
• Ramez Elmasri , Shamkant B. Navathe(2016) Fundamentals of Database Systems

(7th Edition), Pearson, isbn 10: 0-13-397077-9; isbn-13:978-0-13-397077-7.

Chapter 17:
Indexing Structures for Files and
Physical Database Design

1Comp-3150 Dr. C. I. Ezeife (2023) with Figures and some
materials from Elmasri & Navathe, 7th

Comp-3150: Database Management Systems

Chapter 17: Indexing Structures for Files and
Physical Database Design:
Outline

• Indexing Structures for Files and Physical Database design

• 1. Types of Single Level Ordered Indexes

• 2. Multilevel Indexes

• 3. Dynamic Multilevel Indexes Using B-Trees and B+-Trees

Comp-3150 Dr. C. I. Ezeife (2023) with Figures and some
materials from Elmasri & Navathe, 7th

2

Indexing Structures for Files and Physical Database Design

• This chapter assumes that a file already exists with some primary
organization such as unordered, ordered or indexed.

• We focus on additional auxillary access structures called:
• indexes used to speed up retrieval of records when answering queries. (See

Fig. 17.1)

• Index structures are:
• additional files on disk which provide secondary alternative access paths to

primary data file on disk.

• They allow efficient access to records based on the indexing fields used to
construct the index.

• Any field or set of fields of the file can be used to construct an index.

• A file can have multiple indexes on different fields.

Comp-3150 Dr. C. I. Ezeife (2023) with Figures and some
materials from Elmasri & Navathe, 7th Ed

Ch 17: Slide3

Figure 17.1 Primary index on the ordering key field of the file
shown in Figure 16.7.

Comp-3150 Dr. C. I. Ezeife (2023) with Figures and some
materials from Elmasri & Navathe, 7th Ed

Ch 17: Slide4

Indexing Structures for Files and Physical Database Design

• These indexes use different data structures to speed up the search.

• To find a record that meets a condition on an index field,
• the index is searched.

• This leads to pointers to one or more disk blocks in the data file where the
required records are located.

• The most common types of indexes are:
• based on ordered files, and

• use of tree data structures to organize the index.

• Indexes can also be based on hashing or other search data structures.

Comp-3150 Dr. C. I. Ezeife (2023) with Figures and some
materials from Elmasri & Navathe, 7th Ed

Ch 17: Slide5

Indexing Structures for Files and Physical Database Design

• Multi level tree structured indexes include:
• indexed sequential access method (ISAM) which is a static structure,

• B-trees and B+-trees which are data structures commonly used in DBMS to
implement dynamically changing multi level indexes.

• B+ tree is the default structure for generating indexes on demand in
most relational DBMSs.

Comp-3150 Dr. C. I. Ezeife (2023) with Figures and some
materials from Elmasri & Navathe, 7th Ed

Ch 17: Slide6

1. Types of single level ordered indexes

• For a file with a given record structure consisting of several fields,
• an index access structure is usually defined on a single field called indexing

field.

• The index normally stores,
• each value of the index field along with a list of pointers to all disk blocks that

contain records with that field value.

• The values in the index are ordered,
• so we can do a binary search on the index.

• If both the data file and the index file are ordered,
• since the index file is usually much smaller than the data file searching the

index using a binary search provides much faster data retrieval results.

Comp-3150 Dr. C. I. Ezeife (2023) with Figures and some
materials from Elmasri & Navathe, 7th Ed

Ch 17: Slide7

1. Types of single level ordered indexes

• Thus, tree structured multilevel indexes:
• extend the binary search idea and reduce the search space from two way

partitioning at each search step to a n_ary partitioning.

• A primary index is specified on the ordering key field of the ordered file.

• A clustering index (e.g., Fig. 17.2) can be specified on a non-key clustering
field if this field points to numerous records in the file that have the same
value.
• Example, with gpa field as clustered index, you can have an index value that points

to physical record leading to all students with gpa >= 80

• An index file search uses the values of the search field to find a pointer to
the data block containing desired record. However, an extendible hashing
directory structure uses a hash value that is computed with a hash function
that is based on the index key field (eg. Key mod 1000) to locate the block
address.

Comp-3150 Dr. C. I. Ezeife (2023) with Figures and some
materials from Elmasri & Navathe, 7th Ed

Ch 17: Slide8

Figure 17.2 A clustering index on the Dept_number ordering
nonkey field of an EMPLOYEE file.

Comp-3150 Dr. C. I. Ezeife (2023) with Figures and some
materials from Elmasri & Navathe, 7th Ed

Ch 17: Slide9

Index Entry

• There is one index entry in the index file for each block in the data
file.

• Each index entry has:
• the value of the primary key field for the first record in a block, and,

• a pointer to that block in the index’s two field values.

• The two field values of index entry ‘i’ are:
• <K(i),P(i)> where K(i) is the key value for entry i and P(i) is the pointer to disk

block for record i.

Comp-3150 Dr. C. I. Ezeife (2023) with Figures and some
materials from Elmasri & Navathe, 7th Ed

Ch 17: Slide10

2. Multilevel index

• For ordered indexes a binary search is applied to the index :
• to locate pointers to a disk block in the file.

• A binary search requires about log2bi visits for an index file with bi
blocks.

• With multilevel index (i) with blocking factor for the index (bfri),
• that is larger than 2, the part of the index file searched at each step will be

further reduced by bfri called fan out of the multi level index.

• The record search space is divided into two halves at each step during
a binary search but divided n-ways where n= the fan out (fo) at each
step with multi level index.

• Searching a multi level index requires about logfobi block access which
is smaller than for binary search.

Comp-3150 Dr. C. I. Ezeife (2023) with Figures and some
materials from Elmasri & Navathe, 7th Ed

Ch 17: Slide11

• Figure 17.6 A two-level primary index resembling ISAM (indexed sequential access method) organization.

Comp-3150 Dr. C. I. Ezeife (2023) with Figures and some
materials from Elmasri & Navathe, 7th Ed

Ch 17: Slide12

3. Dynamic Multilevel indexes using B-trees and B+-trees

• 3.1 Search Trees and B-trees
• A search tree is a tree used to guide the search for a record given the value

of one of the record’s fields.
• The multilevel index is a variation of a search tree:

• where each node in the multilevel index has as many as fo(fan out) pointers and fo
key values (eg, Fig. 17.6). In Fig 17.6, the fo is 4 for 4 pointers.

• The index field values in each node guide us to the next node until we reach the data
file block that contains the required records. Eg. Get the record with id 29.

• By following a pointer we restrict our search at each level to a subtree of the search
tree. For example to answer the query of record with id 29, we need to bring in only
3 blocks rather than 13 blocks in order to find it.

• A search tree and B-tree (e.g., Fig 17.9 and 17.10) is slightly different from
a multilevel index in that a search tree of order p is a tree such that each
node contains at most p-1 search values and p pointers in the order <P1,K1,
P2,K2, …., Pq-1,Kq-1 Pq> where q<=p.

Comp-3150 Dr. C. I. Ezeife (2023) with Figures and some
materials from Elmasri & Navathe, 7th Ed

Ch 17: Slide13

3. Dynamic Multilevel indexes using B-trees and B+-trees

• Each Pi is a pointer to a child node and each Ki is a search value from
some ordered set of values.

• All search values are assumed unique and the following constraints
should hold at all times in a search tree.
• (1) Within each node K1 < K2<…. Kq-1

• (2) For all values X in subtree pointed at by Pi, we have Ki -1< X < Ki for 1<i<q.
(see Fig. 17.8)

• Figure 17.8 A node in a search tree with pointers to subtrees below it.

Comp-3150 Dr. C. I. Ezeife (2023) with Figures and some
materials from Elmasri & Navathe, 7th Ed

Ch 17: Slide14

3. Dynamic Multilevel indexes using B-trees and B+-trees

• To search for a value X, we follow the appropriate pointer Pi according
to formula condition 2.

• Each key value in the tree is associated with a pointer to the record in
the data file having that value.

• When a new record is inserted in the file,
• we must update the search tree by inserting an entry in the tree containing

the search field value of the new record and a pointer to the new record.

• A balanced tree (B-tree) has its leaf nodes at the same depth level
and guarantees more evenly distributed nodes and search speed.

• B-tree has additional constraint to ensure that the tree is always
balanced.

Comp-3150 Dr. C. I. Ezeife (2023) with Figures and some
materials from Elmasri & Navathe, 7th Ed

Ch 17: Slide15

3. B-trees

• A B-tree of order p can be defined as having the following properties:
• (1) Each internal node in B-tree (fig 17.10 a) is of the form

<P1,<K1,Pr1>, P2, <K2,Pr2>,….…., Pq-1,<Kq-1,Prq-1>,Pq> where q<=p.
• Each Pi is a tree pointer (a pointer to another node in the B-tree), each Pri is a

data record pointer (a pointer to the record whose search key field value is equal
to Ki).

• (2) Within each node K1<K2<…Kq-1
• (3) For all search key field value X in the subtree pointed at by Pi, we have

Ki-1<X<…Ki for 1<i<q
• (4) Each node has at most p tree pointers
• (5) Each node except the root and the leaf nodes has at least ceiling(p/2) tree

pointers. The root has at least two tree pointers unless it is the only node in
the tree.

• (6) A node with q tree pointers q<=p, has q-1 search key field values (and
hence has q-1 data pointers).

• (7) All leaf nodes are at the same level leaf nodes have the same structure as
internal nodes except that all of their tree pointers Pi are NULL.

Comp-3150 Dr. C. I. Ezeife (2023) with Figures and some
materials from Elmasri & Navathe, 7th Ed

Ch 17: Slide16

3. B-trees

Comp-3150 Dr. C. I. Ezeife (2023) with Figures and some
materials from Elmasri & Navathe, 7th Ed

Ch 17: Slide17

Figure 17.10 B-tree structures. (a) A node in a B-tree with q − 1 search values. (b) A
B-tree of order p = 3. The values were inserted in the order 8, 5, 1, 7, 3, 12, 9, 6.

3. B-trees – Insertion and Deletion of values

• Fig 17.10(b) shows a B-tree of order p=3 (maximum number of pointers)
and 2 (or P-1) key values at each node.

• Algorithms exist for loading , B-tree records, inserting and deleting records
and retrieving records through B-tree. They all focus on meeting the
requirements of the B-tree structure as defined in conditions 1 to 7 above.

• For example, insert the records with key values 8,5,1,7,3,12,9,6 in a B-tree
of order 3
• 1. Start building the tree from the root node at level 0.
• 2. Once the root node is full with p-1 search key values, the root node splits into two

nodes at level 1.
• 3. Only the middle value is kept in the root node and the rest of the values are split

evenly between the other two nodes.
• 4. When a non root node is full and a new entry is inserted into it, that node is split

into two nodes at the same level and the middle entry is moved to the parent node
along with two pointers to the new split nodes.

• 5. If the parent node is full, it is also split. Splitting can propagate all the way to the
root node creating a new level if the root is split.

Comp-3150 Dr. C. I. Ezeife (2023) with Figures and some
materials from Elmasri & Navathe, 7th Ed

Ch 17: Slide18

3. B-trees – Insertion and Deletion of values

• If deletion of a value causes a node to be less than half full,
• it is combined with its neighboring nodes, and this can propagate all the way

to the root.

• Each B-Tree node can have at most p tree pointers, p-1 data pointers
and p-1 search key values (see Fig 17.10), Fig 17.12 and Fig. 17.13.

Comp-3150 Dr. C. I. Ezeife (2023) with Figures and some
materials from Elmasri & Navathe, 7th Ed

Ch 17: Slide19

Figure 17.12 An example of insertion in a B+-tree with p = 3
and pleaf = 2.

Comp-3150 Dr. C. I. Ezeife (2023) with Figures and some
materials from Elmasri & Navathe, 7th Ed

Ch 17: Slide20

Figure 17.13 An example of deletion from a B+-tree

Comp-3150 Dr. C. I. Ezeife (2023) with Figures and some
materials from Elmasri & Navathe, 7th Ed

Ch 17: Slide21

3. B+-tree

• B+-tree is a variation of the B tree

• In a B-tree, every value of the search field appears once at some level
in the tree along with a data pointer.

• In a B+-tree, data pointers are stored only at the leaf nodes of the
tree.

• Thus, the structure of the leaf nodes differ from those of the internal
nodes.

• The leaf nodes have an entry for every value of the search field along
with a data pointer to the record or onto block.

• The leaf nodes of the B+-tree are usually linked to provide ordered
access on the search field to the records.

Comp-3150 Dr. C. I. Ezeife (2023) with Figures and some
materials from Elmasri & Navathe, 7th Ed

Ch 17: Slide22

3. B+ tree

• The structure of the internal node of the B+-tree is:
• (1) Each internal node is of the form <P1, K1, P2, K2,…., Pq-1, Kq-1, Pq> where

q<=p and each Pi is a tree pointer (see Fig 17.11).

• (2) Within each internal node, K1<K2<…<Kq-1

• (3) For all search field values X in the subtree pointed at by Pi, we have
Ki-1<X<=Ki for 1<i<q

• (4) Each internal node has at most p tree pointers

• (5) Each internal node except the root has at least ceiling(p/2) tree pointers.
The root node has at least two tree pointers if it is an internal node.

• (6) An internal node with q pointers q<=p has q-1 search field values.

Comp-3150 Dr. C. I. Ezeife (2023) with Figures and some
materials from Elmasri & Navathe, 7th Ed

Ch 17: Slide23

The structure of the leaf nodes of a B+-tree of order p is:
• 1. Each leaf node is of the form <<K1,Pr1>,<K2,Pr2>,….….,<Kq-1,Prq-1>,Pnext>

where q<=p, each Pri is a data pointer and Pnext points to the next leaf node
of the B+-tree.

• 2. Within each leaf node, K1<= K2<=Kq-1 for q<=p
• 3. Each Pri is a data pointer that points to the record whose search field value

is Ki to a file block containing the record (or block of records)
• 4. Each leaf node has at least ceiling(p/2) values
• 5. All leaf nodes are at the same level

• The pointers in internal nodes are tree pointers while those in leaf
nodes are data pointers to data file records.

• Check Fig 17.12 for examples on insertions and Fig 17.13 on deletions
from a B+-tree.

Comp-3150 Dr. C. I. Ezeife (2023) with Figures and some
materials from Elmasri & Navathe, 7th Ed

Ch 17: Slide24

