

“Discovering & integrating Object Database schemas of B2C Web Sites”

Project Report

Submitted by

60-539-01

Winter 2012

School of Computer Science

University of Windsor

Professor: Dr. Christie Ezeife

2

2

Abstract:

Web mining is the integration of information gathered by traditional data mining methodologies

and techniques with information gathered over the World Wide Web. Web mining allows you to

look for patterns in data through content mining, structure mining, and usage mining. Content

mining is used to examine data collected. Structure mining is used to examine data related to the

structure of particular web sites. This project report focus on an application which uses both of

these mining types and integrates the database schema derived from a web page related to one

particular attribute that has the frequent patterns. This way the dynamic new data structure and

attributes can be updated in the database. This mining tool developed does not depend on any

static data so there is no need of constant update in the code. Database schema is generated with

the web page given to the mining tool. Data types are chosen with the analysis of the values for a

particular attribute.

3

3

1. Introduction

With the increase in the growth of information sources available on the World Wide Web,

it has become increasingly necessary for users to utilize automated tools in finding the

desired information resources, and to track and analyze their usage patterns. These factors give

rise to the necessity of creating server-side and client-side intelligent systems that can effectively

mine for knowledge. Web mining can be broadly defined as the discovery and analysis of useful

information from the World Wide Web. This describes the automatic search of information

resources available on-line, i.e. Web content mining, and the discovery of user access patterns

from Web servers, i.e., Web usage mining.

Current Web sites present information on various topics in various formats. A great amount of

effort is often required for a user to manually locate and extract useful data from the Web sites.

Therefore, there is a great need for value-added service that integrates information from multiple

sources. For example, customizable Web information gathering robots/crawlers, comparison-

shopping agents, meta-search engines and news bots, etc. To facilitate the development of these

information integration systems, we need good tools for information gathering and extraction.

Suppose the data has been collected from different Web sites, a conventional approach for

extracting data from various Web pages would have to write programs, called “wrappers” or

“extractors”, to extract the contents of the Web pages based on a priori knowledge of their

format. In other words, we have to observe the extraction rules in person and write programs for

each Web site. However, programming wrappers require manual coding which generally entails

extensive debugging and is, therefore, labor-intensive. In addition, since the format of Web

pages is often subject to change, maintaining the wrapper can be expensive and impractical.

4

4

This report provides an overview of the tools and extends the structured automatic data

extraction technique. It includes the studies about the idea of modeling web contents in objects

and develops a mining process for object-oriented data model for web content integration or

comparative mining.

I. Problem Statement:

In the development of data mining tools, the extracted data are analyzed and the extracted

information is stored in the data ware house. The schema which stores the data are meant to be

static which are created ones and the data are formatted before it is send to the data ware house.

The data provided in the web are dynamic. The information provided about an attribute can be

added or removed and the schema has to be updated according to that in the database which

changes the database structure too. Without the knowledge of the schema of an attribute the

database created with static fields are hard to maintain. Moreover the fields in every web site are

populated in very different manner with different fields. So there is a need of development of a

generic tool which extracts the schema of an attribute for a particular web site and then the data

extracted are store the data with the database schema created.

II. Purpose of this application:

This application serves as an extractor of schema. It uses the concept of both structure mining

and concept mining. Structure mining is used to find the frequent pattern in the whole web page

and find the root of the xml which has the data of our focus. Once the parent of the xml which

has the data related to the attribute of focus is found then concept mining is done to extract the

fields and its data types.

5

5

This application creates a schema by analysing the structure and the content which is related to

the products for now. This application is created after the analysis of different B2C web sites and

their structures used to populate the information about the products in their web sites for

customer’s access. The study revealed the fact that almost all the B2C web sites provide the

information about the products in the form of grid put into a block. The information is pulled

from the database and the server-side script forms a block to envelope the product information

and send to the client. This is the general idea web developers use to populate the product data in

the web sites. I have used this piece of information to develop schema extractor of product

attribute from any web sites with the link to web page which is populated with products.

2. Implemented modules

There are 3 Modules implemented in this project to accomplish the task of extracting the schema

from a web page which displays the products and their related information. They are

1. HTML Cleaner Module

2. Cleaned HTML Parser

3. Frequent pattern structure finder

This section explains about my contribution towards this project of extracting the schema from a

product web page. The project folder is provided along with this report namely extractSchema

which has 2 folders namely inputUncleanedHTML and outputCleanedHTML.

• inputUncleanedHTML, This folder has the product HTML web pages named with their

corresponding business domain i.e. bestbuy, futureshop, dell.... etc. These unclean HTML

6

6

web pages are downloaded using a web scraper tool which is not focused in this project

report. The HTML files in this location are the input to the HTML Cleaner Module.

• outputCleanedHTML, This folder has the product HTML web pages named with their

corresponding business domain ending with an underscore i.e. bestbuy_, futureshop_,

dell_, etc. These Cleaned HTML web pages are generated by HTML Cleaner Module.

The Java file extractSchema.java implements the extraction of schema from the products HTML

web page. It has 2 modules included in it they are Cleaned HTML Parser and Frequent pattern

structure finder. The Java file runBatchFile.java implements creating or editing the batch file

cleanHTML.bat with command to use the htmlcleaner-2.2.jar and then executing it. This creates

the cleaned HTML product web page.

I. HTML Cleaner Module

I have used html cleaner to clean up the HTML. HtmlCleaner is open-source HTML parser

written in Java. HTML found on Web is usually dirty, ill-formed and unsuitable for further

processing. For any serious consumption of such documents, it is necessary to first clean up the

mess and bring the order to tags, attributes and ordinary text. For the given HTML document,

HtmlCleaner reorders individual elements and produces well-formed XML. By default, it

follows similar rules that the most of web browsers use in order to create Document Object

Model. However, user may provide custom tag and rule set for tag filtering and balancing.

Here is a typical example - improperly structured HTML containing unclosed tags and missing

quotes:

7

7

<table id=table1 cellspacing=2px

 <h1>CONTENT</h1>

 <td>1 -> Home Page

 <td>2 -> Introduction

Table 1 unclean HTML

After putting it through HtmlCleaner, XML similar to the following is coming out:

<?xml version="1.0" encoding="UTF-8"?>
<html>
 <head />
 <body>
 <h1>CONTENT</h1>
 <table id="table1" cellspacing="2px">
 <tbody>
 <tr>

 <td>
 1 -> Home Page
 </td>

 <td>
 2 -> Introduction
 </td>
 </tr>
 </tbody>
 </table>
 </body>
</html>

Table 2 Clean HTML

This module is implemented in a java file namely runBatchFile.java. It has a function runFile()

which is called with an argument of the name of a file present in the folder

inputUncleanedHTML in the project. The input file given to this function is an unclean HTML

web page with products displayed in it. This function checks for existence of cleanHTML.bat in

the project is it exists then this batch file will be edited to update the source file and destination

file name of the unclean and cleaned HTML web page in a command. This file names are given

as the input to the htmlcleaner-2.2.jar. The formed command is then executed to use the unclean

HTML web page to generate the cleaned HTML web page and store it in the folder,

outputCleanedHTML. If the batch file cleanHTML.bat doesn’t exit this module creates one and

then write the command and execute it.

 Below is the format to use the htmlcleaner-2.2.jar with src and one argument and dest as the

other argument to generate the cleaned HTML web page.

8

8

java -jar *\WebOMiner\htmlcleaner-2.2.jar src=business.html dest=business_.html

The results of the cleaned HTML are stored in a defined location which is later used by the

Cleaned HTML parser module.

II. Cleaned HTML Parser

This module implements the parsing of the cleaned HTML which is obtained as the output of the

previous module HTML Cleaner. This module is implemented in a java file namely

extractSchema.java by a function called parseTheHTML(). Object to the class extractSchema is

created with the argument passed to the constructor of this class which is the name of the

business. i.e. bestbuy, futureshop, etc. The parser uses the name of the business and finds the

corresponding cleaned HTML in the folder outputCleanedHTML appending underscore to the

business. The cleaned HTML is sent to the parser in turn. The parser does the following process

1. Receives the Cleaned HTML file

2. Creates a temp.xml file locally to store all the blocks in the web page given.

i.e.<div>,<table>

3. Xml is stored removing all the attributes except class in every block as shown in the

figure below.

9

9

Figure 1 sample temp.XML file

10

10

4. The file temp.xml is read and the frequency of the blocks and one with child nodes are

noted in different file called occurrence.data.

5. This occurrence.data file is analysed to get the parent node of the product block

whose children will also be presented in the occurrence.data which is the block of

focus.

11

11

III. Frequent pattern structure finder

This module analyzes the file occurrence.data created by the previous module. This file consist

of </div>s and <table>s with the corresponding class name and the frequency of occurrence.

1. DocumentBuilderFactory, DocumentBuilder are used to create a DOM tree and stored in

memory.

2. XPath is used to retrieve the complete node using the parent tag name and the class

name.

3. Every XML retrieved out of the XPath with the tag name and class name are analyzed

recursively for the structure and stored temporary.

4. The frequency of this structure all over the DOM tree is found and stored using the

function printFinalTree().

5. The maximum frequencies of the structure which has maximum number of children that

are also with present in the occurrence.data are considered as the product block.

6. This block will have the information about the product which will be later used to derive

the schema dynamically.

Figure 2 Frequent structure found in best buy web page

12

12

IV. Schema Extractor

This module is implemented in the constructor of extractSchema class. The product block which

is found using the frequent pattern structure finder is the input to this module. The steps involved

in extracting the schema from the product block are as follows

1. The product block XML is read using XPath and NodeList datatype.

2. Every tag in the product block is read to classify the data and their corresponding

data type.

3. tag will have the data of the type blob or image, <label> will have data

type String etc.

4. The schema extracted for every single block is concatenated in the public string

variable webSchema which is finally printed as output of the entire module

integrated.

Discovered schema for a single page of bestbuyWebsite is below:
--
Product(prod-image: String img300x300: image prodDetails: String
prodTitle: String prodPrice: String priceblock: String pricetitle:
String shop-now: String customer-rating: String rating-title: String
rating-stars: String)

Figure 3 Extracted schema from best buy website

The extracted schema is displayed in the debug console for now which can be used to

create a data table with this schema and finally a data ware house to store the data

extracted from the B2C web sites. All the above mentioned modules are integrated in one

13

13

class file with different functions. The extracted schema from the best buy product web

page is given above.

1. extractSchema(business)

2. FOR ALL divTag in business_.html DO

3. occurrence.data<-Write(divTag,divTag(Class),frequencyOfdivTag(Class))

4. END FOR

5. occurrence.data = parseTheHTML(business_.html)

6. domTree = documentBuilder(business_.html)

7. FOR ALL tag IN occurrence.data DO

8. tagToxml = XPath(tag)

9. IF tagToxml IS CHILD structList_Node

10. READ NEXT Node

11. END IF

12. IF structList CONTAINS tagToxml

13. tagToxml IDCount = tagToxml IDCount + 1

14. ELSE

15. structList = structList + tagToxml

16. END IF

17. END FOR

18. FOR ALL product_block IN structList DO

19. IF product_block < previous_ product_block

20. product_block = previous_ product_block

14

14

21. END IF

22. END FOR

23. FOR ALL tag IN product_block

24. IF tag = img

25. Web_Schema = Web_Schema +class(img) + blob

26. ELSE IF tag = text

27. Web_Schema = Web_Schema +class(text) + varchar

28. END IF

29. END FOR

30. RETURN Web_Schema

Block diagrammatic representation of the implemented modules are given below.

31.

32. Figure 4Architecture of schema extractor

15

15

3. Empirical Evaluations

The integration of all the modules are built in together to form a software bundle which accepts

the URL of the web site. The software processes the web content and generates the schema of the

products. The experiment is done with 4 different web sites (bestbuy.com, futureshop.ca,

compUSA.com, walmart.ca, shopping.com, dell.com) for empirical evaluation of our system

using different page structures. Our system is implemented in Java programming language. We

then run our system in 64-bit Windows 7 home operating system at Intel Due Core 2.26 GHz,

4.00 GB RAM hp machine for each of these mirror web sites for empirical evaluation of our

Schema Extractor system. We use the standard precision and recall measures to evaluate the

results of our system. Precision is measured as average in percentage for the number of correct

data retrieved divided by the total number of data retrieved by the system. Recall is measured as

average in percentage for the total number of correct data retrieved divided by the total number

of existing data in the web document. The results of the retrieval by our Schema Extractor

system is tabulated in table 02 below:

Website

Actual Schema Extracted Schema

Field
Count

String
field
count

image
field
count

Correct Wrong Missing Irrelevant

www.bestbuy.ca 11 9 2 10 1 0 1

www.futureshop.ca 12 10 2 12 0 0 6

www.canadiantire.com 17 14 3 15 2 0 5

www.walmart.ca 15 12 3 12 1 0 2

16

16

Precision 81%

Recall 89%

Table 3 Experimental results showing extraction of schema from web pages.

4. Experimental Results

The purpose of our experiment is to measure the performance of schema extractor system for

schema extraction. Table 04 shows small scale experimental results as performance measure for

our schema extraction system. We have taken one page per web site for experiment and the

numbers n column shows different types of data in those pages. The Total column shown total

number of data records for each pages. For those pages schema extractor system is able to

identify schema correctly. Very less wrong data record identification is observed and it makes

sense because our system is not based on the prediction. It missed no information because it

extracts the data from web pages from different websites. There are 14 irrelevant attributes

which are generated in the extraction of schema.

 We observed the reason for irrelevant attributes. All of those irrelevant are in List type data

records and because of mixing object type in data tuple. Our definition of List data tuple is a set

of <text> and there should be at least 3-pairs in the tuple to be qualified as List tuple. But those

<image> and <text> and therefore did not satisfy any of the criteria.

5. Conclusion and Future work

This project report has the work to prepare the data for mining. I have developed 3 modules

which do the process of finding the frequent tree structure pattern and the schema is extracted

from the xml created from the frequent pattern. The experiment is done with 5 different web sites

17

17

to show that this work is feasible and yields precision and recall are above 85%. Since this is a

very first effort to mine web content data using object-oriented approach, we feel there is plenty

of room for improvement and to open new thread. In this method the data type are not well

defined and the analysis of the child tag would give the data type close to the original data.

18

18

USER MANUAL

Installing schema extractor software

 This article explains the how to install the schema extractor in any machine that has Java

Runtime Environment (JRE).

1. Locate the folder extractSchema in the project CD in the drive.

2. Copy the folder into any of the location in the local hard drive.

3. Use the following format to form the command to run extractSchema.class

F:\javatest>"C:\Program Files\Java\jdk1.7.0_03\bin\java.exe" extractSchema bestbuy

The above format has an argument to run the program. The argument is the name of the

business which indicates the corresponding cleaned html file in the folder

outputCleanedHTML.

4. If any new product HTML web page’s schema has to be extracted, copy the unclean

HTML web page into the inputUncleanedHTML

5. Repeat the step 3 and step 4 to get the extracted schema in the console.

19

19

Technical User Manual

This article explains the how to install the schema extractor project in any machine that has Java

Development Kit (JDK). I have used eclipse to implement the schema extraction. Main function

is located in the extractSchema.java. Run extractSchema.java as Java application as follows.

1. Locate the folder extractSchema in the project CD in the drive.

2. Copy the folder into any of the location in the local hard drive.

3. Import the project into the IDE

4. Make sure the location of temp.xml and Occurence.data mentioned in the file

extractSchema.java are pointing to corresponding location in the hard drive.

5. Make sure the location of the inputUncleanedHTML and outputcleanedHTML mentioned

in the extractSchema.java and runBatchFile.java are pointing to corresponding location

in the hard drive.

6. Turn on debug mode by setting the variable debugFlag to true in extractSchema.java

7. Use the following format to form the command to compile extractSchema.java

F:\javatest>"C:\Program Files\Java\jdk1.7.0_03\bin\javac.exe" extractSchema.java

8. Use the following format to form the command to run extractSchema.class

20

20

F:\javatest>"C:\Program Files\Java\jdk1.7.0_03\bin\java.exe" extractSchema bestbuy

The above format has an argument to run the program. The argument is the name of the

business which indicates the corresponding cleaned html file in the folder

outputCleanedHTML.

9. If any new product HTML web page’s schema has to be extracted, copy the unclean

HTML web page into the inputUncleanedHTML

10. Repeat the step 3 and step 4 to get the extracted schema in the console.

11. This module can be added to Titas implementation of WebOMiner by copying

extractSchema.java in the source and creating the object of extractSchema class in

Main.java of WebOMiner project.

21

21

Reference:

[1] Web Mining: Information and Pattern Discovery on the World Wide Web R. Cooley, B.

Mobasher, and J. Srivastava Department of Computer Science and Engineering.

[2] Chia-Hui Chang and Shao-Chen Lui. 2001. IEPAD: information extraction based

on pattern discovery. In Proceedings of the 10th international conference on World

Wide Web (WWW '01). ACM, New York, NY, USA, 681-688.

OI=10.1145/371920.372182 http://doi.acm.org/10.1145/371920.372182

[3] Towards Comparative Web Content Mining using Object Oriented Model Titas Mutsuddy A

Thesis Submitted to the Faculty of Graduate Studies through the School of Computer science.

[4] HtmlCleaner http://htmlcleaner.sourceforge.net/index.php

[5] Java programming http://www.java2s.com/

http://htmlcleaner.sourceforge.net/index.php�
http://www.java2s.com/�

	Professor: Dr. Christie Ezeife
	Abstract:
	1. Introduction
	I. Problem Statement:
	II. Purpose of this application:
	2. Implemented modules
	I. HTML Cleaner Module
	II. Cleaned HTML Parser
	III. Frequent pattern structure finder
	IV. Schema Extractor
	3. Empirical Evaluations
	4. Experimental Results
	5. Conclusion and Future work
	USER MANUAL
	Installing schema extractor software
	Technical User Manual
	Reference:

