proposed by Chawla et

al. SMOTE, (Synthetic Minority Oversampling Technique) is

an over-sampling technique used to overcome the issues of

imbalanced datasets by adding volume to the minority class

label, so that the instances of majority and minority class

labels are equally distributed (Chawla et al., 2002). Although

the objective of SMOTE is to balance existing class labels,

it does so by adding more samples or records and therefore

allow us to generate simulated data using the original dataset.

SMOTE adds samples by taking 5 nearest neighbors (NN) of a

minority class sample X. It finds the difference between feature

vector of X and feature vectors of the NN of X, multiplies

this difference by a random number between 0 and 1 and then

adds the resulting value to the original value of X. Equation 3

represents this idea where X is the original instance/sample;

Xnew is the newly generated sample, XNNi
is one of the 5

NN of sample X; δ represents a random number between 0

and 1. For example, if feature vector of X = (6, 4) and one of

its 5 NN is XNNi= (4, 3), then one of new samples generated

is Xnew = (6, 4) + (2, 1) ∗ 0.5 = (6, 4) + (1, 0.5) = (7, 4.5).

Xnew = X + (XNNi −X) ∗ δ (3)

This study uses a data mining tool called Weka (Hall et al.,

2009), to implement SMOTE on its original dataset D. The

original dataset D has 113 (out of 130 samples) that have

a target attribute SUCCESS_IN_TASK_YN with a value of

’yes’, whereas only 17 (out of 113) have a value of ’no’.

The result of applying SMOTE to D not only met the main

objective of balancing D towards the target attribute, it also

increased the volume of D considerably. The new dataset,

after applying SMOTE to D, had a total of 520 samples, 264

Figure 4. Performance measures for classification algorithms used to predict
student performance

instances of them had a value of ’yes’ for its target attribute

and 256 instances (out of the 520) had a value of ’no’. We

call this set as DS.

B. Results of predicting student performance

We perform experiments for predicting student performance

using decision trees, using both, the original dataset (D) of

130 instances and the original+simulated (DS) dataset of 520

instances. Tables 1 and 2 show the performance of decision

tree analysis on datasets D and DS in terms of the confusion

matrix and measures such as accuracy, precision, recall and

f_score. A confusion matrix is a table that allows visualization

of the performance of a classification algorithm. It gives a

count of data records or instances that are correctly and

incorrectly predicted by the algorithm. In general, for a 2-

class problem (such as the one used in this study), labels

are termed as positive / negative; the original class labels are

referred to as actual and those determined by the classification

algorithm are termed as predicted. The classification algorithm

then, assigns to each instance one of the following : True

Positive (TP: actually positive - predicted as positive), True

Negative (TN: actually negative - predicted as negative),

False Positive (FP: actually negative - predicted incorrectly

as positive) and False Negative (FN: actually positive - but

predicted incorrectly as negative). The number of FP (false

positives) is of concern here as it gives misleading information

to students and teachers. FP in this study measures the number

of students whose success is wrongly predicted to be yes

(where actually they do not succeed). Performance measures

used for evaluating the classifiers for decision tree and naive

bayes are accuracy, recall and f_measure and are shown in

figure 4.

The total number of FP (false positives) and FN (false

negatives) in a confusion matrix indicate erroneous results. For

example, FP in table I measures the total number of students

whose success is wrongly predicted by PSP to be yes (although

in reality, those students do not succeed). Similarly, FN mea-

sures the total number of students who actually succeed but

the model incorrectly predicts them as failures. With decision

trees, the number of FP in the original dataset D is found

to be 6 out 130 instances (4.6%) , whereas it is less than

1% (4 / 520) on the simulated dataset DS. PSP’s decision

173

Predicted
= Yes

Predicted
= no

Actual
= Yes

112 1

Actual
= No

6 11

(a) Confusion matrix for D

Predicted
= Yes

Predicted
= no

Actual
= Yes

245 19

Actual
= No

4 252

(b) Confusion matrix for DS
Table I

CONFUSION MATRIX GENERATED BY DECISION TREE MODEL WITH

ORIGINAL DATASET D (130 INSTANCES) AND (ORIGINAL+SIMULATED =
520 INSTANCES) DATASET DS

tree model, when applied to the simulated and larger dataset

DS achieves much higher values of accuracy and f_score, as

compared to the original dataset, as shown in table II. Both

accuracy and f_score are as high as 96% when class labels are

predicted using the simulated dataset DS with 520 instances as

compared to 91% and 89% for dataset D with 130 instances.

Evidently, the reason for misclassification in D for the minority

class (SUCCESS_IN_TASK = no) is imbalance in distribution

of the two class labels (SUCCESS_IN_TASK = yes and

SUCCESS_IN_TASK = no) and too few training instances of

the minority class for the model to learn accurately. Such high

values of performance measures such as accuracy and f_score

validate our hypothesis H1 that a prediction model can be

built with a high f_score and accuracy by selecting features

that have proper knowledge on the assigned tasks and those

that measure student knowledge objectively. Figure 5 shows a

decision tree generated from DS. As an example, one of the

rules generated by this tree is:

if the average current grade of a student is > 86%

success = yes

else if the average current grade of a student is > 81%

if average grade in LUs of example SE2 > 49%

success = yes

else if time spent of SE2 < 0.009 (9 minutes)

if average grade in LUs of example SE1 > 68%

success = yes

else success = no

These rules indicate that if a student s has not performed

well in the learning units of suggested examples and has not

spent enough time on them, then s is less likely to succeed

in the task. Even if student s′s current performance is average

or above average, the rules indicate that the student still

has to achieve a certain level of grades in the LUs of the

suggested worked-out examples, which yet again asserts the

importance of students using and understanding of the worked-

out examples suggested for each task by ERS.

V. CONCLUSIONS AND FUTURE WORK

The main objective of building the PSP model is to ac-

curately predict student success for assigned tasks in a fine-

grained ITS system by proposing features that are focused on

the task’s resources such as similar worked-out examples sug-

gested by the ITS and student’s knowledge on these resources.

Dataset D (size=130) Dataset DS (size=520)

Accuracy 91 % 96 %
Recall 90 % 96 %

Precision 91 % 96 %
F_Score 89 % 96 %

Table II
PERFORMANCE MEASURES: DECISION TREE USING DATASETS D AND DS

Our proposed method is able to extract meaningful task-based

features and implement them to predict student performance

using decision trees with accuracy and f_score values as

high as 96%. Existing ITS that predict student performance

surveyed in section II have much lower values of accuracy,

which can be attributed to their improper selection of student

and domain model features. This validates our hypothesis

that student performance is predicted with a high value of

accuracy if features used for prediction are well-informed

about the assigned tasks and are measured objectively. The

rules generated by decision trees allow us to analyze and take

informed decisions on ERS’s future students.

REFERENCES

Alchin, M. (2013). Django is python. In Pro Django (pp.

11–40). Springer.

Chaturvedi, R., Donais, J., & Ezeife, C. I. (2015). Ers at

https://ritu106.cs.uwindsor.ca/.

Chaturvedi, R. & Ezeife, C. (2014). Mining relevant examples

for learning in its student models. In 2014 IEEE Interna-
tional Conference on Computer and Information Technology
(pp. 743–750).

Chaturvedi, R. & Ezeife, C. I. (2017). Task-based example

mining for learning in an its. Submitted to Knowledge and

Information Systems.

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer,

W. P. (2002). Smote: synthetic minority over-sampling

technique. Journal of artificial intelligence research, (pp.

321–357).

Domingos, P. (2012). A few useful things to know about

machine learning. Communications of the ACM, 55(10),

78–87.

Dubé, D. & Feeley, M. (2000). Efficiently building a parse

tree from a regular expression. Acta Informatica, 37(2),

121–144.

Gog, T. & Rummer, N. (2010). Example-based learning: Inte-

grating cognitive and social-cognitive research perspectives.

In Edu. Psych. Rev., 22 (pp. 155–174).

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann,

P., & Witten, I. H. (2009). The weka data mining software:

an update. ACM SIGKDD explorations newsletter, 11(1),

10–18.

Li, L. & Chen, G. (2009). A coursework support system for

offering challenges and assistance by analyzing students

web portfolios. Educational Technology & Society, 12,2,

205–221.

Markov, Z. & Larose, D. (2007). Data mining the web -

174

Figure 5. Decision tree generated by Weka’s J48 for student dataset with 520 instances

Uncovering Patterns in Web Content, Structure and Usage.
John Wiley.

McCuaig, J. & Baldwin, J. (2012). : (pp. 160–163).: ERIC.

Minaei-Bidgoli, B., Kashy, D. A., Kortemeyer, G., & Punch,

W. (2003). Predicting student performance: an application

of data mining methods with an educational web-based

system. In Frontiers in education, 2003. FIE 2003 33rd
annual, volume 1 (pp. T2A–13).: IEEE.

Mokbel, B., Gross, S., Paassen, B., Pinkwart, N., & Hammer,

B. (2013). Domain-independent proximity measures in

its. In Sixth ACM International Conference on Educational
Data Mining-EDM 2013, July 6 to 9, 2013, Tennessee,USA
(pp. 334–335).

Pang-Ning, T., Steinbach, M., & Kumar, V. (2005). Introduc-
tion to Data Mining. Addison-Wesley.

Pardos, Z. A., Heffernan, N. T., Anderson, B., & Heffernan,

C. L. (2007). The effect of model granularity on student

performance prediction using bayesian networks. In User

Modeling 2007 (pp. 435–439). Springer.

Renkl, A. (2014). Toward an instructionally oriented theory

of example-based learning. Cognitive Science, 38(1), 1–37.
Shen, Y., Chen, Q., Fang, M., Yang, Q., Wu, T., Zheng, L., &

Cai, Z. (2010). Predicting student performance: A solution

for the kdd cup 2010 challenge. In Proceedings of the KDD
Cup 2010 Workshop held as part of the 16th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining.

Thai-Nghe, N., Drumond, L., Krohn-Grimberghe, A., &

Schmidt-Thieme, L. (2010). Recommender system for pre-

dicting student performance. Procedia Computer Science,
1(2), 2811–2819.

Yudelson, M. & Brusilovsky, P. (2005). Navex: Providing

navigation support for adaptive browsing of annotated code

examples. In In Proceedings of 12th International Con-
ference on Artificial Intelligence in Education, AIED. (pp.

18–22).

175

