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1. Introduction 

 Email is a popular mode of internet communication and contains large 

percentage of important and daily information.  

 According to an estimate given by (Radicati, 2011), the number of 

email messages sent daily has reached around 3.1 billion in 2011. 

 Email inboxes are now filled with huge variety of voluminous 

messages and thus increasing the problem of   “Email Overload” 

(Xiang, 2009) which places financial burden on companies and 

individuals.  

 Email mining is a method for providing solution to email overload by 

automatically grouping emails into some meaningful and similar 

groups based on the email subject and content. 
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1. Introduction 
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Figure 1: Categories of  Email Management Tasks 
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1. Introduction 

 Automatic folder creation can be topic oriented such as 

‘appointments’, ‘personal’ and ‘entertainment’ or group oriented such 

as ‘courses’ and ‘project’ or people specific such as ‘John’ and 

‘Mary’. 

 It can be done by using data mining techniques such as 

CLUSTERING.  

 Clustering of email is a method by which large sets of email is 

grouped into clusters of smaller sets of similar data. 

 Clustering algorithm attempts to find natural groups of emails based 

on text similarity of email subject and content.  

 The most popular methods for email mining are K-Means clustering 

and Hierarchical Agglomerative Clustering. 
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1. Introduction 

 K-Means++ Clustering (Arthur & Vassilvitskii, 2007):  

It is a method of clustering which aims to partition n observations 

into k clusters in which each observation belongs to the cluster 

with the nearest mean.  

For example, 

o Distance between 4 emails is and K=2: 

 

 

 

Email# E1 E2 E3 E4 

E1 0 0.56 0.11 0.2 

E2 0.56 0 0.13 0.082 

E3 0.11 0.13 0 0.5 

E4 0.2 0.082 0.5 0 

Table 1: Distance between all emails 
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1. Introduction 

o Step 1: Select initial cluster center randomly, suppose E2.   

o Step 2: Now, select other cluster center where the distance is 

maximum 

 i.e.  Email E1 

o Step 3: Distance is calculated from centers to other emails and 

emails are assigned to cluster where distance is minimum. 

 

 

 

 

 

• Therefore E3 will be assigned to E1 and E4 will be 

assigned to E2. 

 

 

Email# E3 E4 

E1 0.11 0.2 

E2 0.13 0.082 

Table 2: Distance between emails and cluster centers 
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1. Introduction 

o Step 4: Now, mean of cluster is calculated and mean act as 

new cluster center   

o Repeat step 3 and 4 till it converges.  

Limitation: 

o Fixed number of clusters can make it difficult to predict what 

K should be  

o It is sensitive to initialization. 
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1. Introduction 

 STS - Semantic Text Similarity (Islam & Inkpen, 2008) 

Detecting semantic similarities and differences between two 

sentences. 

Problem definition:  

 Given two input text segments  automatically determine a score 
 that indicates their similarity at semantic level. 

 

 Phase 1 
• String Similarity between Words 

Phase 2 
• Semantic Similarity between Words 

Phase 3 
• Overall Sentence Similarity 
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1. Introduction 

P = “A cemetery is a place where dead people’s bodies or their ashes are 

buried.” 

S = “A graveyard is an area of land, sometimes near a church, where dead 

people are buried.” 

Step 1:  

P ={cemetery, place, where, dead, body, ash, bury} 

R ={graveyard, area, land, sometime, near, church, where, dead, bury}  

m = 7, n = 9 

Step 2: Three tokens {where, dead, burry} in P match exactly with R, 

therefore  = 3. 

P ={cemetery, place, body, ash} 

R ={graveyard, area, land, sometime, near, church} 
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1. Introduction 

Step 3: Construct 4x6 string matching matrix M1. 

Consider  pair (place, land) =>  = 5,  = 4 

Length(LCS(place, land) = 2,  

 => NLCS(place, land) = v1= 22/(4x5) = 0.2 

Length(MCLCS(place, land))= 0  

 => NMCLCS(place, land) = v2 = 0 

Length(MCLCS(place, land)) = 2  

 => NMCLCS(place, land) = v3= 22/(4x5) = 0.2 

23 = 0.33 * (v1 + v2 + v3 ) = 0.132 
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1. Introduction 

Step 4: 

o Construct 4x6 semantic similarity matrix M2 using SOC-PMI 

method (Islam & Inkpen, 2006) 

o SOC-PMI (Second Order Co-occurrence PMI) word similarity 

method uses the PMI to sort lists of important neighbor words 

from a large dataset 

o PMI (Point wise Mutual Information)  relate to the probability 

of two words co-occurred.  
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1. Introduction 

Step 5: 

Construct 4x6 joint matrix M, assign equal weight factors  =  = 0.5 

(determined heuristically) 

 

 ={ 0.50}  ={ 0.50, 0.248}  ={ 0.50, 0.248, 0.225}  ={ 0.50, 0.248, 0.225, 0.071} 

𝑀 = ( ∗ 𝑀1)  + ( ∗  𝑀2) 
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1. Introduction 

 𝐶 =  𝜌𝑖
𝜌
𝑖=1 = 0.50 + 0.248 + 0.225 + 0.071 = 1.049 

 

Step 6: 
 

𝑆 𝑃, 𝑅 =
𝛿 + 𝐶 × 𝑚 + 𝑛

2𝑚𝑛
 

 
 = ((3 + 1.049) × 16)/126 

 = 0.514 

δ      No. common terms in P  
 and S 

C      Summation of relevant  
 terms 
m     No. of terms in P  
n       No. of terms in S 
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1. Introduction 

 BuzzTrack (Cselle, Albrecht, & Wattenhofer, 2007) is a popular tool to 

reduce email overload by automatic folder creation using clustering. 

Email Dataset  

(As input) 

Email data 

extraction  (e.g. 

subject & body) 

Pre-processing of 

mined email data 

(e.g. apply stemming)  

Email representation 

(e.g. Vector Space 

Model) 

Clustering for folder 

creation (e.g. K-Means 

Clustering) 

Folder Creation 

with Topic 

Detection  

Figure 2: Automatic Folder Creation by Email Clustering 
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1. Introduction 

 Each email is then represented as vector using vector space model.  

        For example, email vector, E is given as:  

 E = {(1, assign), (2, students), (5, attach)} 

 where, in element (1, assign) 

  
          weight assign   term from email content 

          to term ‘assign’     

 
 Here, weights are assigned using the following formula: 

𝑤𝑖,𝑗 =  
1 + log 𝑡𝑓𝑖,𝑗 𝑙𝑜𝑔

𝑁

𝑑𝑓𝑖
  𝑖𝑓 𝑡𝑓𝑖,𝑗 ≥ 1   

0                                           𝑖𝑓𝑡𝑓𝑖,𝑗 = 0

 

Where, 𝑡𝑓𝑖,𝑗        Frequency of term 𝑡𝑖 in email j 

             N       Total number of emails in dataset 

             𝑑𝑓𝑖       Total number of emails in which the term appeared.  
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1. Introduction 

   Clustering: 

Firstly, finding text similarity based on Cosine similarity 

algorithm.  

Secondly, finding subject similarity calculating the overlap 

between the set of words Si, Sj in the subject lines of two emails. 

𝑠𝑖𝑚𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑚𝑖 , 𝑚𝑗 = 2 𝑆𝑖 ∩ 𝑆𝑗 /|𝑆𝑖| + |𝑆𝑗| 

 For example, we have two subject sets of two different emails: 

 Si = {‘hello’, ‘assignment’, ‘professor’, ‘exam’, ‘score’, ‘grade’}. 

 Sj = {‘hello’, ‘student’, ‘exam’, ‘car’, ‘grade’, ‘school’}.  

 So, the subject similarity will be (2 ∗ 3)/(6 + 7)  =  0.461.   

  If this score is below a clustering threshold for all existing 

clusters, the email is mapped to a new cluster else it is mapped to 

closest cluster. 
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1. Introduction 

 Lastly, topic is detected from the cluster. Term with highest weight is 

selected as a topic  

 Limitation: 

o Feature selection is not taken into consideration. 

o Since using the Vector Space Model, therefore there is a 

• loss of correlation and context of each term which are 

important in grouping the document and 

• it is inefficient for sentence representation because the 

vector representing the sentence does contain many null 

value. 
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2. Related Work 

 Automatic Clustering E-Mail Management System - ACEMS (Schuff, 

Turetken, & D'Arcy, 2006). 

They introduced the concept of multi-attribute and multi-weight 

and extends the application of hierarchical clustering to the 

domain of email. 

Limitations is that there is no provision for relocation of emails 

that are incorrectly grouped and no feature selection considered.  

 Automatic Nonparametric Text Clustering Algorithm (Xiang, 2009):  

Proposed an automatic email clustering system, underpinned by a 

new nonparametric text clustering algorithm which does not 

require any predefined input parameters (k)  

Limitation is this method greatly depends on the length of the 

vector to be compared and no feature selection.  
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2. Related Work 

 Kernel-selected email clustering algorithm (Yang, Luo, Yin, & Liu, 

2010):  

Preprocess the emails and construct the email VSM(vector space 

model) by combining the body and subject.  

Then adopt the advanced k-means algorithm to cluster the emails 

and design a kernel-selected algorithm based on the lowest 

similarity.  

Limitation  

o Based on the vector space model,  

o Based on random seed selection, and  

o No feature selection  
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3. Thesis Problem 

 Given an user (u) email inbox, we need to create topic folders (F) 

based on similarity of email content, sub-folders of sender (SF) and 

index (i) containing links to those F and SF, we need to find 

How to identify the feature terms for clustering which can best 

represent the content of document. 

How to form the clusters for folder creation without any pre-

defined parameters (such as, K in K-Means++ clustering).  

How to cluster the emails semantically.  

How to create sub-folders (SF) based on sender of email. 

How to index and link the folders created.  

 

 



School of Computer Science 

University of Windsor 22 

4. Thesis Contribution 

 Proposed AEMS (Automatic Email Management System) model 

consisting of three sub-modules:  

AEG (Automatic Email Grouping) model which manages email 

by organizing similar email in the topic folders (F). 

APEG (Automatic People Email Grouping) model which 

organizes emails into subfolder (SF) which contain emails sent by 

a particular person.  

Proposed method for index (i) creation, which contain name and 

link to the folders and sub-folders.  

 Introduced document frequency based feature selection method 

named Associative term frequency for clustering in AEG model. 
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4. Thesis Contribution 

 Proposed Semantic Non-parametric K-Means++ Clustering for AEG 

model which,  

Selects the initial seed according to the email weight, 

Decides the cardinality according to the similarity between the 

email content, and 

Semantically cluster formation.  
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5. Proposed AEMS Model 

 AEMS model mines data from the email and cluster email in the 

specific group and sub-group, of similar email and person 

respectively and produce index. 

 The method for building AEMS model is divided into three modules 

Automatic Email Grouping (AEG);  

Automatic People based Email Grouping (APEG) and  

Indexing. 

 The process flow is shown in Figure 3: 
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Dataset 

(Input) 

Preprocessing  

(Apply stemming 

and stop words 

removal) 

Feature Selection 

(Associative Term 

Frequency) 

Apply Semantic  
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Move folder to 
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If 
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Figure 3: AEMS Model 
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5. Proposed AEG System 

 AEG system is a process of creating topic based folder based on 

similar email messages. 

 Step 1: Input -  

Raw emails from inbox of user. 

 Step 2: Extract email subject and content -  

For example, in email E1 

 Subject: “Assignment”  

 Content: “Hi all 60-510 students, Please find assignment #5 

 attached” 

 Step 3: Pre-processing -   

Remove stop words, such as ‘a’, ‘but’, ‘the’  

Apply stemming algorithm  

o For example, words assignment, assigning, assigned will be 

converted to assign.   
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5. Proposed AEG System 

       For example,  

 Subject: ‘assign’ 

 Content: ‘students please find assign attach’  

 Step 4: Feature selection - 

Calculate the associative term frequency (𝑅𝑡𝑓(𝑥)) of a particular 

term x, which is the percentage of emails that contains the term, x. 

Term 𝑥  is a feature, if 𝑅𝑡𝑓(𝑥) ≥  𝑇𝑠 (if term appear in subject) 

or𝑅𝑡𝑓(𝑥) ≥  𝑇𝑏 depending (if term appear in content)  

𝑅𝑡𝑓(𝑥) = (𝑑𝑓𝑥 ∗ 100)/𝑁 

Where, 𝑑𝑓𝑥       Total number of emails in which the term x appeared.     

  N       Total number of email messages in the dataset  
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5. Proposed AEG System 

For example, 

o If term ‘assignment’ from subject appears in 5 emails out of 50 

emails  

• Then, Rtf (assignment) = 10.  

o If Ts = 5, then ‘assignment’ will be a feature term, because  

 Rtf (assignment) ≥ Ts.  

 Step 5: Semantic Non-parametric K-Mean++ clustering 

First seed selection:  

o Email with the maximum weight is selected as the first cluster 

center where email weight is considered as the total number of 

feature terms in that email.  
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5. Proposed AEG System 

For example,  

    Consider a set of 6 email vectors {E1, E2, E3, E4, E5, E6}: 

     E1 – {Assignment, Student, Please, Attached, Try}       

     E2 – {Assignment, Student, Please, Attached, University}      

     E3 – {Assignment, Please, Attached}       

     E4 – {Appointment, Meet, University, Windsor}       

     E5 – {Thesis, Defense, Please, Attached}      

     E6 – {Appointment, Windsor, Meet}  

So, here E1 is selected as the first cluster center.   

Cluster centers:  

o Calculate the similarity, 𝐷 𝑥𝑖,𝑗  (using STS coefficient) 

between all emails with the initial cluster center. 

 

       

EW1  5 

EW2 5 

EW3 3 

EW4 4 

EW5 4 

EW6 3 
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5. Proposed AEG System 

  

 

 

 

 

 

 

   

 

o Choose other cluster centers xj if 

• 𝐷 𝑥𝑖,𝑗 ≤  𝛽 , where i is existing cluster center and j is 

other email and  

• ∀𝑖,  𝐷 𝑥𝑖,𝑗   is minimum. 

 For example, let similarity between email E1 and other emails are 

 

 

 

 Suppose, 𝛽 = 0.2, the next cluster center will be E4. 

Email E2 E3 E4 E5 E6 

E1 0.86 0.74 0.11 0.15 0.21 
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5. Proposed AEG System 

  

 

 

 

 

 

 

   

 

• Next, let similarity between E1 and E4 with other emails is: 

 

 

 

 

o Other cluster center will be E5 since its summation of 

similarity (0.15+0.15 = 0.30) with E1 and E4 is minimum and 

is less than 𝛽 

o Thus, there will be three cluster center, E1, E4 and E5 

Since STS find semantic similarity therefore it adds SEMANTIC to the 

clusters. 

There is no pre-defined parameters such as K (Number of cluster) is taken 

from the user, so the algorithm is NON-PARAMETRIC.  

Email E2 E3 E5 E6 

E1 0.86 0.74 0.15 0.21 

E4 0.13 0.23 0.15 0.73 
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5. Proposed AEG System 

 

 

Email E2 E3 E6 

E1 0.86 0.74 0.21 

E4 0.13 0.23 0.73 

E5 0.21 0.27 0.32 

Cluster formation –  

o The cluster will be formed by finding the similarity 

between emails and the cluster centers.  

o With the maximum similarity, that email will be assigned to 

the respective cluster. 

 

 

 

 

 

 For example, Cluster 

  C1 – {E1, E2, E3} 

  C2 – {E4, E6} 

  C3 – {E5}     

Table 3: Similarity between all emails 



School of Computer Science 

University of Windsor 33 

5. Proposed AEG System 

 Step 6: Folder creation and topic detection - 

Using these clusters, folders are created.  

Subject term having maximum 𝑅𝑡𝑓 in there respective cluster, 

will be chosen as folder name. 

         For example, 

  

         

 

Folder Name  Content 

Assignment E1, E2, E3 

Appointment E4, E6 

Defense E5 

Table 4: Cluster Formed 
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5. Proposed APEG System 

 APEG system is a process for creating the sub-folders based on email 

sender ID and contains the emails from that specific person in the 

respective folder created by AEG system. The algorithm works as 

follows: 

Folders 

from AEG 

system 

(Input) 

Extract Email-ID 

& Name of 

Sender 

Move folder to 

respective folder 

Make folder & 

move email in 

that sub-folder 

If 

folder 

Exists 

Legends: 

 = Process 

= Multiple 

Documents 

 = Multiple 

Documents 

= Process 

Flow = Data Flow 

Grouped 

Data 

(Output) 

Y 

N 

Figure 4: APEG System 
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5. Proposed APEG System 

For example, 

o From email E1 in folder “Assignment”, sender Email-ID 

(david12@gmail.com) and name (David) is extracted.  

o Since there is no folder named “David” therefore, a folder is created 

in folder “Assignment” and email E1 is moved to that folder. 

o Email E2 is taken and sender email ID (david12@gmail.com) is 

extracted and name (David).  

o Since sub-folder named “David” already exists, therefore email E2 is 

moved to that folder. Therefore sub-folder David will contain 2 email 

messages E1 and E2. 

mailto:david12@gmail.com
mailto:david12@gmail.com
mailto:david12@gmail.com
mailto:david12@gmail.com
mailto:david12@gmail.com
mailto:david12@gmail.com
mailto:david12@gmail.com
mailto:david12@gmail.com
mailto:david12@gmail.com
mailto:david12@gmail.com
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5. Indexing 

 Lastly, these folders and sub-folders serves as input to indexing 

method.  

 In indexing a separate html file is creates named “Email Index”, 

which contain the folders name and links to that respective folder. 

 For example, the output will be:  

Email Index 

Appointment  

 John (1) 

 Sonig (1) 

Assignment 

 David (2) 

 Richi(1) 

Defense 

 David (1) 

Figure 5: Email Index 
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6. Work Done so far 

 Implementation:  

For AEG system 

o Downloading the emails in text file  

o Pre-processing 

o Feature Selection 

o STS similarity coefficient  

Implemented whole APEG system 
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7. Experiments 

 Experimental Setup: 

The proposed algorithm is implemented using open source 

technologies, Java. 

Algorithm is applied on Enron email dataset used for the purpose 

of research in email management, which contains more than 

200K messages belonging to 158 users.  

In this experiments we used inbox folders of “bass-e” and 

“germany-c” of the Enron email dataset, which consists of 310 

and 326 email messages respectively. 

The hardware configuration to run the experiments used is 3GB 

RAM, intel core i3 CPU, 2.34 GHz and 32-bit windows-7 

operating system. 
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7. Experiments 

 Implemented K-Means++ clustering to test the working of feature 

selection. 

 Evaluation Criterion:  

The clustering performance of the proposed technique is 

calculated by using the Davies-Bouldin (DB) index coefficient.  

The formula given is:  

  𝐷𝐵 = 1/𝑛 𝑚𝑎𝑥𝑖≠𝑗(
𝑛
𝑖=1 (𝜎𝑖 + 𝜎𝑗)/𝑑(𝑐𝑖 , 𝑐𝑗))  

 

 

 

 

Where, n is the number of clusters,  

Cx is the centroid of cluster x,  

σx is the average distance of all elements in cluster x to centroid Cx, and 

d(Ci, Cj) is the distance between centroids Ci and Cj. 
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7. Results 

 Results: 

Table below demonstrates the number of features selected when 

using different threshold and corresponding DB-index using K-

Means++ clustering on experimenting dataset.  

Threshold Bass-e Germany-c 

Ts Tb No. of 

Features 

DB-Index No. of 

Features 

DB-Index 

0 0 9952 0.8773 7341 0.9359 

1 5 779 0.9132 772 0.9617 

5 15 72 0.8993 44 0.9883 

Table 5: No. of features selected for different threshold 

Here it is also observed that when the number of features 

reduced from 9952 to 72 it does not make much significant 

changes on DB-index for cluster correctness.  
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8. TimeLine 
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