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Abstract—Domain knowledge for web applications is cur-
rently being made available as domain ontology with the advent
of the semantic web, in which semantics govern relationships
among objects of interest (e.g., commercial items to be pur-
chased in an e-Commerce web site).

Our earlier work proposed to integrate semantic information
into all phases of the web usage mining process, for an intelli-
gent semantics-aware web usage mining framework. There are
ways to integrate semantic information into Markov models
used in the third phase for next page request prediction. Se-
mantic information is combined with the transition probability
matrix of a Markov model. This way, it provides a low order
Markov model with intelligent accurate predictions and less
complexity than higher order models, also solving the problem
of contradicting prediction. This paper proposes to use semantic
information to prune states in Selective Markov models SMM,
semantic information can lead to context-aware higher order
Markov models with about 16% less space complexity.

Keywords-Markov Models; Domain Ontology; Semantic Dis-
tance; Next Page Request Prediction; Web Prefetching.

I. INTRODUCTION AND MOTIVATION

Predicting user’s next page request on the World Wide

Web is a problem that affects web server’s cache perfor-

mance and latency. Different methods exist that can look at

the user’s sequence of page views, and predict what next

page the user is likely to view so it can be prefetched. One

way is to use association rules as a result of sequential pat-

tern mining [6]. Another way is to model the user’s accessed

web pages as a Markov process with states representing

the accessed web pages and edges representing transition

probabilities between states computed from the given user

sequence in the web log. In this case, a trained Markov

model can be used to predict the single next state, given a

set of k previous states.

Recently, more businesses on the internet are starting to

include domain ontologies in their online applications (e.g.

Amazon.com1, eBay2). Domain ontology provides a useful

source of semantic information that can be used in next page

prediction systems. The availability of this information and

the tradeoff problem between state space complexity and

accuracy in Markov models [8], trigger a need to integrate

semantic information in the mining process.

1http://www.wsmo.org/TR/d3/d3.4/v0.2/#ontology
2www.ebay.com

The integration of semantic infromation directly in the

transition probability matrix of lower order Markov models,

was prosented as a solution to this tradeoff problem [5],

resulting in semantic-rich lower order Markov models. This

integration also solves the problem of contradicting predic-
tion.

In this paper3, we propose to use semantic information as

a criteria for pruning states in higher order (where k > 2)

Selective Markov models [4], and compare the accuracy and

model size of this idea with semantic-rich markov models

and with traditional Markov models used in the literature.

First we discuss Markov models in section II. Section

III surveys related work, while Section IV previews domain

knowledge and how it is prepared for use in Markov models.

Section V discusses the integration of semantic information

into low-order Markov models and the proposal to use it for

pruning states in Selective Markov models (SMM). Exper-

imental analysis and performance comparison are provided

in Section VI, and finally conclusions and future work are

presented in Section VII.

II. PROBLEM BACKGROUND

Given a sequence of web page views generated by a user

browsing the world wide web. This sequence can be modeled

as a set of pages, or a web session W = {P1,P2, . . . ,Pl},

where Pi is a random variable representing the ith page

view in W . The actual web page in a user’s web session

will be represented by pi. The problem of next page request

prediction is to predict the web page that will be accessed

next, i.e. Pl+1.

To model the transition between different web pages in

a Markov process, the probability that a user will access a

certain web page next is based on the current state that he

is visiting, resulting in a 1st-order Markov model, or the

previous k states in the sequence, resulting in a kth-order

Markov model. The probability of moving to state S2 in a

Markov model given the current state S1 is the conditional

probability P(S2|S1). For example, the probability of the se-

quence <be> happening, if Pi =< b > and Pi+1 =< e >,

3This research was supported by the Natural Science and Engineering
Research Council (NSERC) of Canada under an operating grant (OGP-
0194134) and a University of Windsor grant.
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is the conditional probability of accessing Pi+1 after Pi,

estimated as follows:

P (Pi+1|Pi) =
frequency(< pipi+1 >)

frequency(< pi >)
(1)

Let Sk
j be a state containing k page views from W , and

l be the number of pages the user visited so far, Sk
j = <

pl−(k−1), pl−(k−2), . . . , pl>. The probability of accessing a

page pi after the set of k pages Sk
j is estimated in a kth-

order Markov model from a history web log (training data)

as follows:

P
(
pi

∣∣ Sk
j

)
=

frequency(< Sk
j pi >)

frequency(< Sk
j >)

(2)

Using W , the page pl+1 that the user will most probably

access next is given by

pl+1 = arg max
p∈P

{P (Pl+1 = p|Pl,Pl−1, . . . ,Pl−(k−1)}
(3)

where P is the set of all pages in the web site. The argmax
operator returns the page with the highest probability. The

contradicting prediction problem occurs when argmax re-

turns more than one result with equal probabilities.

With Sk
j representing the states of the Markov model,

a markov process is modeled as a directed acyclic graph

in which every vertex represents a state corresponding

to a page view in the sequence, and edges labeled with

probabilities representing transitions between the connected

states according to (1), or (2) in the case of kth-order Markov

model. All transition probabilities are stored in a transition

probability matrix Pn×n, where n is the number of states in

the model.

III. RELATED WORK

In applying probabilistic models for web prefetching,

the focus in the last decade has been on Markov models

[2][3][4]. Bestravos in [2] used a method that first estimates

the conditional probabilities of transitioning directly from

each web page to every other web page within a time Tw

based on server log file analysis. This is a 1st-order Markov

model for predicting surfer paths. Bestravos did not, how-

ever, explore the effects of using longer surfer paths (higher-

order Markov models) in the predictive model. Using an n-
gram representation of user access paths, Pirolli and Pitkow

[7] study the prediction power and effects of using higher

order Markov models, based on a training set collected one

day from xerox.com website, and tested against data col-

lected the next day. Given a penultimate path match between

paths in the training and test data, the model examined all

the conditional probabilities p(xn|xn−1, . . . , xn−k) available

for all pages xn, and predicted that the page having the

highest conditional probability of occurring next, would in

fact be requested next. This research, in addition to Borges

and Levene in [3], lead to the use of higher order Markov

Table I
WEB ACCESS SEQUENCE DATABASE.

Transaction ID Sequence

T1 p2p3p2p1p5
T2 p2p1p3p2p1p5
T3 p1p2p5
T4 p1p2p5p2p4
T5 p1p2p1p4

models for link prediction. The order of a Markov model

corresponds to the number of prior events used in predicting

a future event. So, a kth-order Markov model predicts the

probability of next event by looking at the past k events.

Using Markov models for prediction suffers from a

number of drawbacks. As the order of the Markov model

increases, so does the number of states and the model

complexity. On the other hand, reducing the number of states

leads to inaccurate transition probability matrix and lower

coverage, thus less predictive power, and less accuracy. To

counter the reduction in coverage, and as a solution to

this tradeoff problem, various Markov models of differing

order can be trained and used to make predictions. The

resulting model is referred to as the All-Kth-Order Markov

model [8], such that if the kth-order Markov model cannot

make the prediction then the (k-1)th-order Markov model is

tried, and so on. The problem with using the All-Kth-Order

Markov model is the large number of states contributing to

the complexity of the model and the latency of prediction,

making it inappropriate for online prediction. On the other

hand, selective Markov models (SMM) [4] that only store

some of the states within the model have also been proposed

as a solution to the mentioned tradeoff problem. They

start off with an All-Kth-Order Markov model, then a post

pruning approach is used to prune out states that are not

expected to be accurate predictors. The result is a model that

has the prediction power of All-Kth-Order models with less

space complexity and more prediction accuracy. Deshpande

and Karypis in [4] provide three different criteria which

might be used separately to prune states in the model before

prediction, that is, frequency, confidence, and error. But they

did not study the effect and the relation of domain kowledge

and semantics on selective Markov models, neither did they

try to combine the three pruning criteria into one pruning

measure.

IV. DOMAIN KNOWLEDGE AND SEMANTIC

INFORMATION

It is assumed here that different user browsing sessions

are provided in a clean web log, similar to Table I, and

that domain knowledge is made available in the form of

domain ontology provided by the ontology engineer during

the design of the web site. A core ontology with axioms
is defined by Stumme et al. [9] as a structure O :=
(C,≤C ,R, σ,≤R,A) consisting of:
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Table II
DOMAIN KNOWLEDGE CONTAINED IN EACH ACCESSED PAGE.

Accessed Actual Ontology
Page corresponding mapping

web page

p1 /cameras.html Cameras
p2 /cameras/canon.html Still Camera
p3 /chem/fsoln.html Filmdeveloping solution
p4 /film/videofilm.html Video Film
p5 /elect/dbatteries.html Dry Battery

M =

⎡
⎢⎢⎢⎢⎢⎣

p1 p2 p3 p4 p5
p1 0 1 5 1 3
p2 1 0 2 2 3
p3 5 2 0 4 8
p4 1 2 4 0 8
p5 3 3 8 8 0

⎤
⎥⎥⎥⎥⎥⎦

Figure 1. Semantic distance matrix.

• two disjoint sets C and R whose elements are called

concept identifiers and relation identifiers, respectively,

• a partial order ≤C on C, called concept hierarchy or

taxonomy,

• a function σ : R → C+ called signature (where C+ is

the set of all finite tuples of elements in C),

• a partial order ≤R on R, called relation hierarchy, and

• a set A of logical axioms in some logical language L.

For example, objects representing products in an e-

Commerce application (call it eMart) are instances of con-

cepts (also called classes) represented formally in the under-

lying domain ontology using a standard ontology framework,

and an ontology representation language like OWL4. For

example, a “Canon PowerShot A2000 IS” is a brand of a

digital still camera sold on eMart, that is an instance of the

Digital class which is a subclass of Still Camera class. The

subclass relationship is represented by the concept hierarchy.

The ontology behind eMart is realized as the semantic web

adopted in the e-Commerce application, such that each web

page is annotated with semantic information, during the

development of the website, thus showing what ontology

class it is an instance of. For example, page p2 from Table

I, contains the “Canon PowerShot A2000 IS” product, which

makes it an instance of the subclass of Digital Still Camera
in the ontology. Table II shows a mapping between the web

pages from the sequence database of Table I being mined

and the ontology O (not shown here due to space limitation),

as a result of the preprocessing described.

During mapping of web pages to their corresponding

classes, semantic distance can be computed and stored in

a look up matrix, called the semantic distance matrix M [5],

as in Figure 1.

We define the Semantic Distance Mpi,pj as a measure

of the distance in the ontology O between the two classes

of which pi and pj are instances. In other words, it is the

4http://www.w3.org/TR/owl-features/

measure in units of semantic relatedness between any two

web pages pi and pj , assuming that a single web page

represents only one concept from the ontology. Semantic

distance is achieved by computing the topological distance,

in separating edges (is-a relations), between the two classes

in the ontology, by counting the number of is-a edges

required to get from the class which represents pi to the class

which represents pj before the mining process. The more

related two pages are, the lower is their semantic distance.

A Semantic Distance Matrix M is an n× n matrix of all

the semantic distances among all the n web pages in the

sequence database.

M=

⎡
⎢⎣

Mp1,p1 · · · Mp1,pn

...
. . .

...

Mpn,p1 · · · Mpn,pn

⎤
⎥⎦

, where Mpi,pj
is the number of edges separating pi from

pj .

Another related term used here is the Maximum Semantic
Distance η, which is a value that represents the maximum

allowed semantic distance between any two web pages.

Maximum semantic distance is inversely proportional to the

maximum level of relatedness a user would allow between

two concepts. It can be user-specified (i.e., a user with

enough knowledge of the used ontology can specify this

value) or it can be automatically calculated from the min-

imum support value specified for the mining algorithm, by

applying it as a restriction on the number of is-a edges in the

ontology graph. For example, if the minimum support used

in the mining algorithm is 5% and the number of edges in the

ontology is 60 edges, then η = 3, meaning that the maximum

semantic distance allowed between any two classes in the

ontology is only 3 edges away, η = min sup × |R|.
V. THE PROPOSED SEMANTIC-RICH MARKOV MODELS

While semantic information can be used in Markov mod-

els to provide semantically accurate and informed predic-

tions, there are mainly two goals. First, to come out with

low order Markov models that have a comparative predictive

power to higher order models, while at the same time using

less complex state space. Secondly, to solve the contradicting

prediction problem mentioned in Section II. Two ways are

discussed here for using semantic information in Markov

models. The first way in Section V-A directly integrates

semantic distances into the probability transition matrix of

low order Markov models. The second method introduced in

Section V-B, and proposed in this paper, uses the semantic

distance as a measure to prune the states in a Selective

Markov model.

A. Semantics Integration and Contradicting Prediction

The semantic distance matrix M is directly combined with

the transition matrix P of a Markov model of the given

sequence database, into a weight matrix W. This weight
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P =

⎡
⎢⎢⎣

p1 p2 p3 p4 p5
p1 0 0.43 0.14 0.14 0.28
p2 0.5 0 0.125 0.125 0.25
p3 0 1 0 0 0
p4 0 0 0 0 0
p5 0 0.25 0 0 0

⎤
⎥⎥⎦

Figure 2. Transition probability matrix for Markov model from Table I.

matrix is consulted by the predictor software, instead of

P, to determine future page view transitions for caching

or prefetching.

The Weight Matrix W can be defined as an n× n matrix

resulting from combining the semantic distance matrix M
with the Markov transition probability matrix P, as follows,

Wpi,pj = PSi,Sj +

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − Mpi,pj
n∑

k=1

Mpi,pk

, Mpi,pj
> 0

0 , Mpi,pj
= 0

(4)

In details, and in order to combine P and M, M has to

be normalized such that each entry is between 0 and 1,

so it can fit in any Markov-based prediction tool in place

of P. This is achieved by dividing each row entry by the

row sum
∑n

k=1 Mpi,pk
. The next step would be to add

both matrices together, in order to enrich P with semantic

distance measures. But, the values in M represent a distance,

such that the higher the value, the more is the distance. This

value is inversely proportional to the required output weight

(i.e., a greater distance should result in a smaller weight). To

solve this problem, each non-zero entry in the normalized

M is subtracted from 1.

For prediction, assume that in the test set the user went

through this sequence of page views <p2p5p1p3>. Looking

at P in Figure 2, there is a 100% probability that the user

will next view page p2. A problem that could arise here is

contradicting prediction, for example, assume in Figure 2

that P(p2|p1) = P(p5|p1) = 0, and notice that P(p3|p1) =

P(p4|p1), which means that there is an equal probability

a user will view page p3 or p4 after viewing page p1.

Thus, the prediction capability of the system will not be

accurate in terms of which is more relevant to predict after

p1, and the prediction will be ambiguous. Integration of

the semantic distance matrix can solve this problem. The

transition probability matrix can be combined with the given

semantic distance matrix of Figure 1, resulting in W, as in

Figure 3, according to equation (4).

For deeper discussion and experimental analysis of this

integration of semantics with transition probabilities, we

refer the reader to our previous work in [5].

B. Using Semantic Distance for State Pruning

This paper proposes to use the maximum semantic dis-

tance measure η for state pruning in Selective Markov

models (SMM). In this case, an All-Kth-Order Markov

W =

⎡
⎢⎢⎣

p1 p2 p3 p4 p5
p1 0 1.33 0.64 1.04 0.98
p2 1.37 0 0.87 0.87 0.87
p3 0.74 1.89 0 0.79 0.58
p4 0.93 0.87 0.73 0 0.47
p5 0.86 1.11 0.64 0.64 0

⎤
⎥⎥⎦

Figure 3. Weight matrix W resulting from combining M (Figure 1) with
Markov transition matrix P according to eq. (4).

model is built first as in [8], next states that do not contribute

to the model, i.e. which have zero frequency, are pruned.

Then, any state Sk
j , having Mpl−(k−1),pl−(k−2) > η, where

l is the number of pages the user visited so far and j is a

simple enumeration of the states in the model, such state

will be pruned from the model. Next we show a detailed

example and then discuss performance in Section VI. We

limit our models to 3rd-Order Markov models, similar to

Deshpande and Karypis [4].
Example: Figure 4 shows the All-Kth-Order Markov

model for the web log in Figure 4(a). This model consists

of 1st, 2nd and 3rd -order models. To create the selective

Markov model, states with a right arrow → are pruned as

they do not contribute to the model (i.e. they have no next

state), and states with a double right arrow ⇒ are pruned

since the semantic distance between the pages is higher

than the maximum allowed semantic distance (assumimg

η = 2). For example, state S2
18 =<p5, p2> is pruned since

Mp5,p2 = 3 is greater than η based on the semantic distance

matrix in Figure 1. In this example, 14 states are pruned from

just the 2nd-order part of the selective model, 5 of which

are pruned based on semantic distance, in total resulting in

70% reduction in just the 2nd-order state space of the model

over the All-Kth-order model.

VI. EXPERIMENTAL ANALYSIS

Experiments were carried out on three kinds of data sets.

Two data sets, DS-1 and DS-2 are generated using the

IBM resource data generator [1]. DS-1 is a small data set

resembling a web log of 5000 user sessions, while DS-2
is a large data set resembling a web log of 80,000 user

sessions. A third data set DS-3 is a staged data set manually

constructed to resemble eMart’s web log with 200,000 user

sessions. Characteristics of the three data sets are described

in Figure 5. The assumptions made in Sections II and IV,

also apply on the dataset and the way experiments were

conducted.

Data set # of # of Ave. Trans.
Transactions Unique pages Length

DS-1 5000 113 2.5

DS-2 80000 200 5

DS-3 200000 155 8

Figure 5. Data sets used for experimental analysis.

Using these data sets, 1st-Order, 2nd-Order, and AllKth-

Order Markov models, along with frequency-pruned SMM
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SessionID Access Sequence

W1 p2p3p2p1p5
W2 p2p1p3p2p1p5
W3 p1p2p5
W4 p1p2p5p2p4
W5 p1p2p1p4
W6 p3p1p4p2p1p5
W7 p4p1p2p5p2p3p2p1
W8 p1p4p2p3p1p2p5

1st-Order State p1 p2 p3 p4 p5

S1
1 =< p1 > 0 0.38 0.08 0.23 0.23

S1
2 =< p2 > 0.43 0 0.21 0.07 0.29

S1
3 =< p3 > 0.40 0.60 0 0 0

S1
4 =< p4 > 0.20 0.40 0 0 0

S1
5 =< p5 > 0 0.29 0 0 0

(a) (b)

2nd-Order State p1 p2 p3 p4 p5

S2
1 =< p1, p2 > 0.20 0 0 0 0.80

⇒ S2
2 =< p1, p3 > 0 1.00 0 0 0

S2
3 =< p1, p4 > 0 0.67 0 0 0

→ S2
4 =< p1, p5 > 0 0 0 0 0

S2
5 =< p2, p1 > 0 0 0.17 0.17 0.50

S2
6 =< p2, p3 > 0.33 0.67 0 0 0

→ S2
7 =< p2, p4 > 0 0 0 0 0

⇒ S2
8 =< p2, p5 > 0 0.50 0 0 0

⇒ S2
9 =< p3, p1 > 0 0.50 0 0.50 0

S2
10 =< p3, p2 > 1.00 0 0 0 0

2nd-Order State p1 p2 p3 p4 p5

→ S2
11 =< p3, p4 > 0 0 0 0 0

→ S2
12 =< p3, p5 > 0 0 0 0 0

S2
13 =< p4, p1 > 0 1.00 0 0 0

⇒ S2
14 =< p4, p2 > 0.50 0 0.50 0 0

→ S2
15 =< p4, p3 > 0 0 0 0 0

→ S2
16 =< p4, p5 > 0 0 0 0 0

→ S2
17 =< p5, p1 > 0 0 0 0 0

⇒ S2
18 =< p5, p2 > 0 0 0.50 0.50 0

→ S2
19 =< p5, p3 > 0 0 0 0 0

→ S2
20 =< p5, p4 > 0 0 0 0 0

(c)

Figure 4. (a) Sample web log with user transactions. (b) Resulting probability transition matrix for 1st-Order Markov model. (c) Resulting probability
transition matrix for 2nd-Order Markov model.

are built for testing and comparison. Semantic information

in the form of a semantic distance matrix (SDM) for each

data set, is generated randomly. While for DS-3, the semantic

distance matrix is manualy constructed based on the given

eMart’s ontology. Using this matrix, semantic-rich 1st-

order Markov models and semantic-pruned SMM are also

constructed for testing. A frequency threshold [4] of 0 is

used in the Selective markov models (SMM), while varying

values for η are used in the semantic-pruned SMM.

Testing is done in the following way. First, every data

set is divided into a training set, which is the first 75%

sessions in the data set, and a test set, the remaining 25%.

Then, in the training part, the described Markov models are

construced from the data sets and the model size for each

one is noted. The model size is defined here as the number

of states in each model. The testing part is made similar to

the method described in Deshpande and Karypis [4], that

is, every model is given a trimmed session from the test

set for prediction, in which the last page of the session is

hidden. The prediction made by the model is then compared

with the hidden page of the session to compute the accuracy

of the model. Accuracy represents the predictive power of

the model and is measured as the percentage of successful

predictions made.

The performance in these experiments is measured by

model size and accuracy, the two factors in the tradeoff prob-

lem described previously. The goal is to find the best model

that can provide accurate predictions while maintaining a

comparatively small model size. Sometimes a model might

not be able to provide a prediction due to two reasons. First,

a contradicting prediction problem might occur. Secondly,

the hidden page might not have been present in the training

set. If that happens, it will output the web page with the

highest frequency as a default prediction, in the case of

selective or stand-alone Markov models, or it will depend on

semantic distance measures to make an informed prediction

that is considered semantically correct, as is the case in

semantic-rich models.

Semantic-rich 1st-order Markov models are found to

totally eliminate the contradicting prediction problem in

all of the data sets used. For example, testing DS-3 using

the 1st-order Markov model resulted in a number of 258

contradicting predictions, while running the same test using

the semantic-rich 1st-order Markov model, resulted in 0

contradicting predictions.

Figure 6, shows results of the experiments. One can notice

that semantic-rich 1st-order Markov models have the same

model size as regular 1st-order models, this is because

no pruning is used in semantic-rich models. While these

semantic-rich models solve the problem of contradicting

prediction, they also provide very close accuracy to that of

regular 1st-order models. This accuracy differs depending

on the nature of the sessions in the data sets. For exam-

ple, in DS-3, the accuracy of semantic-rich model (that is

29.80%) is about equal to that of non semantic-rich (which

is 30.02%), because, once the web log was examined, it was

found that users traversed pages that are highly semanticaly

related and would resemble the structural relations between

the pages in the web site.

Highlighted in Boldface in Figure 6, are the highest

prediction accuracies for each data set, which show that

frequency-pruned SMM is mostly the best choice for high
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DS-1 DS-2 DS-3
Model Accuracy Size Accuracy Size Accuracy Size

in % in % in %

1st-order 17.50 870 17.50 6320 30.02 992

Sem. 1st-order 12.50 870 19.02 6320 29.80 992

2nd-order 18.00 25230 18.70 181858 30.12 30752

AllKth-order 26.34 757770 19.80 1526176 29.52 985056

FPSMM 25.81 21547 25.03 807617 31.83 12741

Figure 6. Comparing accuracy and model size of different Markov models for the different data sets. Sem. 1st-order stands for semantic-rich 1st-Order
Markov models, and FPSMM stands for frequency-pruned selective markov models with 0 frequency threshold.

DS-1 DS-2 DS-3
Max Semantic Accuracy Accuracy Accuracy
Distance η in % Size in % Size in % Size

η = 5 5 2697 0 31163 11.71 5032

η = 20 10.71 7283 12.9 89039 20.00 9118

η = 50 20.01 10066 19.35 254399 27.43 10230

η = 70 22.77 15844 23.17 726855 31.00 11420
η = 90 24.95 20364 24.81 755641 31.34 12420

η = 110 25.81 21547 25.00 774275 31.80 12741

Figure 7. The accuracy and model size of semantic- and frequency-pruned selective markov models using different data sets.

accuracy and small model size, as the results show an

average decrease of 57% in model size, with only an average

of 2.7 deviation in accuracy. The second best is the 2nd-order

markov model, which confirms the findings in [4]. But, could

there be a better compromise in which the accuracy is higher

and the model size is smaller? In an attempt to answer this,

the proposed semantic-pruned SMMs are built with differing

values for η, as in Figure 7.

It can be noted from Figure 7 that, as the value of η
decreases, so does the model size. Which is expected, since

less η means more pruning will take place, and accuray also

decreases due to the same reason. At a value of η = 70, the

semantic-pruned SMM does provide an accuracy close to

that of its respective frequency-pruned SMM (FPSMM) in

Figure 6, with an average difference of only 1.91 in accuracy,

and at the same time maintain a smaller state space, with an

anverage of 16% decrease in model size

VII. CONCLUSIONS AND FUTURE WORK

The integration of semantic information, drawn from

an underlying domain ontology, into probabilitic low-order

Markov models is discussed. Semantic information is in-

fused into the Markov transition probability matrix to con-

vert it to a matrix of weights for better-informed prediction,

and to overcome the problem of contradicting prediction.

This paper takes this idea a step further by proposing to

use maximum semantic distance as a measure for pruning

higher-order Markov models.

The performance of semantic-rich 1st and 2nd-order

Markov models is studied and compared with that of higher-

order Selective Markov models and semantic-pruned Se-

lective Markov models. It was found that semantic-pruned

SMM have a 16% smaller size than frequency-pruned SMM

and provide nearly an equal accuracy. Experiments also

show that semantic-rich low-order Markov models can over-

come the problem of contradicting prediction
Future work includes the development of a method that

can gather better semantic information to be used than

simple semantic distance, and investigating the benefits of

pushing the ontology towards more semantic information

that can aid inferencing, along with association rules in the

recommendation/prediction phase of web usage mining.
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