
E-Commerce Product Recommendation
Using Historical Purchases

and Clickstream Data

Ying Xiao and C. I. Ezeife(B)

School of Computer Science, University of Windsor,
401 Sunset Ave, Windsor, ON N9B 3P4, Canada

{xiao11q,cezeife}@uwindsor.ca

Abstract. In E-commerce, user-item rating matrices for collaborative
filtering recommendation systems are usually binary and sparse, showing
only whether or not a user has purchased an item previously. Clickstream
data containing more customer behavior have been used to improve
recommendations by some existing systems referred in this paper as
Kim05Rec, Kim11Rec, and Chen13Rec, using decision tree, association
rule mining and category-based interest measurements respectively. How-
ever, they do not integrate valuable information from historical pur-
chases and the consequential bond information between session-based
clicks and purchases. This paper proposes Historical Purchase with Click-
stream recommendation system (HPCRec), which normalizes the histor-
ical purchase frequency matrix to improve rating quality, and mines the
session-based consequential bond between clicks and purchases to gener-
ate potential ratings to improve the rating quantity. Experimental results
show HPCRec outperforms these existing methods, and is also capable
of handling infrequent user cases, whereas other methods can not.

Keywords: E-commerce recommendation system
Collaborative filtering · CF · Clickstream history
Weighted frequent item · Data mining

1 Introduction

Recommendation systems provide suggestions of products to users, such as what
items to buy, what music to listen to, or what online news to read [12]. Collab-
orative filtering (CF) is the most popular method used for recommendations,
where a user’s preferences can be associated with the preferences of a similar
user community. In E-commerce, CF usually takes a binary user-item rating
matrix (e.g., Table 1) as input, where “1” indicates that a user has purchased a

C. I. Ezeife—This research was supported by the Natural Science and Engineering
Research Council (NSERC) of Canada under an Operating grant (OGP-0194134)
and a University of Windsor grant.

c© Springer Nature Switzerland AG 2018
C. Ordonez and L. Bellatreche (Eds.): DaWaK 2018, LNCS 11031, pp. 70–82, 2018.
https://doi.org/10.1007/978-3-319-98539-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98539-8_6&domain=pdf

HPCRec System 71

product before, and “?” means a user has not. Given an incomplete user-rating
matrix R of m users for n items with missing ratings (ruj) of item j for user u,
the user-based neighborhood model CF [1] would predict the unknown ratings
(ruj) through the following steps: (1) computing the mean rating for each user
u; (2) calculating the similarity between target user u and all other users v; (3)
computing user u′s peer group P; and then (4) predicting rating for target user
u for item j.

The user-item rating matrix (eg., Table 1) in E-commerce usually contains
part information of the historical transaction records (e.g., Table 2). In Table 2,
each row records a purchase (a collection of item ids) that happened in a session
and there may be multiple products for each purchase. There are some known
fundamental issues with this approach as follows: (1) cold start: when new items
or new users with unknown ratings/preferences appear in the database; (2) spar-
sity issue: When the known rating data takes only a very small proportion in
the user-item rating matrix, (only a few hundreds of billions of products pur-
chased by users) leading to confusing and compromised recommendations; (3)
scalability issue: As the numbers of users and products grow rapidly, the time
complexity and space complexity issues become more prominent.

Methods for enhancing recommendation input data have been studied in
various papers, such as [4,8,9], since the user-item rating matrix in e-commerce
only shows what items a user has purchased previously, which does not provide a
lot of information about customer purchase history or item purchase history for
the purposes of improving recommendation accuracy. In addition to the rating
matrix, some other data sources such as clickstream data, meta data and trans-
actions have been discovered and utilized to improve recommendations. Click-
stream data have been used to predict a user’s next request [5], discover patterns
to build profile for customers [11], find the possibilities of purchasing items [14].
Transaction data (Table 2) is the detailed purchase history where each row
records item purchases that occurred in a session by a specific user. User-item
rating matrix (Table 1) is the basic input data format for CF recommenda-
tion systems. Clickstream data is the electronic record of a user’s activity on
the Internet [3]. In e-commerce, clickstream data reflects a user’s Internet foot-

Table 1. A user-item rating matrix

Customer\Item 1 2 3 4

1 ? 1 1 ?

2 1 1 ? 1

3 1 ? ? ?

Table 2. A historical transaction table

SessionId UserId Purchases

1 1 2

2 1 2, 3

3 2 1, 2, 4

4 2 2, 4, 4

5 3 1

6 3

72 Y. Xiao and C. I. Ezeife

prints for behaviors such as clicks, basket placement, purchases, reading reviews
and so on. Clickstream events may include attributes like SessionId, UserId,
ItemId, Category, Time, visit duration, visit types and IP address. Meta data
is the description of user preferences (such as product categories purchased (eg.
automotive, beauty, electronics, software); and product details (eg., OS is iOS,
item weight is 136 g, color is Black, etc.)). These information can be used in
the recommendation engines for comparing products and recommending similar
products.

1.1 Observations and Assumptions

Two assumptions are given in this section based on some observations.

Data Sparsity. CF method in E-commerce suffers from data sparsity of the
rating matrix given the large number of products. It only uses the binary user-
item rating purchase matrix (Table 1) which does not reflect much regarding:
(1) how much a user likes an item; (2) how frequently or how long ago a user
purchased an item; (3) what quantity of a product was purchased. This informa-
tion is not integrated in the CF user-rating matrix but can potentially improve
recommendations accuracy.

Information Distribution. Traditional CF systems only take purchase data
into calculation, despite the fact that there are other data available for anal-
ysis. Moreover, from the data provided by ACM RecSys 2015 [2] in the flies
yoochoose-clicks and yoochoose-buys. We can observe that the click data
(yoochoose-clicks) is almost 27 times more than the purchase data (yoochoose-
buys).

Consequential Relationship between Clicks and Purchases. Clickstream
data and the purchase data (Table 2) can be re-organized to include these user
click sequences as well as products purchased during each session as in Table 3.
Sometimes there are no purchases but only clicks in a session. The relationship
between clicks and purchases is called consequential relationship because clicks
lead to certain purchases.

Assumption 1. Need to improve the rating quality. The binary user-item rat-
ing matrix in Table 1 is less informative compared to the original transaction
records in Table 2 as it does not indicate how frequently an item is purchased.
If there is a way to extract more information from the transaction records into
the rating matrix to capture missing data, the recommendation system would
perform better with the more informative input data. We first form a user-item
purchase frequency matrix (Table 4) from Table 2, where each value represents
the amount of a product purchased by a user. We then normalize the purchase
frequency to a scaled value (0 to 1 in Table 5) representing how interested a
user is in one item as compared to various others, the formula is introduced in
Sect. 3.1.

Assumption 2. Need to improve the rating quantity. In the sessions with pur-
chases where purchases were made by a user in Table 3, the interest of the user

http://recsys.yoochoose.net/

HPCRec System 73

Table 3. Consequential table

SessionId UserId Clicks Purchases

1 1 1, 2 2

2 1 3, 5, 2, 3 2, 3

3 2 2, 1, 4 1, 2, 4

4 2 4, 4, 1, 2 2, 4, 4

5 3 1, 2, 1 1

6 3 3, 5, 2

Table 4. User-item purchase frequency
matrix

Customer\Item 1 2 3 4

1 ? 2 1 ?

2 1 2 ? 3

3 1 ? ? ?

for the purchased products is affirmative, whereas for the sessions without a
purchase, we cannot determine whether a user is interested in a product. How-
ever, the clicks in a session without a purchase may imply potential interest. We
mainly discover the session-based consequential bond to generate more poten-
tial rating scores. For example, for session 6 where user 3 clicked products 3,
5 and 2 in Table 3, if we can find sessions sharing a similar click pattern but
has purchased some product, then we can use the possibility to enrich the rat-
ing matrix such as Table 6 which is less sparse than the original table (Table 1).
We assume by integrating the consequential bond information to the user-item
purchase matrix, the accuracy of recommendations will be improved.

Table 5. Normalized user-item pur-
chase frequency matrix

Customer\Item 1 2 3 4

1 ? 0.89 0.45 ?

2 0.27 0.53 ? 0.8

3 1 ? ? ?

Table 6. Enriched and normalized user-
item purchase matrix

Customer\Item 1 2 3 4

1 ? 0.89 0.45 ?

2 0.27 0.53 ? 0.8

3 1 1 0.189 0.167

1.2 Paper Contributions

Studies in [3,10,13] have implied that there is a consequential relationship
between behaviors collected as clickstream data and purchase data. This paper
proposes the HPCRec system, which enriches the rating matrix from both quan-
tity (converting some initial ratings of 0 to a consequential bond values) and
quality (converting some initial ratings of 1 to a value between 0 and 1 that
includes frequency of purchase of an item) aspects. The enriched matrix is then
processed using the CF method. It takes the consequential table (eg., Table 3)
and user-item purchase frequency matrix (eg., Table 4) as input, follows four
main steps below to output a rating matrix with predicted ratings.

74 Y. Xiao and C. I. Ezeife

1. Normalizing user-item purchase frequency matrix to a new user-item rating
matrix using unit vector formula with details in Sect. 3.1.

2. In the consequential table, for each session without a purchase belonging
to a user, find the top-N similar sessions with purchases by comparing the
click sequences using function CSSM (Clickstream Sequence Similarity Mea-
surement) in Sect. 3.2. Then use the similarity as weight and assign to the
purchases in the selected top-N session. This step generates a weighted trans-
action table where weights are similarities assigned to purchases.

3. Using the weighted transaction table from step 2, call function TWFI
(Transaction- based Weighted Frequent Item) in Sect. 3.3 to get a list of items
with purchasing possibilities.

4. For each item from the previous step, if the user from step 2 has not previ-
ously purchased the product, enrich the resulting matrix from step 1 with the
possibility. Then, return to step 2 for the next session without a purchase if
possible, and otherwise continue to step 5.

5. With the enriched rating matrix, run the CF algorithm and predict ratings.
Return the rating matrix with predicted ratings.

The new feature contributions of paper include:

(i) Improving the quality of ratings by capturing the level of interest in
a product already purchased by a user before through record of normalized
frequency of purchase using the method in [15].

(ii) Improving the quantity of ratings with consequential bond between
clicks and purchases, for the sessions without purchases.

(iii) Improving the recommendation accuracy by processing the enriched
rating matrix generated in the CF algorithm.

(iv) Making recommendations for infrequent users. Our HPCRec system
performs a session-based interest mining algorithm which finds the interests of
the most similar sessions compared to the existing sessions without a purchase
for the user.

1.3 Paper Outline

Section 2 shows some important research related to integrating clickstream data
to make better recommendations; Sect. 3 proposes HPCRec system. Section 4
discusses experiments, and Sect. 5 presents conclusions and future work.

2 Related Work

Some important work have been done to integrate clickstream data into recom-
mendation systems. A few popular related strategies is discussed in this section.
noindent A stage-based decision tree approach [9]. Kim05Rec [9] first forms
a decision tree for basket placement based on behaviors such as searching, brows-
ing and click times. For each path in the tree, it gives the proportion of users
taking that path and uses it as the probability to enhance the user-item matrix

HPCRec System 75

with these basket placement probability data before running CF algorithm to
predict ratings. Kim05Rec [9] improves accuracy, but it shrinks the candidate
range by only taking the products which have been previously paid attention
to, only focuses on major cases by always choosing the popular path in the
decision tree. An association rule approach [8]. Kim11Rec [8] integrated
with association rule mining calculates the confidence between products in dif-
ferent stages including click, basket placement, and purchase. For instance, the
clicks (〈abc〉, 〈bcd〉, 〈efa〉) that happened in the click stage for three different
sessions, and there are some items such as a and b that a user has shown interest
during current session, then the system finds the most relevant clicked item in
(c, d, e, f) for a and b by comparing the lift score. Same for the basket place-
ment and purchase stages. The next step is assigning weights to the scores of
three different stages to calculate a final score. It was proven to outperform the
decision tree approach, but by applying association rule mining, it loses the con-
nection between users sharing special interests. A category-based common
interest approach [4] Chen13Rec finds the similarity between two users on
their clickstream sequences to address a better neighborhood with similar inter-
est. It first uses the longest common subsequence to compare two click sequence
groups of two users; the second indicator is the similarity between user-product
click frequency vectors showing the click times of a user for all products; the
third indicator is the similarity between user-product visiting duration vectors.
By selecting top-N similar users using three indicators, the CF method can use
it for neighbor selection and improve the poor relationship between users in the
rating matrix.

3 Proposed HPCRec System

This paper proposes a novel recommendation system HPCRec (Algorithm 1)
which integrates purchase frequencies and the consequential bond relationship
between clicks and purchases. By processing this information, it enhances the
user-item rating matrix in both quantity and quality aspects and then improves
recommendations. We use pre-processed consequential table (Table 3) showing
user click sequences with their purchases and frequency matrix (Table 4) showing
number of times an item is pruchased as input, and HPCRec returns a matrix
with predicted ratings (Table 7). There are three functions FN (Frequency Nor-
malization), CSSM and TWFI used in HPCRec. HPCRec was also proven to
give better recommendations to infrequent users. The HPCRec (Algorithm 1) is
explained with example Tables 3 and 4 as input:

1. Normalize the purchase frequency in Table 4 for each user on each item, and
get a normalized rating matrix by applying unit vector formula (Eq. 1) of
Sect. 3.1 as Table 5;

2. For each session without a purchase, such as session 6 for user 3
in Table 3. Calculate the similarity between session 6 and other ses-
sions with purchases (1,2,3,4,5) by comparing the clicks calling CSSM in

76 Y. Xiao and C. I. Ezeife

Algorithm 1. HPCRec System to Predict Ratings
Input: C, consequential table; F , frequency matrix
Output: P , a rating matrix with predicted ratings

1: M , normalized rating matrix ← FN(F) in Section 3.1;
2: for all N , session without a purchase ∈ consequential table do
3: T , weighted transaction table ← null;
4: for all Y , session with purchase ∈ consequential table do
5: similarity ← CSSM(N.clicks, Y.clicks) in Section 3.2;
6: add (similarity, Y .purchases) to T ;
7: end for
8: Is, weighted frequent items ← TWFI(T) in Section 3.3;
9: for all I, weighted frequent item ∈ Is do

10: if M does not contain ratings for (N.user,I.item) then
11: add (N .user,I.item,I.weight) to M ;
12: end if
13: end for
14: end for
15: P , rating matrix with predicted ratings ← CF(M);
16: return P ;

Sect. 3.2, get CSSM(〈3, 5, 2〉, 〈1, 2〉) = 0.37, CSSM(〈3, 5, 2〉, 〈3, 5, 2, 3〉) =
0.845, CSSM(〈3, 5, 2〉, 〈2, 1, 4〉) = 0.33, CSSM(〈3, 5, 2〉, 〈4, 4, 1, 2〉) = 0.245,
CSSM(〈3, 5, 2〉, 〈1, 2, 1〉) = 0.295; form a weighted transaction table using
the similarity as purchases and weight as transaction records such as [〈(2) :
0.37〉, 〈(2, 3) : 0.845〉, 〈(1, 2, 4) : 0.33〉, 〈(2, 4, 4) : 0.245〉, 〈(1) : 0.295〉];

3. Call TWFI in Sect. 3.3 with the weighted transaction table from step 2, and
get weighted frequent items (2:1, 3:0.189, 4:0.167); for all weighted frequent
items, if the user has not purchased it, add the possibility into the normalized
frequency matrix such as in Table 6.

4. Return to step 2 if there is more session without a purchase, otherwise, run
the CF algorithm using the updated rating matrix (Table 6) to get predicted
ratings for all of the original unknowns as demonstrated in Table 7, return
the rating table with predicted ratings. Accuracy also can be calculated.

Table 7. User-item rating matrix with predicted ratings

Customer\Item 1 2 3 4

1 0.63 0.89 0.45 0.49

2 0.27 0.53 0.35 0.8

3 1 0.74 0.27 0.33

HPCRec System 77

3.1 FN: Frequency Normalization

In this module, we take the user-item purchase frequency (Table 4) as input,
normalize the frequencies into numbers between 0 and 1 using the unit vector
formula [15] (Eq. 1). For each user, 〈x1, x2, x3, . . . , xn〉 is the purchase vector
showing the purchase frequency of product 1, 2, 3, . . . , n respectively. For user 2,
the purchase vector is 〈1, 2, 0, 3〉, so the normalized purchase frequency for user 2
on item 2 is 2√

12+22+02+32
= 0.53. The normalized frequency matrix is in Table 5,

from which we can see that for each user, the differences between ratings reflects
the different levels of interest. We also tried the feature scaling normalization
method (Eq. 3) to normalize the frequencies, but the unit vector formula was
more effective.

x′ =
x

√
x2
1 + x2

2 + x2
3 + · · · + x2

n

. (1)

3.2 CSSM: Clickstream Sequence Similarity Measurement

Inspired by the idea of Chen in [4], we introduce CSSM (Clickstream sequence
similarity measurement) which takes the frequency and position of items in
sequences into consideration to calculate the similarity. Instead of calculating
the category visiting sequences and frequencies, CSSM calculates product click
sequences and frequencies. We explain this function in steps using two click
sequences 〈3, 5, 2〉 and 〈3, 5, 2, 3〉 in Table 3 as an example.

1. Calculate the longest common subsequence rate LCSR(x, y) = LCS(x,y)
max(|x|,|y|) ,

where the longest common subsequence (LCS) [7] is defined in Eq. 2.
e.g., LCS(〈3, 5, 2〉,〈3, 5, 2, 3〉) = 3, the maximum sequence size is 4, so
LCSR(〈3, 5, 2〉,〈3, 5, 2, 3〉) = 3/4;

LCS(Xi, Yj) =

⎧
⎪⎨

⎪⎩

∅ if i = 0 or j = 0
LCS(Xi−1, Yj−1) � xi if xi = yj

longest(LCS(Xi, Yj−1), LCS(Xi−1, Yj)) if xi �= yj
(2)

2. Calculate the item frequency similarity (FS). First, form a distinct itemset
containing all the items in both sequences, eg., 〈2, 3, 5〉 in this example. For
each sequence, form a vector of frequency for the items in itemset, 〈1, 1, 1〉
for 〈3, 5, 2〉, and 〈1, 2, 1〉 for 〈3, 5, 2, 3〉; then find the cosine similarity between
two vectors, which is 0.94 in this case;

3. Compute the final similarity Sim = α × LCSR + β × FS, where α + β =
1, 0 < α, β < 1, α and β are weight to balance the two indicators from step 1
and 2. In the real procedure, we train our dataset with different α and β to
find the best combination for prediction. If set α = 0.5, β = 0.5, the final
similarity Sim(〈3, 5, 2〉, 〈3, 5, 2, 3〉) = 0.5 × 3/4 + 0.5 × 0.94 = 0.845 in the
example.

78 Y. Xiao and C. I. Ezeife

3.3 TWFI: Transaction-Based Weighted Frequent Item

This function takes a weighted transaction table where weights are assigned to
each transaction as input, and returns items with weighted support in a given
threshold. We explain this with an example [〈(2) : 0.37〉, 〈(2, 3) : 0.845〉, 〈(1, 2, 4) :
0.33〉, 〈(2, 4, 4) : 0.245〉, 〈(1) : 0.295〉], MinWeightedSupport = 0.15, where each
unit has pattern and weight in such form 〈(item ids in a transaction):weight〉.
1. Calculate support. Form a distinct item set from all the transactions, and

find the support for each item, e.g., 〈1 : 2, 2 : 4, 3 : 1, 4 : 3〉;
2. Compute the average weighted support (AWS = AW × support) for each item

using the same strategy in [16], where average weight (AW = sum(weight)
support),

which makes AWS = sum(weight), e.g., AWS(4) = 0.33 + 0.245 + 0.245 =
0.82, 〈1 : 0.625, 2 : 1.79, 3 : 0.845, 4 : 0.82〉; We also tried using maximum
weighted support (MWS = max(weight) × support), AWS(4) = max(0.33,
0.245,0.245) = 0.33 × 3 = 0.99, the maximum approach was proven good, but
the average approach is better.

3. Normalize weighted support using feature scaling (Eq. 3), so for the average
weighted support, max = 1.79, min = 0.625, then the new average weighted
support for item 3 is (0.845−0.625)/(1.79−0.625) = 0.189, all the weighted sup-
ports are 〈1 : 0, 2 : 1, 3 : 0.189, 4 : 0.167〉;

x′ =
x − min

max − min
. (3)

4. Return all the items with normalized weighted support greater or equal to
MinWeightedSupport, e.g., (2:1, 3:0.189, 4:0.167) for using average weighted
support;

4 Evaluation and Comparative Analysis

We have implemented HPCRec and compared with some existing approaches,
and it has been proven that HPCRec is capable of making recommendations for
infrequent users which the existing systems can not. Experimental results show
that HPCRec is more accurate which proves that the consequential bond with
the normalized frequencies are more effective at predicting user interest.

4.1 An Example for Handling Infrequent User Cases

Here we use a small example (Tables 9 and 8) to explain that HPCRec can handle
the infrequent case. There are 100 sessions in this example, user 100 intends to
purchase “g” after reviewing “g” repeatedly for three times, but only HPCRec
can predict that. The weak bond between infrequent users is ignored by other
approaches. We find the most similar clicks sequence for “ggg” which is “fgh”,
the similarity between them maybe weak, but it is the strongest for “ggg”, then
we use the purchases in session 99 as recommendations, which successfully finds
item “g” for user 100.

HPCRec System 79

Table 8. Product table

ItemId 1 2 3 4 5 6 7 8

ItemName a b c d e f g h

Category 1 2 2 1 3 4 1 4

Table 9. Consequential table

SessionId UserId Clicks Purchases

1 1 abcdade ace

2 2 cdea acdd

3 3 ddcabe aed

4–98 4–98 abce ace

99 99 fgh fg

100 100 ggg

4.2 Experimental Design

To make sure the evaluation is fair, we only select the top-N (N is productNum-
ber/10) scores from different approaches and normalize the scores using Eq. 3
as the rating to keep the measuring standard consistent. Then we feed the new
rating matrix to an evaluation method of an existing recommendation library
Librec [6] to test all of the approaches. For Chen13Rec [4], we use the measured
relationship to enhance the similarity table during the evaluation. For HPCRec,
we ran through using both average weighted and maximum weighted support
strategies in module TWFI (Sect. 3.3).

Dataset and Sample Selection: We use the dataset provided by YOO-
CHOOSE GmbH for ACM RecSys 2015 [2], which is from an online retailer in
Europe. There are two files recording 33,040,175 clicks and 1,177,769 purchase
events respectively, all of the events happened in 9,512,786 unique sessions, the
total amount of product is 52,739 belonging to 339 categories. For sample selec-
tion, we randomly select a certain amount of session 10 times and use the average
value. For each time, given the lack of user information in the dataset, we gen-
erate a reasonable number of user and assign to the sessions randomly then use
the average value from 10 times attempts. It has been proven that regardless of
how users are distributed in sessions, our methods are better.

Method: We evaluate with both user-based and item-based CF recommenda-
tions. Itemknn selections and pcc similarity method are used for item-based
evaluation, userknn and cosine similarity method are used for user-based evalu-
ation. We use evaluation measurements AP (Average Precision), Precision and
Recall from Librec [6]. For the calculation details, please visit Librec.

4.3 Experimental Results

From both user-based (Fig. 1) and item-based (Fig. 2) CF evaluation results on
varying numbers of sessions, we can see the accuracy keeps dropping as the amount
of sessions increases, our approaches are still better in this respect. For average
accuracy and recall, our methods significantly beats others. We select a different
number of top-N scores fromall of themethods for calculation and evaluation.Both
user-based CF (Fig. 3) and item-based CF (Fig. 4) are still the best which proves
the high quality of our scores. Kim05Rec [9] also demonstrates good performance.

https://www.librec.net/
http://recsys.yoochoose.net/
https://www.librec.net/
https://www.librec.net/

80 Y. Xiao and C. I. Ezeife

Fig. 1. User-based CF Evaluation on different number of sessions

Fig. 2. Item-based CF Evaluation on different number of sessions

Fig. 3. User-based CF Evaluation on different number of top-N scores

HPCRec System 81

Fig. 4. Item-based CF Evaluation on different number of top-N scores

5 Conclusions and Future Work

To conclude, proposed system HPCRec enhances the quantity and quality of
ratings of the user-item matrix by integrating historical purchases and click-
stream data, therefore improves the recommendation qualities. Our experimen-
tal results show that our approaches outperform some existing systems referred
in this paper. For future work, we plan to mine more information out of the his-
torical data to improve recommendations such as how long ago a user purchased
an item, and the frequent sequential purchase patterns, toward incorporating
multiple data sources.

References

1. Aggarwal, C.C.: Recommender Systems. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-29659-3

2. Ben-Shimon, D., Tsikinovsky, A., Friedmann, M., Shapira, B., Rokach, L., Hoerle,
J.: Recsys challenge 2015 and the yoochoose dataset. In: Proceedings of the 9th
ACM Conference on Recommender Systems, pp. 357–358. ACM (2015)

3. Bucklin, R.E., Sismeiro, C.: Click here for internet insight: advances in clickstream
data analysis in marketing. J. Interact. Mark. 23(1), 35–48 (2009)

4. Chen, L., Su, Q.: Discovering user’s interest at e-commerce site using clickstream
data. In: 2013 10th International Conference on Service Systems and Service Man-
agement (ICSSSM), pp. 124–129. IEEE (2013)

5. Gündüz, Ş., Özsu, M.T.: A web page prediction model based on click-stream tree
representation of user behavior. In: Proceedings of the ninth ACM SIGKDD, pp.
535–540. ACM (2003)

6. Guo, G., Zhang, J., Sun, Z., Yorke-Smith, N.: LibRec: a java library for recom-
mender systems. In: UMAP Workshops, vol. 4 (2015)

7. Hunt, J.W., MacIlroy, M.D.: An Algorithm for Differential File Comparison. Bell
Laboratories, Murray Hill (1976)

8. Kim, Y.S., Yum, B.J.: Recommender system based on click stream data using
association rule mining. Expert Syst. Appl. 38(10), 13320–13327 (2011)

https://doi.org/10.1007/978-3-319-29659-3
https://doi.org/10.1007/978-3-319-29659-3

82 Y. Xiao and C. I. Ezeife

9. Kim, Y.S., Yum, B.J., Song, J., Kim, S.M.: Development of a recommender system
based on navigational and behavioral patterns of customers in e-commerce sites.
Expert Syst. Appl. 28(2), 381–393 (2005)

10. Moe, W.W., Fader, P.S.: Dynamic conversion behavior at e-commerce sites. Manag.
Sci. 50(3), 326–335 (2004)

11. Park, Y.J., Chang, K.N.: Individual and group behavior-based customer profile
model for personalized product recommendation. Expert Syst. Appl. 36(2), 1932–
1939 (2009)

12. Ricci, F., Rokach, L., Shapira, B.: Introduction to recommender systems handbook.
In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems
Handbook, pp. 1–35. Springer, Boston (2011). https://doi.org/10.1007/978-0-387-
85820-3 1

13. Sismeiro, C., Bucklin, R.E.: Modeling purchase behavior at an e-commerce web
site: a task-completion approach. J. Mark. Res. 41(3), 306–323 (2004)

14. Van den Poel, D., Buckinx, W.: Predicting online-purchasing behaviour. Eur. J.
Oper. Res. 166(2), 557–575 (2005)

15. Weisstein, E.W.: Normal Vector: From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/NormalVector.html (2002)

16. Yun, U., Leggett, J.J.: WFIM: weighted frequent itemset mining with a weight
range and a minimum weight. In: Proceedings of the 2005 SIAM International
Conference on Data Mining, pp. 636–640. SIAM (2005)

https://doi.org/10.1007/978-0-387-85820-3_1
https://doi.org/10.1007/978-0-387-85820-3_1
http://mathworld.wolfram.com/NormalVector.html

	E-Commerce Product Recommendation Using Historical Purchases and Clickstream Data
	1 Introduction
	1.1 Observations and Assumptions
	1.2 Paper Contributions
	1.3 Paper Outline

	2 Related Work
	3 Proposed HPCRec System
	3.1 FN: Frequency Normalization
	3.2 CSSM: Clickstream Sequence Similarity Measurement
	3.3 TWFI: Transaction-Based Weighted Frequent Item

	4 Evaluation and Comparative Analysis
	4.1 An Example for Handling Infrequent User Cases
	4.2 Experimental Design
	4.3 Experimental Results

	5 Conclusions and Future Work
	References

