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Abstract. Since transaction identifiers (ids) are unique and would not
usually be frequent, mining frequent patterns with transaction ids, show-
ing records they occurred in, provides an efficient way to mine frequent
patterns in many types of databases including multiple tabled and dis-
tributed databases. Existing work have not focused on mining frequent
patterns with the transaction ids they occurred in. Many applications
require finding strong associations between transaction id (e.g., certain
drug) and the itemsets (e.g., certain adverse effects) to help deduce some
pertinent lacking information (like how many people use this product in
total) and information (like how many people have the adverse effects).

This paper proposes a set of algorithms TidFPs, for mining frequent
patterns with their transaction ids in a single transaction database, in a
multiple tabled database, and in a distributed database. The proposed
technique scans the database records only once even with level-wise
Apriori-based mining techniques, stores frequent 1-items with their trans-
action id bitmap, outperforms traditional approaches and is extendible to
other tree-based mining techniques as well as sequential mining.

Keywords: Data mining, Transaction id, Frequent Patterns,
Distributed Mining, Multiple Table Mining.

1 Introduction

Mining frequent itemsets from a database table has been solved largely by al-
gorithms that are Apriori based (e.g., the Apriori algorithm [1]) and those that
are pattern-tree growth techniques (e.g., FP-tree [6]). Algorithms for mining
frequent patterns from sequential databases also exist and include GSP [11],
PrefixSpan [10], SPADE [12], SPAM [2], WAP [9] and PLWAP [4]. The focus
of all these existing techniques does not include generating frequent patterns,
showing the records where they occurred or with their transaction ids as may
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Table 1. Example Drug/Side Effects Database Records

Tid (Drug) Items (Side Effects)

D1 1 3 4

D2 2 3 5

D3 1 2 3 5

D4 2 5

be needed by some applications. Existing algorithms are also designed for single
table mining and not for mining multiple related tables in a not necessarily nor-
malized database. Assume a pharmacovigilance database table which contains
reports about the adverse events of certain drugs from medical professionals as
well as patients as depicted in Table 1 where the set of items (adverse side ef-
fects) I = {1, 2, 3, 4, 5} and the set of transaction ids (Drugs) Tids = {D1, D2,
D3, D4}.

Mining all drugs that have similar frequent side effects at minimum support
of 50% would require generating frequent itemsets (or frequent side effects) with
the transaction id (or Drug id) in the format [< itemset > Tid-list] that allows
mining more informative large itemsets as L = { [< 1 > D1D3], [< 2 > D2D3D4],
< 3 > D1D2D3], [< 5 > D2D3D4], [< 1, 2 > D2D3D4],[< 1, 3 > D1D3],
[< 2, 3 > D2D3], [< 2, 5 > D2D3D5], [< 3, 5 > D2D3], [< 2, 3, 5 > D2D3]}.

1.1 Contributions and Outline

This paper proposes a series of algorithms for mining frequent patterns with
their transaction ids on different types of databases, including (i) from a single
table, (ii) from a multiple database set of related tables, (iii) from a horizon-
tally distributed database tables, and (iv) from a vertically distributed database
tables. The objectives of the proposed techniques are:

1. Enabling more informative mining: For many applications, just producing
the frequent patterns without linking them to the specific transactions they
occurred in, may not be adequate. Also, enabling mining of multiple related
tables either in a single or distributed database environment, provides answers
to more complex queries.

2. Improving Mining Efficiency: This system aims at improving the mining
efficiency by cutting down from several to one, the number of times the original
database is scanned for purposes of support counting.

Section 2 presents related work, Section 3 presents the proposed systems:
TidFP, TidFP-multi, TidFP-hordist and TidFP-vertdist miners for respectively
mining single table, multiple tables, horizontally distributed tables, and ver-
tically distributed tables. Section 4 describes the experimental results, while
section 5 presents conclusions and future work.
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2 Related Work

Association rule can be used to find correlation among items in a given trans-
action. Association rule mining was proposed in [7], where the formal definition
of the problem is presented as: Let I = {i1, . . . , in} be a set of literals, called
items. Let database, D be a set of transaction records, where each transaction T
is a set of items such that T ⊆ I. Associated with each transaction is a unique
identifier, called its transaction id (TID). We say that a transaction T contains
X, a set of some items in I, if X ⊆ I. An association rule is an implication of
the form X → Y , where X ⊆ I, Y ⊆ I, and X ∩ Y = ∅. The rule X → Y
holds in the transaction set D with confidence c if c% of transactions in D that
contain X also contain Y. The rule X → Y has support s in the transaction set
D if s% of transactions in D contain X ∪ Y . An example database is shown in
Table 1. Here, there are four transactions with TID D1, D2, D3, and D4. The
rule {side effect 1} → {side effect 2} is an association rule because with a
given minimum support of 50% or 2 out of 4 transactions, the 2-itemset (1,2)
which, this rule is generated from, has a support of 3/4 or 75%. The confidence
for this rule is 1/2=50%.

Several important association rule mining algorithms including the Apriori
[7], [1], and Fp-growth [6] exist. The basic idea behind the Apriori algorithm
[7], [1], is to level-wise, use shorter frequent k-itemsets (Lk) to deduce longer
frequent (k+1)-itemsets (Lk+1) starting from candidate 1-itemsets consisting of
single items in the set I defined above, until either no more frequent itemsets
or candidate itemsets can be found. Thus, the Apriori algorithm finds frequent
k-itemsets Lk from the set of frequent (k-1)-itemsets Lk−1 using the following
two main steps involving joining the L(k − 1) with L(k − 1) Apriori-gen way
to generate candidate k-itemsets Ck, and secondly, pruning the Ck of itemsets
not meeting the Apriori property or not having all their subsets frequent in
previous large itemsets. To obtain the next frequent Lk from candidate Ck,
the database has to be scanned for support counts of all itemsets in Ck. A
modified version of the Apriori algorithm called AprioriTid [1] avoids re-scanning
the database to enumerate frequent patterns. AprioriTid maintains a candidate
set C′

k. Every entry of C′
k has two parts. One is transaction ID and the other

is a list of k-itemsets. Instead of scanning the database to count the support
for every candidate itemset, the algorithm iterates C′

k. Simultaneously, Ck+1

is generated to enumerate (k+1)-itemsets. Although transaction Ids for every
frequent itemsets can be obtained with this algorithm, experiments show that
AprioriTid approach slows down performance once it processes large datasets.
Since level-wise candidate generation as well as numerous scans of the database
had been seen as a limitation of this approach, optimization techniques in the
literature and alternative tree-based solution proposal with Frequent pattern
tree growth FP-growth [5], [6] had also been used. The FP-growth approach
scans the database once to build the frequent header list, then, represents the
database transaction records in descending order of support of the F1 list so that
these frequent transactions are used to construct the FP-tree. The FP-tree are
now mined for frequent patterns recursively through conditional pattern base
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of the conditional FP-tree and suffix growing of the frequent patterns. None of
the frequent itemset mining algorithms considers mining frequent patterns with
their transaction ids.

Some existing sequential pattern mining algorithms with techniques using
transactions IDs to generate frequent sequential patterns and count supports
include SPADE [12] and SPAM [2]. SPADE uses a vertical id-list database format
that associates each sequence to a list of objects in which it occurs along with the
time-stamps and all frequent sequences are enumerated through temporal joins
(or intersections) on id-lists. SPADE only needs to access the original database
3 times for support counting. Algorithm SPAM [2] has similar ideas as SPADE.
However, instead of vertical representation of id-list, SPAM uses vertical bitmap
representation of the entire database that fits in main memory. These sequential
mining techniques are not focussed on generating Fps with their Tids and incur
such limitations as inefficient memory utilizations and not suitable to scale to
very large databases.

3 The Proposed TidFP Algorithms

Section 3.1 presents the main algorithm TidFp, being proposed for mining fre-
quent patterns with the transaction ids where they occurred. Section 3.2 presents
the version of the algorithm for mining multiple tables called TidFp-multi,
section 3.3 presents the version of the algorithm for mining horizontally dis-
tributed database tables called TidFp-hordist, while section 3.4 provides the
TidFp-vertdist for mining vertically distributed database tables.

3.1 TidFp for Mining Fps with Transaction Ids on a Single Table

Since an important goal of the TidFp algorithm is linking all frequent patterns to
the database records or transactions where they came from, the TidFp algorithm
represents each frequent k-itemset as an m-attribute tuple of the form < Fk1 ,
T1k1 , T2k1 , . . . , Tmk1 >, where Fk1 is the first frequent k-itemset, and Tmk1 is
the mth transaction id of the first frequent k-itemset. For example, given Table
1 and minimum support of 50%, the list of frequent 1-itemsets is F1 ={< 1, D1,
D3 >, < 2, D2, D3, D4 >, < 3, D1, D2, D3 >, < 5, D2, D3, D4 >}. This implies
as well that the candidate 1-itemsets listed by this technique is in the same
form as: C1 ={< I1, T11, T21, . . . , Tm1 >}, where I1 is the the first candidate
1-itemset, and Tm1 is the mth transaction id of the first candidate 1-itemset. For
our example drug database, the candidate 1-itemset is given as C1 ={< 1, D1,
D3 >, < 2, D2, D3, D4 >, < 3, D1, D2, D3 >, < 4, D1 >, < 5, D2, D3, D4 >}.
Thus, with this TidFp technique, the database is scanned only once to obtain
the candidate 1-itemsets with a list of their Tids. The Tids of each candidate
itemset is implemented either as a bitmap stored for each itemset or as only
one stored bitmap that itemsets point to. Then, the count of each candidate
itemset’s Tids is equivalent to the support of the itemset. The itemsets having
support less than the minimum support are excluded from the frequent 1-itemset



TidFP: Mining Frequent Patterns in Different Databases 129

list, leading to the itemset < 4, D1 > being deleted from the C1 list to get F1.
In order to get the higher order candidate and frequent (k+1)-itemsets Fk+1,
given a frequent k-itemset Fk, TidFp algorithm applies a modification of the
Apriori-gen join function called the map-gen join function, which works on two
components of the itemsets consisting of the itemset part and the transaction
id part and obtaining higher order frequent (k+1)-itemsets does not require re-
scanning the database for their supports as is needed with the Apriori-gen join.
With the TidFp, the candidate (k+1)-itemsets Ck is obtained from the frequent
k-itemsets for k ≥ 1, by joining frequent k-itemsets Fk with itself mapgen way
such that Ck+1 = Fk �� Fk. To join mapgen way, for each pair of itemsets M
and P ∈ Fk where each Fk itemset has the two parts “< itemset, transaction id
list >”, the following three conditions have to be satisfied: M joins with P to
get itemset M ∪ P if the following conditions are satisfied.
(a) itemset M comes before itemset P in Fk,
(b) the first k-1 items in M and P (excluding just the last item) are the same,
(c) the transaction id list of the new itemset M ∪ P represented as T idM∪P is
obtained as the intersection of the Tid lists of the two joined k-itemsets M and
P and thus, T idM∪P = T idM ∩ T idP .
The formal algorithm TidFp is presented as Algorithm 1.

Algorithm 1. (TidFp:Computing Frequent Patterns with Tids)

Algorithm TidFp()
Input: A list of 1-items, Transaction Table of 1-items,

minimum support s%.
Output:A list of frequent patterns Fps.
Other variables: candidate sets Ck, Frequent k-itemsets Fk, k = 1 initially.
begin

1. Scan the DB once to compute
Ck = {< itemk1,T idlistitemk1 >, . . ., < itemkm,T idlistitemkm >}.
2. Compute frequent k-itemset Fk from candidate k-itemsets
Ck as Fk = {list of k-itemset with Tidlist count ≥ minsupport }.
3. While (Fk �= ∅) do
begin
3.1. k = k+1
3.2. Compute the next candidate set Ck+1 as Fk map-gen join Fk.
i.e. Each itemset M ∈ Fk joins with another itemset
P ∈ Fk if the following conditions are satisfied.

(a) itemset M comes before itemset P in Fk

(b) the first k-1 items in M and P (excluding just the last
item) are the same.
(c) Tid list of the two joined k-itemsets M and P is:
T idM∪P = T idM ∩ T idP .

3.3. For each itemset in Ck do
3.3.1. Calculate all subsets and prune if not previously large.

3.4.If Ck = ∅ then break and go to step 4
end
4.Compute all Frequent patterns as FP = F1 ∪ . . . Fk

end
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Table 2. Example Patient/Drugs Database Records

Drug Side Effects

P1 D1 D2

P2 D1 D2 D3

P3 D3 D4

P4 D1 D2 D4

3.2 TidFp-multi: Mining FPs on Multiple Tables with Transaction
Ids

One advantage of mining frequent patterns with transaction ids is that it facil-
itates discovering more meaningful knowledge from not just a single database
table but a database with a multiple of related tables. It can also be extended
to distributed databases having partitioned tables distributed across a number
of sites. For example, consider a pharmacovigilance database, which has reports
about adverse events of certain drugs from medical professionals and patients
and there is need to answer queries from two related database tables Drug/Side
Effects (as in Table 1) and Patient/Drug shown as Table 2. We might be inter-
ested in answering with frequent pattern mining, questions like the following,
which will not be easily answered with simple SQL or stored procedure queries.
1. How many people have various patterns and frequent patterns of adverse ef-
fects given minimum 50% total occurrence?
2. How many people use frequent combinations of products having minimum
total occurrence of 50%?
3. Which drugs have dangerous combinations of adverse effects?
Answering query 1 above requires finding the TidFp of Table Drug/Side Effect
(Table 1) to get T idFpDrug, also finding TidFp of Table Patient/Drug (Table 2)
to get T idFpPatient and getting the count of T idFpDrug ∩ T idFpPatient. Query
2 is answered by mining TidFp on table Patient, while query 3 is answered by
mining TidFp on Table Drug.

Thus, mining more complex knowledge from a multiple of related tables in a
database, would normally entail applying the TidFp algorithm on the individual
database tables and answering the queries by either integrating the mined FPs
from different tables using set operations of intersection, union, minus as is
suitable to answer the queries. Having the Tids with FPs makes this integration
easy and possible.

3.3 TidFp-hordist: Mining Horizontally Distributed Tables with
TidFp

Most existing algorithms on mining distributed databases including [3], [8] fo-
cus on privacy-preserving distributed mining of association rules, whereby the
data at different sites are secure data that are not shared with other sites. Many
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applications belong to the same organization (e.g., an automobile company), lo-
cated at different sites and collaborative mining of distributed data at different
sites would provide both local and global knowledge for marketing promotions
among others. There are two main techniques for partitioning global data or ta-
ble T, belonging to an organization into f fragments of the table based on some
fragmentation criteria, to be distributed at perhaps f locations. First method is
horizontal fragmentation where each horizontal fragment, Fi, has a number nFi

of records of the global table T such that
∑f

i=1 nFi = |T | meaning that the sum
of the number of records in all f fragments will give back the cardinality of the
global table T. On the other hand, each vertical fragment of T has only some
attributes of T but has the same cardinality as T giving that the sum of the
arity (number of attributes) in each of the f vertical fragments Fi, is the same as
the arity of the global table T, that is,

∑f
i=1 arityFi = arityT . Thus, although

the global data T, is distributed either horizontally or vertically, the goal of dis-
tributed frequent pattern mining given a minimum support s threshold is to find
all global frequent patterns GFPs and local frequent patterns LFPs that meet
the minimum support threshold.

An Existing Algorthm on Distributed Mining
The FDM algorithm [3] for distributed FP mining first generates global candi-
date k-itemset CGi(k) by apriori-gen joining of global large (k-1)-itemsets at site
i, GLi(k−1) with itself. The global (k-1)-itemsets at each site i, GLi(k−1), are
obtained by intersecting the global large (k-1)-itemsets with the local large (k-
1)-itemsets LLi(k−1). Next, the local database is scanned to prune the itemsets
in the candidate k-itemset CGi(k) whose local support is less than the minsup-
port s%, while the rest are put in the local large k-itemsets at site i, LLi(k−1).
Each site then broadcasts its local large k-itemsets LLi(k) to all sites, the union
of all the LLi(k) will give the LLi(k) from where each site computes the support
of items in LLi(k), which are broadcasted to all sites so that they can combine
them to compute the global frequent itemsets Gk.

The Proposed TidFp-Hordist Algorithm
The difference between the proposed TidFp-Hordist algorithm approach for min-
ing horizontally distributed table and other approaches like those of the FDM
[3] summarized above, is that the TidFp-Hordist takes advantage of the Tid’s of
each Fp when forming global large itemsets and thus, requires only one initial
broadcasting of the first local frequent 1-itemsets from all sites to each site and
global frequent 1-itemset GFP1 is computed as the union of all local LFPi(1)

itemsets while the next global candidate (k+1)-itemset, Ck+1 is computed as
global GFPk map-gen join GFPk. Thereafter, subsequent global GFPk and
candidate Ck are computed without any further broadcast and support count-
ing from local databases. The formal TidFp-Hordist algorithm is presented as
Algorithm 2.
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Algorithm 2. (TidFp-Hordist:FPs with Tids in Horizontally Distributed DBs)

Algorithm TidFp-Hordist()
Input: A list of 1-items, a number i of sites,

a set of i horizontally fragmented Transaction
Tables of 1-items DBi, minimum support s%.

Output:A list of global frequent patterns GFps.
Other variables: global candidate sets GCk, global

Frequent k-itemsets GFk, local Frequent k-itemsets LFk

k = 1 initially.
1. Scan each local DBi once to compute
LCi(k) = {< itemk1,T idlistitemk1 >, . . ., < itemkm,T idlistitemkm >}.
2. Compute each local i frequent k-itemset LFi(k)

from local candidate k-itemsets LCi(k) as
LFi(k) = {list of k-itemset with Tidlist count ≥ minsupport}.
3. Let each site i broadcast its local frequent LFi(k).
4. Compute global GFk as itemsets in the union of all local LFi(k)

with support ≥ s% of global |DB|.
5. At each site i, while global (GFi(k) �= ∅) do
begin
5.1. k = k+1
5.2. Compute the next global candidate set GCk from GFk−1

as GFk−1 map-gen join GFk−1.
5.3. For each itemset in global GCk do

5.3.1. Calculate all subsets and prune if not previously large.
5.4.If GCk = ∅ then break and go to step 6
5.5. Compute GFk as itemsets in GCk with support count ≥ minsupport.
end
6.Compute all global Frequent patterns as
GFP = GF1 ∪ . . . GFk

end

Application of the TidFp-Hordist Algorithm
EXAMPLE 2: Given the two horizontally fragmented tables shown as Tables 3
and 4, which are equivalent to the example database of Table 1, and a minimum
support threshold of 50%, use the TidFp-Hordist algorithm to obtain the global
frequent patterns GFP, across the two distributed tables at two sites.

SOLUTION 2: Applying the algorithm TidFp-Hordist to the two horizontally
distributed database tables above at minsupport of 50% to mine global frequent
patterns GFPs would entail executing the steps of the algorithm as follows: Step 1,

Table 3. Horizontally Distributed Drug Table 1

Tid (Drug) Items (Side Effects)

D1 1 3 4

D2 2 3 5



TidFP: Mining Frequent Patterns in Different Databases 133

Table 4. Horizontally Distributed Drug Table 2

Tid (Drug) Items (Side Effects)

D3 1 2 3 5

D4 2 5

we compute the local for site 1 candidate C1(1)= { < 1, T1 >, < 2, T2 >, <
3, T1, T2 >, < 4, T1 >, < 5, T2 > }. Then, we compute the local for site 2
candidate C2(1)= { < 1, T3 >, < 2, T3, T4 >, < 3, T3 >, < 5, T3, T4 > }. Step
2, we compute the local frequent LFi(k) as: LF1(1) = { < 1, T1 >, < 2, T2 >, <
3, T1, T2 >, < 4, T1 >, < 5, T2 > }. LF2(1)={ < 1, T3 >, < 2, T3, T4 >, < 3, T3 >,
< 5, T3, T4 > }. Step 3 entails each site having all local LFi(k) through broadcast.
Step 4, we now get global GF1 = itemsets in ∪2

i=1LFi(k) with support of 50%
of global DB cardinality with count of at least 2. GF1 is from LF1(1) ∪ LF2(1)

= { < 1, T1, T3 >, < 2, T2, T3, T4 >, < 3, T1, T2, T3 >, < 5, T2, T3, T4 > }. Step 5
computes the next global candidate set at each site GC2 as: GF1 map-gen GF1 =
{ < 1, 2, T3 >, < 1, 3, T1, T3 >, < 1, 5, T3 >, < 2, 3, T2, T3 >, < 2, 5, T2, T3, T4 >,
< 3, 5, T2, T3 >}. The next global frequent GF2 is computed from GC2 as {<
1, 3, T1, T3 >, < 2, 3, T2, T3 >, < 2, 5, T2, T3, T4 >, < 3, 5, T2, T3 >}. Back to
beginning of step 5, next global candidate GC3 = GF2 map-gen GF2 = {<
2, 3, 5, T2, T3 >} and the frequent GF3 = {< 2, 3, 5, T2, T3 >}. The global GFPs
= ∪3

i=1GFPi, which are the same as the table mined undistributed.

3.4 TidFp-Vertdist: Mining Vertically Distributed Tables with
TidFp

The version of the TidFp algorithm for mining vertically distributed database is
verymuch like the one formining the horizontally distributeddatabase discussed in
detail above. The difference is in how the tables are fragmented, which only affects
how the supports of the local and global tables are computed. In the horizontally
fragmented tables, the local support counts are different and based on the local
cardinality, which is less or equal to the cardinality of the global database. On the
other hand, in the vertically distributed tables, the support counts of the vertical
fragments and the global database are the same. As defined in the previous section,
a vertical fragment of a table has only some of the attributes of the original table
but has all records of the table. For example, the exampleDrugTableT (Tid,Attr1,
Attr2, Attr3, Attr4), can be fragmented vertically into two tables with schemas Tv1

(Tid, Attr1, Attr2) and Tv2 (Tid, Attr3,Attr4). Our application of the algorithm
on the vertically fragmented tables produced the same correct results as well.

4 Experiments and Performance Analysis

To test the proposed TidFp algorithm, we conducted experiments to
(1) determine performance gain in terms of CPU execution time gain of the
TidFp in comparison with the Apriori algorithm, which also determines Tids.
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In this case, we first ran the Apriori algorithm and then scanned the database
for each frequent pattern to collect the TIDs they appeared in.

(2) determine memory usages of the proposed TidFp in comparison with the
Apriori algorithm.

Comparing TidFp and Apriori Execution Times and Memory Usages
The two algorithms Apriori with Tid and our proposed TidFp algorithm were im-
plemented in C++ with the same data structure in UNIX environment, where
the programs are compiled with “g++ filename” and executed with “a.out”.
Then, the CPU execution times for the two algorithms were tested for trans-
actional databases of different sizes of 250K (or 250 thousand) records, 500K,
750K, 1M (or 1 million), and 2M records generated with the IBM quest synthetic
data generator publicly available at at http://www.almaden.ibm.com/cs/quest/
and used by other pattern mining research. The characteristics of the generated
data are described as follows: |D|: Number of records in the database, |C|: Av-
erage length of the records, |S|: Average length of maximal potentially frequent
itemset, |N |: number of items (attributes).

With the average length of records (C) in our data as 10, and number of
attributes (N) as 10 with S as 5, a full description of one set of experimen-
tal data with number of records as 250 thousand is C10.S5.N20.D250K. All
experiments are performed on on a more powerful multiuser UNIX SUN mi-
crosystem with a total of 16384 MB memory and 8 x 1200 MHz processor speed,
which generally produces faster execution times than when run on microcom-
puter environment. The minimum support for the experiments range between
10% and 50%. The result of the experiments are summarized in five tables below
to show:

(1) Execution time efficiencies of the algorithms at medium minimum support
threshold of 40% and for different database sizes as shown in Table 5.
(2) scalability of the algorithms with a large database of 2 million records at
different minimum supports with data C10.S5.N20.D2M as shown in Table 6.
(3) feasibility and scalability at a medium sized database of 500K records at
different minimum supports with data C10.S5.N20.D500K as shown in Table 7.
(4) feasibility and scalability of the algorithms at a small sized database of 250K
records at different minimum supports C10.S5.N20.D250K as shown in Table 8.
(5) Memory usages of the algorithms at medium minimum support threshold of
40% for different database sizes as shown in Table 9. The RES memory usage
value is collected for the program process of “a.out” on UNIX with the “top -u”
command.

It can be seen from the experiments that the proposed TidFp outperforms the
Apriori algorithm to the tune of 25 times better in execution time and is more
scalable than the Apriori algorithm and in particular, at low minimum support
thresholds and large data sizes. From experiment 5 on Table 9, it can be seen
though that the proposed TidFp algorithm requires more running memory than
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Table 5. Execution times for different datasets at MinSupport of 40%

Algorithms Runtime (in secs) for different Data sizes)
250K 500K 750K 1M 2M

TidFp 22 47 64 94 187

Apriori 542 1071 1623 2239 4495

Table 6. Execution times for dataset at different MinSupports (large data 2M)

Algorithms Runtime (in secs) at different supports(%)
10% 20% 30% 40% 50%

TidFp 23236 1472 330 187 147

Apriori crashed 39434 11571 4495 2141

Table 7. Execution times for dataset at different MinSupports (medium data 500K)

Algorithms Runtime (in secs) at different supports(% )
10% 20% 30% 40% 50%

TidFp 6231 391 90 47 38

Apriori crashed 8702 2729 1071 509

Table 8. Execution times for dataset at different MinSupports (small data 250K)

Algorithms Runtime (in secs) at different supports(% )
10% 20% 30% 40% 50%

TidFp 2853 176 37 22 17

Apriori crashed 4329 1348 542 267

Table 9. Memory Usages for Different Data Sizes at Minsupport of 40%

Algorithms Memory Usages for Different Data Sizes
250K 500K 750K 1M 2M

TidFp 10MB 14MB 18MB 22MB 42MB

Apriori 2872KB 3664KB 4408KB 5424KB 10M

the Apriori algorithm but this is a reasonable tradeoff. This good performance
of the TidFp algorithm is because the TidFp only needs to scan the database
once, while the Apriori algorithm re-scans the database for every support count-
ing. When the TidFp algorithm intersects the transaction IDs for 2 items sets,
it uses bitmap representation. For example, the transaction ID bitmaps from
the two F1 itemsets [< 1 > D1D3] and [< 1 > D2D3D4] obtained when the
TidFp executes the operation [< 1 > D1D3] mapgen-Join [< 1 > D1D3D4] are
shown in Table 10. The Tid list of the resulting 2-itemset < 1, 2 > obtained by
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Table 10. Bitmaps for Itemsets < 1 >, < 2 > and < 1, 2 > Tids

Itemset Transaction id Bitmap
D1 D2 D3 D4

< 1 > 1 0 1 0

< 2 > 0 1 1 1

< 1, 2 > 0 0 1 0

mapgen-joining the two 1-itemsets < 1 > and < 2 > is shown as the third row
of Table 10. The Tid list of the resulting (k+1)-itemset is obtained from inter-
secting the Tid lists of the two joining k-itemsets, which is accomplished with
bitmap AND operation.

5 Conclusions and Future Work

This paper proposes an intuitive approach for mining frequent patterns with
transaction ids, which is useful for addressing the needs of several applications in-
cluding mining multiple related tables in a database for more informative knowl-
edge discovery. The paper also introduced versions of this algorithm for mining
horizontally and vertically distributed databases and multiple related tables in a
database. It has also been shown through experiments that TidFp execution time
is up to 25 times better than the Apriori algorithm. It has also been shown that
both number of database scans needed for support counting and communication
costs are drastically reduced when this approach is employed. This approach is
extendible to other types of mining like mining sequences and on pattern growth
techniques for mining frequent patterns. Future work should also determine or
analyze the gain made through saving broadcast delays and resources as well as
execution time when mining distributed tables.
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