Comp-3150: Database Management Systems

- Ramez Elmasri, Shamkant B. Navathe(2016) Fundamentals of Database Systems (7th Edition), Pearson, isbn 10: 0-13-397077-9; isbn-13:978-0-13-397077-7.

Chapter 8:

The Relational Algebra and
The Relational Calculus

Chapter 8: The Relational Algebra and The Relational Calculus: Outline

- 1. Relational Algebra
1.1 Unary Relational Operations
- (SELECT (symbol: σ (sigma))
- PROJECT (symbol: π (pi))
- RENAME (symbol: ρ (rho))
- 1.2 Binary Relational Operations
- JOIN (several variations of JOIN exist)($\bowtie_{\text {kjoincondition> }}$)
- DIVISION (\div)
- 1.3 Relational Algebra Operations From Set Theory
- UNION (\cup), INTERSECTION (\cap), DIFFERENCE (or MINUS, -)
- CARTESIAN PRODUCT (x)
- 1.4 Additional Relational Operations (not fully discussed)
- 1.5 Examples of Queries in Relational Algebra
- 2. Relational Calculus
- 2.1 Tuple Relational Calculus

1. Relational Algebra

- The formal languages for the relational model are:
- the relational algebra and relational calculus.
- A data model must have a set of operations for manipulating its data structure and constraints.
- The basic set of operations for the relational model is:
- the relational algebra which expresses the data retrieval requests as relational algebra expressions.
- A sequence of relational algebra operations is a relational algebra expression,
- which produces a relation result that is result of a database query.

1. Relational Algebra

- Thus relational algebra provides:
- (1) a formal foundation for relational model operations.
- (2) It is used for query processing and optimization.
- (3) Some of its concepts are implemented in the RDBMSs.
- The relational calculus provides a declarative (rather than procedural) language for specifying relational queries
- as it tells what the query result should be and not how or sequence of steps for retrieving it.
- The relational algebra has two groups of operations

1. Relational Algebra

- 1.1. Unary Relational Operations
- SELECT (symbol: σ (sigma))
- PROJECT (symbol: π (pi))
- RENAME (symbol: ρ (rho))
- 1.2. Binary Relational Operations
- JOIN (several variations of JOIN exist) ($\AA_{\text {kjoincondition>) }}$
- DIVISION (\div)
- 1.3. Relational Algebra Operations From Set Theory
- UNION (\cup), INTERSECTION (\cap), DIFFERENCE (or MINUS, -)
- CARTESIAN PRODUCT (\mathbf{x})
- 1.4. Additional Relational Operations
- OUTER JOINS, OUTER UNION
- AGGREGATE FUNCTIONS (These compute summary of information: for example, SUM, COUNT, AVG, MIN, MAX)

Database State for COMPANY

- All examples discussed below refer to the COMPANY database shown here.

Figure 5.7
Referential integrity constraints displayed on the COMPANY relational database schema.

1.1 Unary Relational Operations: SELECT

- The SELECT operation (denoted by σ (sigma)) is used to select a subset of the tuples from a relation based on a selection condition.
- The selection condition acts as a filter
- Keeps only those tuples that satisfy the qualifying condition
- Tuples satisfying the condition are selected whereas the other tuples are discarded (filtered out)
- Examples:
- Select the EMPLOYEE tuples whose department number is 4:

$$
\sigma_{\text {DNO }=4}(\text { EMPLOYEE })
$$

- Select the employee tuples whose salary is greater than $\$ 30,000$:

$$
\sigma_{\text {SALARY }}>30,000 \text { (EMPLOYEE) }
$$

1.1 Unary Relational Operations: SELECT

- In general, the select operation is denoted by $\sigma_{\text {sselection }}$ condition> (R) where
- the symbol $\boldsymbol{\sigma}$ (sigma) is used to denote the select operator
- the selection condition is a Boolean (conditional) expression specified on the attributes of relation R
- tuples that make the condition true are selected
- appear in the result of the operation
- tuples that make the condition false are filtered out
- discarded from the result of the operation

1.1 Unary Relational Operations: SELECT

- SELECT Operation Properties
- The SELECT operation $\sigma_{\text {<selection condition> }}(\mathrm{R})$ produces a relation S that has the same schema (same attributes) as R
- SELECT σ is commutative:
- $\sigma_{\text {<condition } 1>}\left(\sigma_{\text {<condition2> }}(\mathrm{R})\right)=\sigma_{\text {<condition2> }}\left(\sigma_{\text {<condition1> }}(\mathrm{R})\right)$
- Because of commutativity property, a cascade (sequence) of SELECT operations may be applied in any order:
- $\sigma_{\text {<cond } 1>}\left(\sigma_{\text {<cond2> }}\left(\sigma_{\text {<cond3> }}(R)\right)=\sigma_{\text {<cond2> }}\left(\sigma_{\text {<cond3> }}\left(\sigma_{\text {<cond1> }}(R)\right)\right)\right.$
- A cascade of SELECT operations may be replaced by a single selection with a conjunction of all the conditions:
- $\sigma_{\text {<cond } 1>}\left(\sigma_{<\text {cond2> }}\left(\sigma_{\text {<cond3 }}(R)\right)=\sigma_{\text {<cond1> }}\right.$ AND <cond2> AND < cond3> $\left.\left.(R)\right)\right)$
- The number of tuples in the result of a SELECT is less than (or equal to) the number of tuples in the input relation R

The following query results refer to this database state

One possible database state for the COMPANY relational database schema.

EMPLOYEE

Fname	Minit
John	B
Franklin	T
Alicia	J
Jennifer	S
Ramesh	K
Joyce	A
Ahmad	V
James	E

Lname	Ssn	Bdate
Smith	123456789	1965-01-09
Wong	333445555	1955-12-08
Zelaya	999887777	1968-01-19
Wallace	937654321	1941-06-20
Narayan	666834444	1962-09-15
English	453453453	$1972-07-31$
Jabbar	937987937	1969-03-29
Borg	838665555	1937-11-10

Address	Sex
731 Fondren, Houston, TX	M
638 Voss, Houston, TX	M
3321 Castle, Spring, $1 \times$	F
291 Berry, Bellaire, TX	F
975 Fire Oak, Humble, $7 \times$	M
5631 Rice, Houston, $1 \times$	F
930 Dallas, Houston, $T \times$	M
450 Stone, Houston, T \times	M

DEPARTMENT
DEPARTMENT

Dname	Dnumber	Mgr_ssn	Mgr_start_date
Research	5	333445555	$1983-05-22$
Administration	4	987654321	$1995-01-01$
Headquarters	1	883695555	$1981-06-19$

PROIECT

Salary
30000
40000
25000
43000
38000
25000
25000

Super_ssn	Dno
333445555	5
383665555	5
987654321	4
383665555	4
333445555	5
333445555	5
387654321	4
NULL	1

DEPT_LOCATIONS

Dnumber	Dlocation
1	Houston
4	Stafford
5	Bellaire
5	Sugarland
5	Houston

MORKS_ON

Essn	Pno	1 Hours
123456789	1	32.5
123456789	2	7.5
666834444	3	40.0
453453453	1	20.0
453453453	2	20.0
333445555	2	10.0
333445555	3	10.0
333445555	10	10.0
333445555	20	10.0
999887777	30	30.0
999837777	10	10.0
987987987	10	35.0
987987987	30	5.0
987654321	30	20.0
983654321	20	15.0
838665555	20	$N 01$

PROIECT

Pname	Pnumber	Plocation	Dnum
ProductX	1	Bellaire	5
Productr	2	Sugarland	5
ProductZ	3	Houston	5
Computerization	10	Stafford	4
Reorganization	20	Houston	1
Newbenefits	30	Stafford	4

DEPENDENT

Essn	Dependent name
333445555	Alice
333445555	Theodore
333445555	Joy
987654321	Abner
123456789	Michael
123456789	Alice
123456789	Elizabeth

Sex	
F	
M	
	F
	M
	M
	F
	F

Bdate
$1986-04-05$
$1983-10-25$
$1958-05-03$
$1942-02-23$
$1988-01-04$
$1988-12-30$
$1967-05-05$

Relationship
Daughter
Son
Spouse
Spouse
Son
Daughter
Spouse

Unary Relational Operations: PROJECT

- PROJECT Operation is denoted by π (pi)
- This operation keeps certain columns (attributes) from a relation and discards the other columns.
- PROJECT creates a vertical partitioning
- The list of specified columns (attributes) is kept in each tuple
- The other attributes in each tuple are discarded
- Example: To list each employee's first and last name and salary, the following is used:
- $\pi_{\text {LName, }}$ fname,Salary $(E M P L O Y E E)$
- This can be renamed as: R(Last_name, First_name, Salary) \leftarrow
$\pi_{\text {LNAME, }}$ fNAME,SALARY (EMPLOYEE)

Unary Relational Operations: PROJECT (also Rename)

- We can define a formal RENAME operation (ρ) to rename either the relation or attribute names or both.
- The general RENAME operation applied to a relation $R\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ of degree n is of the form:
- (i) $\rho_{S\left(B 1, B_{2}, \ldots, B_{n n}^{B n)}\right.}(R)$ for renaming both table R to S and its attributes from A_{1}, A_{2}, ..., A_{n}^{\prime} to $B_{1}, B_{2}^{\text {Bn }}, \ldots, B_{n}$
- (ii) $\rho_{s}(R)$ for renaming only table R to \mathbf{S}.
- (iii) $\rho_{(B 1, B 2, \ldots, B n)}(R)$ for renaming only attributes of table R from $A_{1}, A_{2}, \ldots, A_{n}$ to B_{1}, B_{2}, \ldots, B_{n}
- Where rho (ρ) denotes RENAME operator, S is the new relation name and (B_{1}, B_{2}, \ldots, B_{n}) are the new attribute names.
- E.g. if attributes of R are $A_{1}, A_{2}, \ldots, A_{n}$, with $P_{S(B 1, B 2, \ldots, B n)}(R)$, the relation is renamed S with new attributes $B_{1}, B_{2}, \ldots, B_{n}$ for $A_{1}, A_{2}, \ldots, A_{n}$
- Eg. For the rename of the result of the relational algebra operation, ρ expression follows. R(Last_name, First_name, Salary) $\leftarrow \pi_{\text {LNAME, FNAME,SALARY }}($ EMPLOYEE)
- $\rho_{\text {R(LLastname, First_name, Salary) }}\left(\pi_{\text {LNAME, }}\right.$ FNAME,SALARY $\left.(E M P L O Y E E)\right)$

Unary Relational Operations: PROJECT

- The general form of the project operation is:

$$
\pi_{<\text {cattribute list> }}(R)
$$

- π (pi) is the symbol used to represent the project operation
- <attribute list> is the desired list of attributes from relation R.
- The project operation removes any duplicate tuples
- This is because the result of the project operation must be a set of tuples
- Mathematical sets do not allow duplicate elements.

Unary Relational Operations: PROJECT

- PROJECT Operation Properties

- The number of tuples in the result of projection $\pi_{<\text {list }}(R)$ is always less or equal to the number of tuples in R
- If the list of attributes includes a key of R, then the number of tuples in the result of PROJECT is equal to the number of tuples in R
- PROJECT is not commutative
- $\pi_{\text {<list1> }}\left(\pi_{\text {clist2> }}(R)\right)=\pi_{\text {<list1> }}(R)$ as long as <list2> contains the attributes in <list1>

Examples of applying SELECT and PROJECT anarotinne

(a)

Frame	Minit	Lname	Sen	Bclate	Acldreess	Ser	Salary	Super__san	Dio
Franklin	T	Whang	393445555	1055-12-06	636 Moss, Houstion, TX	M	40000	Breversess	5
Jeruider	3	Wallace	987654321	1941-06-20	291 Eerry Eedaing, TX	F	43000	EPEed5555	4
Reamesh	K	Narayan	6E6E94444	1982-09-15	975 Fire Qak, Humble TX	M	38000	333448555	5

(b)

Lname	Framme	Sialary
Smith	John	30000
Wong	Frankilin	40000
Zolay	Alicim	2E000
Wallace	Jennifer	43000
Narayan	Ftamesh	36000
English	Joyce	25000
Jabbar	Ahmed	25000
Brom	James	58000

(c)

Sex	Salary
\mathbb{M}	30000
\mathbb{M}	40000
\mathbb{F}	25000
\mathbb{F}	43000
M	$3-8000$
M	25000
\mathbb{M}	55000

[^0]
1.3 Relational Algebra Operations from Set Theory: UNION

- UNION Operation
- Binary operation, denoted by \cup
- The result of $R \cup S$, is a relation that includes all tuples that are either in R or in S or in both R and S
- Duplicate tuples are eliminated
- The two operand relations R and S must be "type compatible" (or UNION compatible)
- R and S must have same number of attributes
- Each pair of corresponding attributes must be type compatible (have same or compatible domains)

1.3 Relational Algebra Operations from Set Theory: UNION

- Example:
- To retrieve the social security numbers of all employees who either work in department 5 (RESULT1 below) or directly supervise an employee who works in department 5 (RESULT2 below)
- We can use the UNION operation as follows:

DEP5_EMPS $\leftarrow \sigma_{\text {DNO }=5}$ (EMPLOYEE) RESULT1 $\leftarrow \pi_{\text {SSN }}($ DEP5_EMPS)
RESULT2(SSN) $\leftarrow \pi_{\text {SUPERSSN }}($ DEP5_EMPS)
RESULT \leftarrow RESULT1 \cup RESULT2

- The union operation produces the tuples that are in either RESULT1 or RESULT2 or both

Figure 8.3 Result of the UNION operation RESULT \leftarrow RESULT1 U RESULT2

RESULT1

Ssn
123456789
333445555
666884444
453453453

RESULT2

Ssn
333445555
888665555

RESULT

Ssn
123456789
333445555
666884444
453453453
888665555

Relational Algebra Operations from Set Theory

- Type Compatibility of operands is required for the binary set operation UNION \cup, (also for INTERSECTION \cap, and SET DIFFERENCE -, see next slides)
- R1(A1, A2, ... An) and R2(B1, B2, ..., Bn) are type compatible if:
- they have the same number of attributes, and
- the domains of corresponding attributes are type compatible (i.e. $\operatorname{dom}(\mathrm{Ai})=\operatorname{dom}(\mathrm{Bi})$ for $\mathrm{i}=1,2, \ldots, n$).
- The resulting relation for R1 \cup R2 (also for R1 \cap R2, or R1-R2, see next slides) has the same attribute names as the first operand relation R1 (by convention)

Relational Algebra Operations from Set Theory: INTERSECTION

- INTERSECTION is denoted by \cap
- The result of the operation $R \cap S$, is a relation that includes all tuples that are in both R and S
- The attribute names in the result will be the same as the attribute names in R
- The two operand relations R and S must be "type compatible"

Relational Algebra Operations from Set Theory: SET DIFFERENCE

- SET DIFFERENCE (also called MINUS or EXCEPT) is denoted by -
- The result of $R-S$, is a relation that includes all tuples that are in R but not in S
- The attribute names in the result will be the same as the attribute names in R
- The two operand relations R and S must be "type compatible"

Example to illustrate the result of UNION, INTERSECT, and DIFFERENCE

Filume a, 4 The set operations UNION, INTEPSECTION, and MLNUS. (G) Two union-compatible relations, (b)
 STLIDENT.
(a)
STUDENT

Fn	Ln
Susan	Yao
Rtamesh	Shah
Johnry	Kohlar
Barbanal	Jonea
Anry	Fond
Jimnry	Wang
Emneat	Gibert

UNSTRUCTOR

Fname	Lname
John	Smith
Ricarda	Browne
Susan	Trao
Francla	Johnsan
Ramesh	Shah

(b)

Fin	Ln
Susan	Yeos
Pramesh	Shah
Johnny	Fiohler
Barbara	Jonea
Amy	Ford
Jimmy	Vtang
Errest	Gilbert
John	Smith
Ricardo	日rosene
Francis	Johnsmen

(c)

Fn	Ln
Susian	Yao
Framesth	Shah

(d)

Fni	Ln
Johnny	Kohler
Barbara	Jones
Amy	Ford
Jimmy	Wang
Ernest	Gilbert

(e)

Finame	llname
John	Simith
Ricardl	Erbwne
Francis	Johnson

Some properties of UNION, INTERSECT, and DIFFERENCE

- Notice that both union and intersection are commutative operations; that is
- $R \cup S=S \cup R$, and $R \cap S=S \cap R$
- Both union and intersection can be treated as n-ary operations applicable to any number of relations as both are associative operations; that is
- $R \cup(S \cup T)=(R \cup S) \cup T$
- $(R \cap S) \cap T=R \cap(S \cap T)$
- The minus operation is not commutative; that is, in general
- $R-S \neq S$ - R

Relational Algebra Operations from Set Theory: CARTESIAN PRODUCT

- CARTESIAN (or CROSS) PRODUCT Operation
- This operation is used to combine tuples from two relations in a combinatorial fashion.
- Denoted by $\mathrm{R}(\mathrm{A} 1, \mathrm{~A} 2, \ldots, A n) \times \mathrm{S}(\mathrm{B} 1, \mathrm{~B} 2, \ldots, \mathrm{Bm})$
- Result is a relation Q with degree $n+m$ attributes:
- Q(A1, A2, . ., An, B1, B2, . . ., Bm), in that order.
- The resulting relation state has one tuple for each combination of tuplesone from R and one from S.
- Hence, if R has n_{R} tuples (denoted as $|R|=n_{R}$), and S has n_{S} tuples, then R $x S$ will have $n_{R}{ }^{*} n_{S}$ tuples.
- The two operands do NOT have to be "type compatible"

Relational Algebra Operations from Set Theory: CARTESIAN PRODUCT

- Generally, CROSS PRODUCT is not a meaningful operation
- Can become meaningful when followed by other operations
- Example (not meaningful):
- FEMALE_EMPS $\leftarrow \sigma_{\text {SEX=' }}$ (EMPLOYEE)
- EMPNAMES $\leftarrow \pi_{\text {fName, Lname, sSn }}$ (FEMALE_EMPS)
- EMP_DEPENDENTS \leftarrow EMPNAMES x DEPENDENT
- EMP_DEPENDENTS will contain every combination of EMPNAMES and DEPENDENT
- whether or not they are actually related

Relational Algebra Operations from Set Theory: CARTESIAN PRODUCT

- To keep only combinations where the DEPENDENT is related to the EMPLOYEE, we add a SELECT operation as follows
- Example (meaningful):
- FEMALE_EMPS $\leftarrow \sigma_{\text {SEX=' }}$ (EMPLOYEE)
- EMPNAMES $\leftarrow \pi_{\text {fName, lname, sSn }}$ (FEMALE_EMPS)
- EMP_DEPENDENTS \leftarrow EMPNAMES x DEPENDENT
- ACTUAL_DEPS $\leftarrow \sigma_{\text {SSN=ESSN }}\left(E M P _D E P E N D E N T S\right)$
- RESULT $\leftarrow \pi_{\text {fname, lname, dependent_name }}$ (ACTUAL_DEPS)
- RESULT will now contain the name of female employees and their dependents

Figure 8.5 The CARTESIAN PRODUCT (CROSS PRODUCT) operation.

FEMALE_EMPS

Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
Alicia	J	Zelaya	999887777	$1968-07-19$	3321Castle, Spring, TX	F	25000	987654321	4
Jennifer	S	Wallace	987654321	$1941-06-20$	291Berry, Bellaire, TX	F	43000	888665555	4
Joyce	A	English	453453453	$1972-07-31$	5631 Rice, Houston, TX	F	25000	333445555	5

EMPNAMES

Fname	Lname	Ssn
Alicia	Zelaya	999887777
Jennifer	Wallace	987654321
Joyce	English	453453453

EMP_DEPENDENTS

Fname	Lname	Ssn	Essn	Dependent_name	Sex	Bdate	\ldots
Alicia	Zelaya	999887777	333445555	Alice	F	$1986-04-05$	\ldots
Alicia	Zelaya	999887777	333445555	Theodore	M	$1983-10-25$	\ldots
Alicia	Zelaya	999887777	333445555	Joy	F	$1958-05-03$	\ldots
Alicia	Zelaya	999887777	987654321	Abner	M	$1942-02-28$	\ldots
Alicia	Zelaya	999887777	123456789	Michael	M	$1988-01-04$	\ldots
Alicia	Zelaya	999887777	123456789	Alice	F	$1988-12-30$	\ldots
Alicia	Zelaya	999887777	123456789	Elizabeth	F	$1967-05-05$	\ldots
Jennifer	Wallace	987654321	333445555	Alice	F	$1986-04-05$	\ldots
Jennifer	Wallace	987654321	333445555	Theodore	M	$1983-10-25$	\ldots
Jennifer	Wallace	987654321	333445555	Joy	F	$1958-05-03$	\ldots
Jennifer	Wallace	987654321	987654321	Abner	M	$1942-02-28$	\ldots
Jennifer	Wallace	987654321	123456789	Michael	M	$1988-01-04$	\ldots
Jennifer	Wallace	987654321	123456789	Alice	F	$1988-12-30$	\ldots
Jennifer	Wallace	987654321	123456789	Elizabeth	F	$1967-05-05$	\ldots
Joyce	English	453453453	333445555	Alice	F	$1986-04-05$	\ldots
Joyce	English	453453453	333445555	Theodore	M	$1983-10-25$	\ldots
Joyce	English	453453453	333445555	Joy	F	$1958-05-03$	\ldots
Joyce	English	453453453	987654321	Abner	M	$1942-02-28$	\ldots
Joyce	English	453453453	123456789	Michael	M	$1988-01-04$	\ldots
Joyce	English	453453453	123456789	Alice	F	$1988-12-30$	\ldots
Joyce	English	453453453	123456789	Elizabeth	F	$1967-05-05$	\ldots

Figure 8.5 (continued) The CARTESIAN PRODUCT (CROSS PRODUCT) operation.

ACTUAL_DEPENDENTS

Fname	Lname	Ssn	Essn	Dependent_name	Sex	Bdate	\ldots
Jennifer	Wallace	987654321	987654321	Abner	M	$1942-02-28$	\ldots

RESULT

Fname	Lname	Dependent_name
Jennifer	Wallace	Abner

Binary Relational Operations: JOIN

- JOIN Operation (denoted by $\bowtie_{\text {<joincondition> }}$)
- The sequence of CARTESIAN PRODUCT followed by SELECT is used quite commonly to identify and select related tuples from two relations
- A special operation, called JOIN combines this sequence into a single operation
- This operation is very important for any relational database with more than a single relation, because it allows us combine related tuples from various relations
- The general form of a join operation on two relations R(A1, $A 2, \ldots$, $A n)$ and $S(B 1, B 2, \ldots, B m)$ is:

$$
R \bowtie_{\text {<joincondition> }} S
$$

- where R and S can be any relations that result from general relational algebra expressions.

Binary Relational Operations: JOIN (cont.)

- Example: Suppose that we want to retrieve the name of the manager of each department.
- To get the manager's name, we need to combine each DEPARTMENT tuple with the EMPLOYEE tuple whose SSN value matches the MGRSSN value in the department tuple.
- We do this by using the join $\bowtie_{\text {<joincondition> }}$ operation.
- DEPT_MGR \leftarrow DEPARTMENT $\bowtie_{\text {marssn=ssn }}$ EMPLOYEE
- MGRSSN=SSN is the join condition
- Combines each department record with the employee who manages the department
- The join condition can also be specified as DEPARTMENT.MGRSSN= EMPLOYEE.SSN

Figure 8.6 Result of the JOIN operation DEPT_MGR \leftarrow DEPARTMENT $\bowtie_{\text {Mgr_ssn=Ssn }}$ EMPLOYEE

DEPT_MGR

Dname	Dnumber	Mgr_ssn	\cdots	Fname	Minit	Lname	Ssn	\cdots
Research	5	333445555	\cdots	Franklin	T	Wong	333445555	\cdots
Administration	4	987654321	\cdots	Jennifier	S	Wallace	987654321	\cdots
Headquarters	1	888665555	\cdots	James	E	Borg	888665555	\cdots

Some properties of JOIN

- Consider the following JOIN operation:
- $R(A 1, A 2, \ldots, A n) \bowtie_{R . A i=S . B j} S(B 1, B 2, \ldots, B m)$
- Result is a relation Q with degree $n+m$ attributes:
- Q(A1, A2, ..., An, B1, B2, ..., Bm), in that order.
- The resulting relation state has one tuple for each combination of tuples-r from R and s from S, but only if they satisfy the join condition $r[A i]=s[B j]$ or $R . A i=S . B j$
- Hence, if R has n_{R} tuples, and S has n_{S} tuples, then the join result will generally have less than $n_{R}{ }^{*} n_{S}$ tuples.
- Only related tuples (based on the join condition) will appear in the result

Complete Set of Relational Operations

- The set of operations including SELECT σ, PROJECT π, UNION \cup, DIFFERENCE - , RENAME ρ, and CARTESIAN PRODUCT X is called a complete set because any other relational algebra expression can be expressed by a combination of these five operations.
- For example:
- $R \cap S=(R \cup S)-((R-S) \cup(S-R))$
- $R \quad \bowtie_{\text {<join condition> }} S=\sigma_{\text {<join condition> }}(R X S)$

Examples of Queries in Relational Algebra - Single expressions

Q1: Retrieve the name and address of all employees who work for the 'Research' department.
$\pi_{\text {Fname, Lname, Address }}(\sigma$ Dname $=$ 'Research'
(DEPARTMENT $\left.\bowtie_{\text {Dnumber=Dno }}(E M P L O Y E E)\right)$

Division Operation (\div)

- DIVISION Operation
- The DIVISION operation is useful for a special kind of query as: Retrieve the names of employees who work on all the projects that 'John Smith' works on. That is, if John Smith works on the set of projects with Pno $=\{1,2\}$, any employee selected must have worked on all the Pnos in this set.
- The division operation is applied to two relations
- $R(Z) \div S(X)$ are the two input relation operands of the division operator and the resulting relation is $T(Y)$. For example, Works on,(Essn, Pno) $\div D$ (Pno) will give result containing all Essns who have worked on all Pno's in D(Pno) set.
- For $R(Z) \div S(X)$ denominator relation has its set of attributes X (eg.

S(a: varchar2(2))) as a subset of the numerator relation's set of attributes, Z (a: varchar2(2), b: varchar2(2). The resulting relation, T(Y) has the set o Y a: varchar2 (2), b: varchar(2). The resulting reltribon, T Yf has te set of attributes $Y=\bar{S}-X(e g . b:$ varchar2(2)) which is the set of attributes of R that are not attributes of S.

- The result of this DIVISION is a relation T(Y) that includes a tuple t that must appear in the result T if tuples t_{R} appear in the numerator relation R in combination with every tuple in the denominator relation S.

Division Operation (\div) and (natural join operator *)

- We can answer this query as:
- (a) Get Denomenator (Pnos worked by John Smith) as:

Smith_Pnos $\leftarrow \pi_{\text {Pno }}$ ($\sigma_{\text {Lname }}$ 'Smith'and Ename = 'John'

(b) Get Numerator (Essn with Pnos worked by all employees) as:

Ssn_Pnos $\leftarrow \pi_{\text {Essn, Pno }}$ (WORKS_ON)
(c) Get all employees who worked on all project worked on by Smith as:

SSNs(Ssn) < Ssn_Pnos \div Smith_Pnos

- See the result of these operations in Fig. 8.8 on page 256 of book.
- Note that the natural join $\left({ }^{*}\right)$ which is a join of two tables on join foreign/primary key attributes (e.g., Ssn) with the same name can be used for example to get the names of these employees working on all projects worked on by Smith as: $\pi_{\text {Fname, Lname }}(S S N s * E M P L O Y E E)$

Fig 8.8: Division Operation (\div)

(a)

SSN_PNOS

Essan	Pro
123456789	1
123456789	2
668884444	3
453453453	1
453453453	2
333445655	2
335445585	3
333445555	10
333445555	20
995897777	30
9996日7777	10
997987987	10
997987987	30
9107654321	30
917654321	20
E日8665555	20

(b)

R

A	B
$a 1$	$b 1$
$a 2$	$b 1$
$a 3$	$b 1$
$a 4$	$b 1$
$a 1$	$b 2$
$n 3$	$b 2$
$a 2$	$b 3$
$a 3$	$b 3$
$a 4$	$b 3$
$a 1$	$b 4$
$a 2$	$b 4$
$n 3$	$b 4$

SSNS

Additional Relational Operations: Aggregate Functions and Grouping

- A type of request that cannot be expressed in the basic relational algebra is to specify mathematical aggregate functions on collections of values from the database.
- Examples of such functions include retrieving the average or total salary of all employees or the total number of employee tuples.
- These functions are used in simple statistical queries that summarize information from the database tuples.
- Common functions applied to collections of numeric values include - SUM, AVERAGE, MAXIMUM, MINIMUM and COUNT.
- The COUNT function is used for counting tuples or values.

Aggregate Function Operation

- Use of the Aggregate Function operation \mathfrak{I} (called script)
- The general format that includes grouping attributes is:
- <grouping attributes $>\mathfrak{J}_{\text {<function list }}$ (R) where $<$ grouping attributes $>$ is a list of attributes of relation $\mathrm{R},<$ function list $>$ is a list of ($<$ function $><$ attribute $>$) pairs. Function is one of SUM, AVERAGE, MAXIMUM, MINIMUM, COUNT. The result has the grouping attributes plus one attribute for each element in the function list.
- ${ }^{3}$ max Salary (EMPLOYEE) retrieves the maximum salary value from the EMPLOYEE relation
- ${ }^{3}$ min.Salary (EMPLOYEE) retrieves the minimum Salary value from the EMPLOYEE relation
- $\mathbb{3}_{\text {SUMSalary }}$ (EMPLOYEE) retrieves the sum of the Salary from the EMPLOYEE relation
- I count ssn, average salary (EMPLOYEE) computes the count (number) of employees and their average salary
- Note: count just counts the number of rows, without removing duplicates

Using Grouping with Aggregation

- The previous examples all summarized one or more attributes for a set of tuples
- Maximum Salary or Count (number of) Ssn
- Grouping can be combined with Aggregate Functions
- Example: For each department, retrieve the DNO, COUNT SSN, and AVERAGE SALARY
- A variation of aggregate operation \mathfrak{I} allows this:
- Grouping attribute placed to left of symbol
- Aggregate functions to right of symbol
- dno ${ }^{3}$ Count ssn, AVERAGE Salary (EMPLOYEE)
- Above operation groups employees by DNO (department number) and computes the count of employees and average salary per department

Figure 8.10 The aggregate function operation.

a. $\rho_{R(\text { Dno, }}$ No_of_employees, Average_sal) $\left(\right.$ Dno $^{\mathfrak{I}}$ COUNT Ssn, AVERAGE Salary (EMPLOYEE)).
b. Dno $\mathfrak{I}^{\text {count Ssn, AVERAGE Salary (EMPLOYEE). }}$
c. \mathfrak{I} count Ssn, AVERAGe Salary (EMPLOYEE).

- a is renamed with ρ, b has no renaming and c has no grouping.
R
(a)

Dno	No_of_employees	Average_sal
5	4	33250
4	3	31000
1	1	55000

(b)

Dno	Count_ssn	Average_salary
5	4	33250
4	3	31000
1	1	55000

(c)

Count_ssn	Average_salary
8	35125

2. Relational Calculus

- Relational Calculus is another formal query language for the relational model.
- Two variations of it are:
- tuple relational calculus and
- domain relational calculus.
- In both variations one declarative expression is written to specify a retrieval query.
- The expression has no description of how, or in what order, to evaluate a query.
- A calculus expression specifies what is to be retrieved rather than how to retrieve it.
- Relational calculus is a nonprocedural language as opposed to the relational algebra that is procedural.
- A calculus expression may be written in different ways that do not determine how the query is evaluated.

2. Relational Calculus

- Any retrieval that can be specified in the relational algebra can also be specified in relational calculus, and vice versa.
- A relational query language L is relationally complete if we can express in L any query that can be expressed in relational calculus.
- This relational completeness property is used as a basis for comparing the expressive power of high-level query languages.
- Most languages such as SQL are relationally complete but have more expressive power than relational algebra or relational calculus:
- as they have additional operations like aggregate functions, grouping and ordering.

Tuple Relational Calculus

- The tuple relational calculus (TRC) is based on specifying a number of tuple variables.
- Each tuple variable usually ranges over a particular database relation, meaning that the variable may take as its value any individual tuple from that relation.
- A simple tuple relational calculus query is of the form $\{\mathbf{t} \mid \operatorname{COND}(\mathrm{t})\}$
- Expressed in general also as: $\left\{\mathrm{t}_{1} . \mathrm{A}_{\mathrm{j}}, \mathrm{t}_{2} \cdot \mathrm{~A}_{\mathrm{k}}, \ldots, \mathrm{t}_{\mathrm{n}} \cdot \mathrm{A}_{\mathrm{m}} \mid \operatorname{COND}\left(\mathrm{t}_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{\mathrm{n}+\mathrm{m}}\right)\right\}$
- where t is a tuple variable and COND (t) is a conditional expression involving t. Also, the t_{i}^{\prime} 's are tuple variables and A_{j}^{\prime} s are attributes of the relation on which t_{i} ranges.
- COND is a condition (atom or formula) of TRC of the form:
- (i) Relation (\mathbf{t}_{i}), eg. Employee(t)
- (ii) $t_{1} \cdot A$ op $t_{1} \cdot B$, eg. E.ssn = d.Essn
- (iii) t_{1}.A op cor cop $t_{1} \cdot A$, eg. Salary >30000
- (iv) A formula (F) is made up of atoms and atoms are connected with logical ops and quantifiers (\exists, \forall), eg. F_{1} AND $\mathrm{F}_{2}, \mathrm{~F}_{1}$ OR $\mathrm{F}_{2}, \operatorname{NOT}\left(\mathrm{~F}_{1},(\exists \mathrm{t})(\mathrm{F})\right.$ and $(\forall \mathrm{t})(\mathrm{F})$.
- The result of such a query is the set of all tuples t that satisfy COND (t).

Tuple Relational Calculus

- Example: To find the first and last names of all employees whose salary is above $\$ 50,000$, we can write the following tuple calculus expression:

\{t.FNAME, t.LNAME | EMPLOYEE(t) AND t.SALARY>50000\}

- The condition EMPLOYEE(t) specifies that the range relation of tuple variable t is EMPLOYEE.
- The first and last name (PROJECTION in relational algebra ($\left.\pi_{\text {fname, Lname }}\right)$) of each EMPLOYEE tuple t that satisfies the condition t.SALARY>50000 (SELECTION in relational algebra ($\sigma_{\text {SALARY }>50000}$)) will be retrieved.

The Existential and Universal Quantifiers

- Two special symbols called quantifiers can appear in formulas; these are the universal quantifier (\forall) and the existential quantifier (\exists).
- Informally, a tuple variable t is bound if it is quantified, meaning that it appears in an $(\forall \mathrm{t})$ or $(\exists \mathrm{t})$ clause; otherwise, it is free.
- If F is a formula, then so are $(\exists \mathrm{t})(\mathrm{F})$ and $(\forall \mathrm{t})(\mathrm{F})$, where t is a tuple variable.
- The formula $(\exists \mathrm{t})(\mathrm{F})$ is true if the formula F evaluates to true for some (at least one) tuple assigned to free occurrences of t in F; otherwise $(\exists \mathrm{t})(\mathrm{F})$ is false.
- The formula $(\forall \mathrm{t})(\mathrm{F})$ is true if the formula F evaluates to true for every tuple (in the universe) assigned to free occurrences of t in F; otherwise $(\forall \mathrm{t})(\mathrm{F})$ is false.

Example Query Using Existential Quantifier

- Retrieve the name and address of all employees who work for the 'Research' department. The query can be expressed as :
\{t.FNAME, t.LNAME, t.ADDRESS | EMPLOYEE (t) and ($\exists \mathrm{d}$) (DEPARTMENT(d) and d.DNAME=‘Research' and d.DNUMBER=t.DNO) \}
- The only free tuple variables in a relational calculus expression should be those that appear to the left of the bar (|).
- In above query, t is the only free variable; it is then bound successively to each tuple.
- If a tuple satisfies the conditions specified in the query, the attributes FNAME, LNAME, and ADDRESS are retrieved for each such tuple.
- The conditions EMPLOYEE (t) and DEPARTMENT(d) specify the range relations for t and d.
- The condition d.DNAME = 'Research' is a selection condition and corresponds to a SELECT operation in the relational algebra, whereas the condition d. DNUMBER = t.DNO is a JOIN condition.

[^0]: ALWATS LEABNINE

