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Abstract

Data warehouse views typically store large aggregate tables based on a subset of dimension attributes of the main

data warehouse fact table. Aggregate views can be stored as 2n subviews of a data cube with n attributes. Methods have

been proposed for selecting only some of the data cube views to materialize in order to speed up query response time,

accommodate storage space constraint and reduce warehouse maintenance cost. This paper proposes a method for

selecting and materializing views, which selects and horizontally fragments a view, recomputes the size of the stored

partitioned view while deciding further views to select. Ó 2001 Elsevier Science B.V. All rights reserved.

Keywords: Data warehouse; Views; Fragmentation; Performance bene®t

1. Introduction

Decision support systems (DSS) used by business executives require analyzing snapshots of
departmental databases over several periods of time. Departmental databases of the same orga-
nization (e.g., a bank) may be stored on di�erent computer hardware and software platforms (e.g.,
checking database is stored on an Apple Macintosh PC system while the savings account database
is stored on an IBM PC-based system). Di�erences may also exist in the underlying database
management system used in each department (relational, object-oriented or straight ¯at ®les are
all possibilities). The representation of database entities may be di�erent as the checking database
may represent a male bank customer named ``John Andrew'' as customer with customerid ``0001''
and gender ``01'' while the savings database may represent him as customer with customerid
``c0001'' and sex ``M''. To make the ongoing discussion easier to conceptualize, Fig. 1 shows two
simple source databases for a bank. Both databases are relational but the ®rst source database is
used to handle savings accounts functions, which accepts customers' deposits and withdrawals to
and from this account. The second source database handles checking accounts functions and is
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used to accept customers' deposits and withdrawals of cash to and from the checking account.
The savings and checking databases record transactions (deposit or withdrawal) by customers on
the appropriate account database every minute of the day. These function-oriented databases
undergo frequent updates as a result of customers' transactions and the need to keep the account
balances up-to-date and consistent. Simple queries adequately answered by these source databases
include:
· What is customer c0001's savings account balance?
· Accept a deposit of $700 into customer 0518's account.
· How many accounts does John Andrew have?

If these are the only types of queries desired by the bank to support both customer and
managerial services, then data warehouses are not needed because conventional databases would
be adequate. The truth is that business management needs to ®nd ways to gain competitive ad-
vantage and make more pro®t. These business goals could be achieved by learning about cus-
tomers' interests and ®nancial capabilities, learning which bank branches attract more customers,
which customers across all accounts and branches bring in most cash to the bank and so on. To
learn more about customers' ®nancial strengths, business executives may be interested in posing
queries that list the total daily balances at close of day, of all customers from across all branches in
all accounts for over a period of a year. It becomes clear now that these types of complex queries
cannot be answered with just the sample source databases alone because they both store only
current data and previous account balances had been overwritten during transaction updates.
Apart from the availability of historical recording of data, if we want to list the total balances of
all customers from across all of the branches in all accounts, this query still requires that all the
source databases in all branches and in all account departments be visited and some of the needed
databases may not be available since they are being used by local transactions. Data warehousing
systems provide a meaningful solution because they are used to store historical, integrated,
``subject-oriented'' and summarized data of an establishment [4,16,17].

A data warehousing system is a single data repository which integrates information from
di�erent data sources like relational databases, object-oriented databases, HTML ®les and others

Fig. 1. Two banking source databases.
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[24]. A common relational data warehouse schema design is called the star schema. The star
schema accommodates the main integrated data in a main warehouse table called the fact table.
All attributes in the fact table apart from the main aggregation attributes are foreign keys. In
addition to the fact table, the star schema includes dimension tables which de®ne values for the
dimension attributes (e.g., cname, ccity, cphone) functionally determined by the foreign keys in
the fact table. The availability of such a historical, integrated, subject-oriented, non-volatile
collection of data, called data warehousing [16] provides business decision makers with the tool to
plan for the future. Front-ends to this core data warehouse include online analytical processing
tools (OLAP), DSS, data mining applications and other custom-based querying applications [3].
Chaudhuri and Dayal [4] argue that data warehousing technologies have been successfully applied
in many industries, including telecommunications, ®nancial services, retails stores and health care.
A simple warehouse fact table which integrates the checking and savings source databases pre-
sented as Fig. 1 is given below with its dimension tables. The C; A; R; T are acronyms standing
for dimension attributes cid, acctcode, transtype and time-m, respectively, and these acronyms are
used later to represent the table attributes.

Fact table is:
b-activity (cid, acctcode, transtype, time-m, Amount).
Dimension tables are:
customer (cid, cname, ccity, cphone),
account (acctcode, accttype, date-opened),
time (time-m, hour, day, month, year).
The fact table allows integration of all transactions in four types of accounts databases

maintained by the bank, which are uniquely identi®ed by the acctcode. The dimension hierarchies
are de®ned from dimension tables and are used for roll-up and drill-down analysis as well as for
describing foreign key attributes. A roll-up analysis progressively presents summarization from
lowest level of detail to general level (e.g., computing total amount of money deposited every
minute in a checking account, then total amount deposited every hour, then every day, month and
year). On the other hand, a drill-down analysis computes an aggregate value ®rst in most general
level, then progressively presents it in more detailed levels.

An n-dimensional data cube in relational OLAP is a table with 2n subviews of the data cube.
The aggregates of the warehouse example above can be represented by a four-dimensional data
cube with the 16 subviews labeled CART, CAR, CAT, CRT, ART, CA, CR, CT, AR, AT, RT, C,
A, R, T, ( ). The subview labeled CART for the aggregate ``total amount'', is asking for the the
total amount of money involved in transactions by each customer for each account, for each
transaction type every minute. The subview labeled ( ) computes the total amount of money in all
transactions in the fact table and corresponds to the following SQL query:

Create View ( )-trans AS.

Select Sum (Amount) AS TotalAmt.

From b-activity.

This means that while view CART is asking for total amount of money group by all of C, A, R,
and T , the view ( ) is asking for total amount of money but not grouping by any attributes.
Storing the data cube table for fast query processing may not produce acceptable results if all 2n

views are huge and stored (materialized). There is also an increase in the view maintenance cost
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when all these views are stored. Harinarayanan et al. [15] proposes a greedy algorithm for se-
lecting a set of subviews of the data cube most bene®cial to materialize in order to reduce the time
needed to answer the queries given some storage space. Meredith and Khader [19] argue that an
approach for improving warehouse performance is aggregate view partitioning and no formal
algorithms have been presented on warehouse view selection through partitioning except an initial
preliminary study of the problem discussed in [9].

1.1. Related work

Gray et al. [13] uses the data cube model to generalize the SQL groupby construct such that
computation of a multidimensional level of an aggregate measure is allowed. With the data cube
model, an extended SQL construct can be used to create an n-dimensional data cube table con-
sisting of the 2n subtables for an aggregate measure like total amount. Since dimension attributes
on both warehouse fact and main cube aggregate views are foreign keys (e.g., cid, acctcode), each
foreign key attribute may have associated with it a dimension hierarchy specifying attributes for
describing it or for allowing drill-down and roll-up analysis. An example of a dimension hierarchy
for time where main cube has time recorded in minutes and the hierarchy table from ®nest at-
tribute (or foreign key) to the coarsest, is minutes! hour! day! month! year. Many works
have proposed techniques for e�ciently computing the data cube and these include [1,15,22].
Harinarayanan [15] expresses the dependencies between cube views and their dimension hierar-
chies using a lattice framework and de®nes the greedy algorithm for selecting the set of views to
materialize. The greedy algorithm as de®ned in [15] is given in Fig. 2. The bene®t of selecting view
v into set S, B�v; S� is computed as the sum of all bene®ts �Bw� of descendant views w of v. The
bene®t of a descendant view w is the di�erence between the cardinality of view v and the smallest
view u already in S that can compute w. If this di�erence is negative, then Bw � 0. Gupta et al. [14]
extend the greedy algorithm to select both views and indexes. Ezeife [11] de®nes a uniform scheme
based on a comprehensive cost model for selecting both views and indexes. In [12], this uniform
scheme is extended to handle dimension hierarchies. Both Ceri et al. [8] and Ozsu and Valduriez
[20] present horizontal fragmentation ideas and schemes for relational databases based on simple
predicates but with no query access frequencies taken into consideration. Horizontal fragmen-
tation of a view or relation is the partitioning of the view (relation) based on the values of its
attributes such that each fragment contains only a subset of the tuples in this view or relation.
Work including [16,17,19,23] have all expressed the need for data partitioning schemes in the data
warehouse aggregate materialization problem. Issues concerning maintenance of materialized
views have been addressed by Blakeley et al. [2], Colby et al. [5,6] and Kotidis and Roussopoulos

Fig. 2. The greedy algorithm.
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[18]. However, these view maintenance solutions are mostly relevant to non-fragmented materi-
alized views. Some view maintenance issues that are relevant to horizontally fragmented, mate-
rialized views are raised and addressed in [26,25].

1.2. Motivations and contributions

Before the advent of data warehousing systems, business departments and/or branches built
and maintained each application database on many di�erent hardware and software platforms.
Each branch needed to write their separate extraction program for populating data from source to
historical version. Analyzing records of transaction at di�erent branches over a period of a year
would entail writing an application capable of visiting all of the branches' historical databases.
The shortfalls of this type of integration are:
1. Any change in the operational environment of one branch's database calls for a modi®cation of

the decision support application.
2. The branch databases may be running on di�erent hardware and software platforms, making

the decision support applications very complex and unsuccessful.
3. Visiting several databases in the course of answering a query is ine�cient because source data-

bases may be in use by local transactions.
Data warehousing has emerged as a means for integrating various source databases residing as

relational databases, ¯at ®les, news wires, HTML document and knowledge bases, for decision
support querying [24]. OLAP queries are complex and volume of data is large making query
response time, maintenance cost and disk space utilization important warehousing issues. Care-
fully selecting and e�ciently partitioning warehouse views for materializing would improve query
response time, maintenance cost and disk space utilization.

This paper contributes by ®rst presenting an algorithm that iteratively selects a data warehouse
view most bene®cial at each stage, then, fragments this view horizontally, recomputes the size of
the partitioned view and future view selections are done with the newly computed size. Secondly, a
fragment-advisor component which collects information needed for calculating the sizes of se-
lected partitioned views is presented. Finally, the results of experiments from this approach are
discussed.

The method being proposed here, materializes every selected warehouse view as a set of its
horizontal fragments all kept at one database site. The issue of distributing these fragments to
di�erent database sites is not the focus of this work. The original view that this approach frag-
ments is computed from a non-fragmented warehouse fact table or data cube view. This approach
aims at reducing query response time by reducing the number of rows of a view that is visited in
order to answer the query through the view's fragments. Similarly, the approach reduces main-
tenance cost of a view through its fragments since only one fragment of the view is accessed for
any maintenance operation (delete, insert or update) [26].

1.3. Outline of the paper

Section 2 presents a working example of the proposed technique based on a simple banking
warehousing system demonstrating view selection, fragmentation, querying and size-recomputa-
tion. Section 3 presents the warehouse system design architecture displaying all software and data
components of the design. Section 4 presents the suite of algorithms in the system design
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architecture, which implement the proposed view selection and materialization technique. Section
5 discusses experimental performance analysis while Section 6 presents conclusions.

2. An example

A working example is used in this section to show how (1) a cube aggregate view can be
horizontally fragmented, (2) warehouse query access pattern to horizontal fragments of an al-
ready selected materialized view is used to recompute the size of the view and (3) a set of frag-
ments of a materialized view can be selected as the best for answering a warehouse query. The
formal algorithms involved in these three processes are presented later in Section 4.

Example 2.1. A banking data warehouse stores historical, integrated records on every bank
transaction that bank customers have executed in all four bank accounts available (savings1 (S1),
savings2 (S2), checking1 (C1) and checking2 (C2)) from across many branches. �

The data warehouse has the following fact and dimension tables:
b-activity (cid, acctcode, transtype, time-m, amount),
customer (cid, cname, ccity, cphone),
account (acctcode, accttype, date-opened),
time (time-m, hour, day, month, year).
The domain of cid is c0001, c0002; . . . ; c1000. The domain of transtype is deposit (dep),

withdrawal (wd), transfer, billpay and balance display. A sample fact table data is given in Fig. 3
for only 10 tuples although this table holds millions of rows typically.

The time the transaction took place is recorded as year/month/day/minute. Since in a day there
are 1440 minutes �24� 60�, the last four digits of time is used to represent both minute and hour.
Some warehouse queries on this table are:

Q1: Get the number of customers who have made more than two withdrawals in savings account
S1 in any month.

Fig. 3. Sample warehouse fact table data (same as view CART).
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For the purposes of our design, we decompose every warehouse query into three attribute
components namely (1) partition attributes (PA), (2) analysis attributes (AA) and (3) measure
attributes (MA). Partition attributes are the attributes involved in the ``where clause'' of the SQL
version of the query. Analysis attributes are those involved in the ``group-by'' clause and measure
attributes are aggregates of interest. The ®rst step in our approach is to de®ne simple predicates
using the partition attributes. Simple predicates are of the form ``PA (relational operator) value''.
Thus, for each query, we ®rst identify the PA, AA and MA. Then, from the PA we identify the set
of simple predicates. With this approach, the query Q1 is composed of the following attributes and
predicates:

PA � Acctcode �A�.
AA �Month �T �, transtype �R�, cid �C�.
MA � Number of customers, Count �C�:
Predicates : P1: A� ``S1''.

Q2: Get the number of customers who have deposited some money in the morning minutes. The
attributes and predicate from Q2 are:

PA � Time-m �T �.
AA � none.
MA � Number of customers or Count(C).
Predicates: P2 : T 6 0720.

Q3: Find the total amount of dollars involved in each transaction type and account code between
the minutes of 0720 and 0780 (lunch hour) every day. We have from this query:

PA � Time-m �T �.
AA � Acctcode �A� and transtype �R�.
MA � Total amount of dollars or Sum (Amount).
Predicates: P3 : T P 0720 and T < 0780.

Q4: Find the total amount of dollars deposited by each customer every minute in account C1.
From this query, we obtain:

PA � Acctcode �A�.
AA � Customer �C�, Time �T �.
MA � Total amount of dollars or Sum (Amount).
Predicates: P4: A� ``C1''.

The warehouse cube lattice is given as Fig. 4 while its dimension hierarchies are de®ned in
Fig. 5.

In a typical warehouse environment, the warehouse administrator may be faced with the
decision to select a number of aggregate views from both the main cube level and dimension
level views. The dimension level views are obtained through direct product (combined cube
lattice) of the 2n cube views and the dimension hierarchies. When a query uses a dimension
attribute like customer name, hour, day or year, a join of a cube level view with the dimension
hierarchy of interest is necessary to answer the query. To cut down on the cost of such huge
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table joins, dimension level views may also be selected for materialization. Since the predicates
from the queries have been de®ned, we attach some importance value (IP) to each predicate
using the frequency of application access to them. The intuition here is that only some p most
important predicates will be used in making decisions regarding fragmentation of a view. The IP
or importance value of each predicate with respect to a view is obtained, by multiplying the
cardinality of the predicate (number of rows from the view that are true for this predicate) when
applied to the view by its application access frequency (the number of times the predicate is
accessed by an application). If a predicate is accessed by more than one application, then
the sum of these access products from all applications accessing the predicate will make the
predicate's IP value. With our example warehouse, assume the queries Q1±Q4 access the
warehouse at the following frequencies, respectively: 100, 40, 20 and 60 times. We can then see,
reading from our sample fact table similar to view CART that, with respect to view CART,
jP1j � 3, jP2j � 6, jP3j � 0 and jP4j � 2. Therefore, with respect to view CART, IP of
P1 � 3� 100 � 300, IP of P2 � 6� 40 � 240, IP of P3 � 0� 20 � 0, and IP of P4 � 120. Note
that in usual applications, a predicate may actually be accessed by more than one query or
application accessing the same view.

Fig. 4. The cube lattice of the CART warehouse.

Fig. 5. Dimension hierarchies of the CART warehouse.
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Once the IP values for all predicates are de®ned, the current scheme simply selects p highest
valued predicates, where p is de®ned by the warehouse administrator. Determining what con-
stitutes an optimal number of fragments for each view would depend on a number of factors
including the size of the view and the attributes in the selected predicates. Generally, p predicates
would result in 2p minterm fragments, some of which may be deleted to eliminate redundancies.
Chakravarthy et al. [7] uses an enumerative algorithm to determine an optimal set of vertical
fragments for a relation given a set of queries accessing its fragments and their access frequencies.
The enumerative algorithm computes the performance of a number of vertical fragments of a
relation as the value of an objective function called partition evaluator (PE). The PE measures the
amount of local irrelevant and remote relevant accesses made to vertical fragments by queries.
The enumerative algorithm proceeds by computing the PE value of the relation when it has only
one fragment, then, it computes the PE value of the relation when it has two vertical fragments,
then three and so on. The optimal number of vertical fragments most suitable for this relation
given the same query workload come from the set of its vertical fragments which yields the lowest
PE value. An extension of the PE measure for determining the performance of vertical fragments
of object classes in a distributed object database system is also presented in [10].

This PE measure approach could be extended and used to obtain the number of fragments f of
a view that yields best performance for a given set of queries. From the number of fragments, f,
the optimal p predicate combinations is determined as log f = log 2 because p predicates create a
maximum of 2p fragments following the horizontal fragmentation process. This means that, given
a list of all predicate combinations for fragmenting a view, the technique would ®rst create all
fragments for each p value of 1, 2, 3 predicates and so on. Then, it would calculate the PE value
for each set of horizontal fragments arising from di�erent p predicates. The optimal p number of
predicates suitable for this environment is the one that yields the lowest PE value for its frag-
ments. A PE value for a set of f horizontal fragments is an objective function that counts the total
local irrelevant and remote relevant accesses made to fragments by queries while accessing each
fragment of the view. Since for optimal fragmentation, it is desirable to minimize both the local
irrelevant and remote relevant accesses to fragments, the set of fragments with lowest PE value
yields best performance and the p predicates that created this set of fragments constitutes the
optimal p predicates to choose for this warehouse view and queries setup.

However, since this computation is expensive, the warehouse administrator can simplify the
technique by intuitively selecting p predicates based on the size of the view and the IP values of
predicates. The bigger the table (view), the higher the p number of predicates that can be selected
and since an p predicate would create a maximum of 2p fragments of the view, an initial value of
between two and ®ve predicates for not more than 32 fragments of a view is recommended.
Another factor that a�ects the choice of p is the number of predicates with high IP values. The
more the number of predicates with high IP values, the higher the number p of them to be selected
because this is an indication that many attributes are needed frequently by queries and this should
be re¯ected in the partitioning process of the view.

Continuing with the example, if an p value of 2 is used, predicates P1 and P2 are selected. The
next step is to create minterm predicates using the selected simple predicates. A minterm predicate
is a conjunction of all selected predicates with each predicate appearing in either its natu-
ral(positive) or negated form. Thus, with the two selected simple predicates, the following min-
term predicates are generated:
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M1 � P1 ^ P2 () A � \S1" ^ T 6 0720;

M2 � :P1 ^ P2 () A 6� \S1" ^ T 6 0720;

M3 � P1 ^ :P2 () A � \S1" ^ T > 0720;

M4 � :P1 ^ :P2 () A 6� \S1" ^ T > 0720:

Since all minterms are meaningful with respect to domains of applications, they form fragments of
any view submitted as input. Fragmenting the top level view may a�ect the selection of other
views to be materialized and this information is included in the greedy algorithm while making
future view selection as discussed further in Section 4. The fragments produced are non-over-
lapping, complete and minimal in the sense that every tuple in the original view needs to be ac-
counted for in only one fragment. The fragmentation scheme presented in this paper, uses both
the access frequency and selectivity of a predicate to determine its importance. For fragmentation
of a view, a set of p important predicates from user queries are used. A set of predicates is
complete when both its natural and negated forms are used in de®ning its minterm predicates [20]
as is the case with the p predicates employed in this work. Predicates used for fragmentation are
also required to be minimal or relevant, and selecting only p most important valued predicates for
fragmentation purposes in this work guarantees that only predicates relevant to the view in
question are used in the fragmentation process. Thus, fragments created are complete because
they come from a complete and minimal set of predicates. The fragments are also non-overlapping
because the de®ned minterms are mutually exclusive.

The example above further serves to demonstrate that created fragments are non-overlapping,
complete and minimal because every tuple belongs to only one fragment, every tuple can be found
in some fragment, and every fragment is relevant. Using the top level view CART in Fig. 3 and
selecting the tuples of minterms M1 from this table, we ®nd that only tuple with cid ``C0001'' is
selected, thus jM1j is 1, jM2j is 5, jM3j is 2 while jM4j is 2 giving back the total of 10 tuples in the
table. For partitioning views other than the top level view, all simple predicates are reapplied and
the use of the cardinality of each simple predicate on the particular view being fragmented serves
the purpose of selecting out those simple predicates that are not very relevant to this view. For
example, the predicates P1±P4, when reapplied to view CR (shown as Fig. 6) for the purposes of
partitioning view CR, yields a cardinality of zero for all these predicates. This means that only
predicates that are based on attributes C which is cid, and R (transtype) would yield non-zero

Fig. 6. View CR created from view CART.
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cardinalities with respect to this view CR and these predicates would be among the selected ones if
they have high enough IP values.

The ®rst view selected is the top level view following the greedy approach [15]. Thus, view
CART is selected and four horizontal fragments of this view are de®ned by our approach as
explained next.

A main advantage of breaking a table or view into its horizontal fragments is drastic re-
duction in query response time because the average number of rows visited by queries through
its horizontal fragment(s) is lower. recomputing the size of a selected fragmented view, requires
computation of the average number of rows of this view accessed by queries through fragments.
This average number of rows of the view accessed by all queries through fragments is computed
as the sum of the products of the total number of rows in all fragments accessed by each query
and the query access frequency, divided by the sum of access frequencies of all queries accessing
this view. Thus, with our example warehouse and queries, Fig. 7 shows the fragments of the
view CART, number of rows, frequency and total number of rows accessed by each of the
queries Q1±Q4.

Once the new size of a selected fragmented view is computed using the method discussed in
previous paragraph, future selection of other views are accomplished with the greedy algorithm
but using the newly computed size of the view. Every selected view is in turn horizontally frag-
mented. Clearly, this reduces the average number of rows visited by queries and improves on
query response time if queries are accurately directed to fragments that can adequately address
their needs. This paper also provides an algorithm component called fragment-advisor, which is
responsible for recommending the set of fragments of a selected and fragmented warehouse view
that best answers a given warehouse query. The fragment-advisor selects all views from the
materialized view set that can answer the query using queries' group-by attributes, measure at-
tributes and analysis attributes. The view with the least total number of rows in all needed
fragments is the best. The fragments of each view are read in as their minterm predicates. A
fragment of a view is marked as needed by a query, if the conjunction of all predicates of the query
is a subset of the minterm predicate of the fragment. For example, with view CART of the
running example, Fig. 8 shows the minterm predicates of its four fragments with their sizes. The
predicates for each query and the minterms they are part of are given in Fig. 9. A query predicate
is a subset of every minterm predicate that it needs to completely answer it.

Fig. 7. Fragments of view CART accessed by queries.
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3. Warehouse system design architecture

The objective of this section is to present a block architecture of the warehouse design tech-
nique being proposed in this paper. The block architecture which highlights the software and data
components of the design is given as Fig. 10. Some de®nitions relevant for understanding the
algorithms in Section 4 are also presented in this section.

From Fig. 10, it can be seen that the original data warehouse is made up of fact and dimension
tables in addition to all aggregate or summary tables. However, this work introduces two major
algorithms namely:
1. The selection±partition algorithm which selects only the best views to materialize while hori-

zontally fragmenting every selected view and also recomputing its size. The information needed
for recomputation of sizes of selected views include fragments of each view needed by ware-
house queries. The second algorithm called the fragment-advisor is responsible for determining
which fragments of a warehouse data cube view best answers any given warehouse query. Thus,
obtaining the total number of rows of tables searched in order to answer a number of ware-
house queries entails getting the sum of rows in all fragments of views needed by these queries.
From this total, the average number of rows of the view visited by queries is computed as the
total number of rows divided by the total number of accesses made by all queries accessing the
view. The output of this scheme is a smaller warehouse with fewer summary tables.

2. The fragment-advisor algorithm interfaces between warehouse querying or access tools and the
warehouse. The purpose of this algorithm is to predetermine which fragments of a view are
needed to answer a warehouse query.
The overall output of warehouse queries is the same except that results of queries are turned out

faster. It is important that the fragment-advisor algorithm does not carry much execution time
overhead since this algorithm cannot be run o�-line as the selection±partition scheme could.
However, the fragment-advisor is a polynomial time algorithm and does not add huge overhead.

Fig. 9. Minterm fragments that query predicates are part of.

Fig. 8. Minterms of fragments of view CART.
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3.1. De®nitions

De®nition 3.1. A user query accessing an aggregate view Vi is made up of a set of analysis at-
tributes AA, a set of partitioning attributes PA and a set of measure attributes MA.

De®nition 3.2. An analysis attribute AAij from a user query Qi represents the subjects or groupby
attributes of interest to the application.

De®nition 3.3. A partition attribute PAij in a user query Qi de®nes the subset of records found in
view Vk, which is relevant to the application. It is the attribute in the ``where clause''. A set of
simple predicates is usually derived from each partitioning attribute.

De®nition 3.4. A measure attribute MAij in a user query Qi is an aggregation attribute of interest
to the application.

De®nition 3.5. All Attributes of a query �Aq� is the union of all the AA, PA and the non-aggregate
part of MA.

De®nition 3.6. De®nition 3.7 All Attributes of a view �Av� is the set of all groupby attributes that
de®ne the view v. For example, Av of view CAR is C; A; R.

Fig. 10. A warehouse system design architecture.
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De®nition 3.7. Possible view set �Pv� for answering a query is the set of views among the mate-
rialized views that can each adequately answer the query.

4. Formal warehouse design algorithms

Section 4 makes a formal presentation of both the selection±partition and fragment-advisor
algorithms shown in the system architecture. While Section 4.1 discusses components of the se-
lection±partition scheme, Section 4.2 discusses an example execution of this scheme, Section 4.3
presents size-recomputation scheme and Section 4.4 discusses the fragment-advisor scheme.

4.1. The selection±partition scheme

The selection±partition scheme is an algorithm which selects n best views to materialize using a
modi®ed version of the greedy algorithm presented in [15]. This algorithm begins by ®rst selecting
the top level view from the data cube lattice. Then, every selected view is horizontally fragmented
using the function view-partition. Next, the size of the selected, horizontally fragmented view is
recomputed using the function size-recompute. The new size of the view is used when computing
the bene®ts of all views relative to already selected, partitioned views.

Input to the process is a set of warehouse queries and their frequencies of access to the
warehouse per unit of time, say, daily. The other input is the warehouse view to partition. The
steps involved in partitioning a view are given below:

Step 1: Find simple predicates from each user query Qi, using the partition attributes PAij. The
simple predicates are de®ned from the partition attributes as PAijh value, where h is a logical
operator from the set f�; <;>; 6�; 6 ; Pg and value is from domain of partition attribute �PAij�,
the jth partition attribute of the ith query.

Step 2: De®ne the relative IP of each predicate Pik of query Qi. The importance of each predicate
is obtained by adding up the product of the application frequency and the cardinality of this
predicate on the view for every application that accesses the predicate. The formula for obtaining
the importance of a predicate is given asX

q2Qijaccess�Qi;Pik��1

�access frequency of �q� � jPikj�;

where jPikj is the number of rows or tuples in the partition of the view de®ned by predicate Pik,
while access�Qi; Pik� � 1 means that the query Qi accesses the predicate Pik a number of times
similar to the given access frequency of Qi.

Step 3: Select the p most important predicates. The current scheme selects p highest valued
predicates. This step can be re®ned or optimized in the future to let the scheme decide what p
produces best outcome.

Step 4: Generate horizontal fragments of the view by de®ning minterm predicates. A minterm
predicate is a conjunction of simple predicates in either their natural or negated forms [20]. Thus,
given an aggregate view Vi with the set of selected simple predicates Pri � fPi1; Pi2; . . . ; Pikg from
queries accessing it, the following set of minterm predicates Mi � fMi1;Mi2; . . . ;Mizg can be de-
®ned on it. Each Mij in Mi is de®ned as
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Mij �
^

pik2Pri

P �ik; 16 k6m; 16 j6 z;

where P �ik � Pik or P �ik � :Pik.
Having both the natural and negated forms of each predicate ensures completeness of views. In

other words, partitioning the view should not cause loss of any tuples. Some minterm fragments
may not be feasible from the domains of data and their implications, and those have to be deleted
from the minterm set. The objective is to generate only a complete and minimal set of minterms.

The formal de®nition of the algorithm selection±partition is given as Fig. 11. The selection±
partition algorithm calls the function that partitions a selected view which is formally presented as
algorithm view-partition in Fig. 12. The function for size-recomputation also called by algorithm
selection±partition is discussed formally in a subsection after an example of view selection and
partitioning. Once a view is selected into SetV, partitioned and its size recomputed, the bene®t of
all views in the lattice not yet members of the set SetV are recalculated using the new parent sizes.
The process continues until the needed n views have been selected into SetV. The bene®t of a view
is de®ned the same way as the bene®t used by the greedy algorithm except that the new size of the
parent view is applied. During each iteration, the view with maximum bene®t is selected.

4.2. An example selection with the selection±partition scheme

Assume we want to select three views from the example CART data warehouse in Section 2, the
cube lattice with view sizes is shown as Fig. 13.

The original sizes of the views are shown beside the views while the recomputed size is shown
instead if the original size of the view is cancelled. When the size of a view is inside a circle, it

Fig. 11. The selection±partitioning algorithm.
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indicates that this view is selected, fragmented and the size-recomputed but the size remains the
same. One reason for a recomputation of a view size yielding the same value as its original size is
the process of fragmenting the view results in only one fragment. Fig. 14 shows the process of
selecting the three views with the greedy algorithm using the partitioned and recomputed sizes of
the selected views. Recall that from Section 3, the recomputed size of CART is 4 out of 10 or 40

Fig. 12. The view partitioning algorithm.
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out of 100. The view CART is the top level view from the cube lattice and is selected into SetV. 1

Then, the recomputed size of CART is used to choose the next view from the lattice by computing
the bene®ts of each view. The bene®t of a view, v not in the set SetV is computed as the sum of all
positive di�erences between the sizes of the smallest parent view u (in SetV) of each v0s descendant
view w, and v. Thus, for the view CR, the smallest parent in SetV is CART with size 40. The
descendants of CR are four views (CR, C, R and ( )) including itself. Thus, the bene®t of CR is
computed as 4�40ÿ 14� since the size of CR is 14. The view CR with the highest bene®t is selected
this ®rst time and included in SetV.

Next, we partition the selected view CR by ®rst computing the IP of the predicates. The IP
value of a query predicate is the product of the cardinality of this predicate on the selected data
cube view that answers the query, and the query access frequency. A given query can be answered

Fig. 14. Example view selection using partitioned parent views.

Fig. 13. An example cube lattice with sizes recomputed.

1 The asterisk beside a view in Fig. 14 during any selection iteration, indicates that this view is the chosen one.
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by one or more warehouse cube views. This implies that predicates from one query can yield non-
zero IP values on any view that computes it and thus, can compete in the choice of the most
important p predicates for partitioning the view. However, before a view is horizontally parti-
tioned, it has been selected by the greedy algorithm using the newly computed sizes of its parents.
This means that only those queries that this selected view can compute will have their predicates
competing for the best p predicates to be used to partition the view. Since the cardinalities of all
four predicates when applied to view CR is 0, their IP values are also 0. Thus, no predicates are
selected for de®ning horizontal fragments of this view and no fragments are de®ned making the
size of CR the same. Since the second selected view CR cannot be partitioned, the next step is to
®nd the bene®ts of all views again which leads to selection of view T with highest bene®t of 60. For
example, in computing the bene®t of view CA, this time when both view CART and CR are
already in the SetV, both descendant views CA, C and A can be computed with CA which has a
lower size yielding a total bene®t of 3�40ÿ 20�, but descendant view ( ) can be computed with
view CR of lower size and thus contributes a bene®t of 0 to CA. Note that the selected view in this
case could also have been CA since it also has a bene®t that is equal to the highest. Checking the
IP values selects P2 : T 6 0720 as the only predicate to be used for fragmenting view T. Thus,
the two fragments de®ned for view T are T 6 0720 and T > 0720. The recomputed size of this view
is 5.

4.3. The size-recomputation scheme

The algorithm for recomputing the size of a view basically recomputes the new size of a view as
the average number of rows of the view accessed by all queries through its fragments, taking into
account all query access frequencies. The formula that implements the size-recomputation is given
below and the algorithm size-recompute is given as Fig. 15

Fig. 15. The view size-recomputation algorithm.
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New view size �
X

queryqijaccess�qi;v��1

P
frag fmjaccess�qi;fm��1�jfmj � AFqi�P

AFqi

:

The measure of new size of a view is de®ned in terms of the average number of rows of the view
accessed by all queries, because this measure most accurately re¯ects the number of rows of the
view actually accessed by a query taking into account all the access frequencies of queries and only
those fragments of the view accessed. An alternative measure is to use the maximum number of
rows of the view accessed by any one query and this may hide the utility of accessing only
fragments and not the entire view. On the other hand, the minimum number of rows accessed by
any one query could be used at the risk of exaggerating the gain of the approach. The algorithm
accepts as its input data, the set of warehouse queries. Each query's input also includes its
predicates and fragments of the view in question it accesses. Fig. 7 from Section 2 illustrates this
procedure. From the given input data, the total number of rows each query accesses from all its
fragments is computed. The row count information can easily be obtained with an SQL query that
selects all rows from each fragment. For example, from Fig. 7, query Q1 has predicate P1 and
accesses fragments F1 and F3 and we can obtain the total number of rows accessed by Q1 through
these two fragments with the SQL query:

Select *

from CART_F1
where P1

Union

Select *

from CART_F3
where P1

The product of the total number of rows accessed and the access frequency of the query is
computed. The sum of all accesses made by all queries accessing the view is obtained and divided
by the total of access frequencies of all these queries. The ceiling of this value gives the new size of
the view.

4.4. The fragment-advisor algorithm

The fragment-advisor algorithm takes a warehouse query and from its predicates, it recom-
mends the fragments of a view that produces fastest response time for the query. This algorithm
performs run-time analysis that makes maximal use of already statically de®ned and materialized
view fragments. For applications with frequent radical changes in access patterns of queries, it will
be even more bene®cial to provide techniques for determining when a set of horizontal fragments
of a materialized view no longer represents optimal set due to changes in queries and their fre-
quencies and to trigger a dynamic refragmentation of the view. However, the work presented here
performs only static fragmentation of views and assumes that su�cient changes will call for a
static refragmentation of the views.

The sequence of steps to execute in order to ®nd the set of fragments of a view which best
answer a query are discussed next. Input to the scheme are PA, AA, MA and set of predicates Prq
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of the query as well as the set of materialized views V with their fragments. Each fragment is input
as the conjunctive minterm predicate that de®nes it and the size of the fragment which is the
number of rows of this view for which the minterm predicate is true. The steps in the scheme are:

Step 1: De®ne the set of possible views P that can be used to adequately answer this query. To
get the possible view set, we ®rst de®ne all attributes needed by the query by concatenating the
query's PA, AA and MA sets. Thus, Aq � PAkAAkMA. Then, for every view, v, in the set of
materialized views, if the set of all attributes of the query Aq is a subset of the set of all attributes of
the view Av, v is made a member of the possible view set. In other words, if all attributes that play
a role in the given query are concatenated, and this set of query attributes happens to be a subset
of all attributes that de®ne any given view, then, this view can be used to compute the query. For
example, give the query ``Get all customers who have deposited some money in the morning
minutes'', the all query attributes, Aq is the concatenation of PA (T), AA (none) and MA (C from
Count(C)). This means that Aq is CT, and a listing of all data cube views from this particular
warehouse setup that form superset of CT is CART, CAT, CRT and CT. However, only those
views in this set that have been selected for materialization and already horizontally partitioned
are in this query's possible view set. From the example selection and partition of Section 2, only

Fig. 16. The fragment-advisor algorithm.
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the views CART, CR and T are materialized, making the possible view set of the query above only
CART.

Step 2: Once we have de®ned the possible view set, the next step is to determine which of these
competing views should be selected to answer the query. Intuitively, the chosen view is the one
that requires scanning of fewest rows in order to answer the query. The number of rows of a view
scanned can be determined as the sum of the cardinalities of all its fragments that need to be
visited in order to answer the query. This means that the view which requires only some of its
fragments to answer the query and with lowest total number of rows for answering the query, is
the selected view and fragments. Thus, the scheme selects a view vj 2 P and the set Fij of fragments
of vj such that the total number of rows in all its fragments needed by the query is the minimum.
The formal algorithmic de®nition of this solution is given as Fig. 16.

5. Experimental performance analysis

An experiment was conducted using a banking warehouse database stored on an SGI Oracle.
The experiment was conducted on a general purpose computer system in the university called SGI
Challenge XL. The SGI Challenge XL has 16 R4400 processors with 12 processors at 150 MHz, 2
processors at 200 MHz and 2 processors at 250 MHz. An enterprise Oracle DBMS version 7.1
runs on this computer system. A data warehouse fact table with a million tuples was created for
generating the 16 needed data cube views. However, this version of Oracle did not allow creation
of some views that require grouping by more than two attributes from the one million tuple table
(e.g., views CART, CAR, CAT and CRT). Faced with this limitation, we reduced the size of the
experimental fact table to 590 tuples to enable creation of all 16 data cube views to be selected and
partitioned for the experiment. The warehouse fact table has the following structure corre-
sponding to four dimension attributes (CART):

cid number not null (customer ID),

acc character (15) (account code),

trans character (15) (transaction type),

time character (15) (transaction time),

amount number (transaction amount),

size of fact table :590 rows.

From the 590 rows of the warehouse fact table, we de®ned 16 data cube views by running the
SQL select instructions group by appropriate attributes to represent the views and the sizes of the
views are given in Fig. 17. A variety of 20 queries are used for the experiment to cover many types
of predicates. Fig. 18 describes the query workload used for the experiment. The queries are
described in terms of their PA, AA, MA, predicates, cardinality of their predicates and their
access frequencies. Several runs of the selection±partition scheme was performed at di�erent
system times and the average CPU times of the runs are reported.

The algorithms presented in Section 4 as well as the greedy algorithm were implemented. This
scheme was run on the data cube with the sample query workload and compared with a run of the
greedy algorithm on the same query workload. The four views selected by the two selection
schemes are shown in Fig. 19. The selection±partition scheme also stores the horizontal fragments
of selected views.
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Fig. 18. The experimental query workload.

Fig. 17. The warehouse view sizes.

Fig. 19. Views selected by two approaches.
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We monitored and collected the CPU query response times of the 20 queries on the four views
selected with greedy algorithm and compared them with the response times of same queries on the
four selected, partitioned views obtained using the selection±partition scheme and Fig. 20 shows
the response times in seconds while Fig. 21 shows the graphical representation of this comparison.
This example represents a 16% improvement over the average response time achieved with the
straight greedy algorithm.

Scaling the size of the warehouse by a factor of about one million (1 M) to represent more real
life situation will increase the di�erence in the bene®t of this approach. The size of data used for
the experiment although reasonably representative is limited by resource constraints.

5.1. Complexities of the algorithms

If v represents the number of views in the cube lattice and m the number of views to select and
partition, the computation time of the selection±partition scheme is m � v �maximum (compu-
tation time of view-partion algorithm, computation time of size-recompute algorithm). Fur-
thermore, let the number of queries accessing the system be q and let each query have a maximum
of x predicates, p represents the number of predicates with highest IP values selected for frag-
mentation, and t the maximum possible number of minterm predicates. The computation time for
view-partition is the maximum of xq and pt. If the maximum number of fragments possible in a
view is f, then the computation time for size-recompute algorithm is fq. This means that the se-
lection±partition scheme is of time complexity O�xmvq� mvxt � mvfq�. The time complexity of
the straight greedy algorithm executed iteratively and in terms of the same variables is O�mv�. The

Fig. 20. Comparative response times for two approaches.
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complexity of the fragment-advisor algorithm is O�vf �. These are polynomial time algorithms and
the variables x; m and f are usually not large numbers. In running these programs the execution
times we notice are negligible in agreement with these computation times.

5.2. Possible extensions to the basic model

The basic selection±partition scheme requires the database administrator to determine how
many highest valued predicates to select for de®ning the horizontal fragments of selected views.
The examples and experiments are run on mainly cube level views. Real life environment would
require considering both dimension views and indexes as indexes can drastically reduce the
number of page I/O operations [21].

Dimension views and indexes could be assigned higher type weights which are used to raise the
IP values and thus increase their chances of being selected. A frequently used dimension view cuts
down on the cost of joining huge tables and can also be used for drill-down and roll-up analysis.
While a basic cube view could be assigned a type weight of 1, dimension view could be assigned an
additional 0.5 weight for every dimension join attribute that is part of it. Only indexes of selected
views are materialized and indexes should be de®ned for each partition of the view. It is possible
to consider storing only indexes of frequently used partitions of the view. There is bene®t in
dynamically repartitioning views when application access patterns change su�ciently and future

Fig. 21. Graph for comparing response times.
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work should provide this extension. Extending this approach to distributed warehouse environ-
ment where horizontal fragments of views are allocated to distributed sites is an interesting re-
search issue that will bene®t distributed applications.

On maintenance of partitioned-stored views, only relevant fragments of the view are consulted
for updates, insertions and deletions. The fragment-advisor algorithm can serve to identify the
fragments that need to be visited. A parallel view maintenance expression can be developed to run
concurrently on fragments of a view.

The size of data and view could be increased in further experiments to observe changes in
performance. The access frequencies, PA, AA and MA attributes of the test queries could be
changed to collect more results and the experiments can be run on di�erent warehouse setups.

6. Conclusions and future work

Partitioning of stored views leads to some improvement in system performance because of
reduced query response time and maintenance cost since most queries will indeed scan fewer
fragments than all, and in turn scan fewer rows than are stored in the original view. The query
response time is reduced because only a fraction f of all rows in the view are accessed on the
average by a query. In the worst case, f is 1, in which case all fragments are visited and all the rows
in the view are accessed on the average by each query.

This paper contributes by proposing an algorithm that selects and materializes warehouse views
as their horizontal fragments, recomputes their sizes for better selection of future views. A
fragment-advisor component is included which recommends the fragments of a view most suitable
for answering a query. An experimental study comparing the results of this approach with those
of the greedy algorithm is conducted and reported.

Future work in this direction should include accommodating indexes, de®ning maintenance
expressions for partitioned, stored views, dynamic refragmentation of selected views when query
access information change enough and as fragments are maintained to include new records.
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