
Incremental Mining of Web Sequential Patterns Using PLWAP Tree

on Tolerance MinSupport

C.I. Ezeife∗

School of Computer Science, University of Windsor,

Windsor, Ontario, Canada N9B 3P4

cezeife@uwindsor.ca

Min Chen

School of Computer Science, University of Windsor

Abstract

This paper proposes an algorithm, PL4UP, which
uses the PLWAP tree structure to incrementally up-
date web sequential patterns. PL4UP initially builds
a bigger PLWAP tree that includes all sequences in
the database with a tolerance support, t, that is a
fraction of the database minimum support, s. The
position code features of the PLWAP tree are used to
efficiently mine this tree to extract both current fre-
quent and non-frequent sequences, which are likely
to become frequent when the database is updated.
This approach more quickly updates old frequent pat-
terns without the need to re-scan the entire updated
database.

Keywords: Incremental Mining, sequen-

tial mining, frequent patterns, Apriori-like al-

gorithms, PLWAP tree, Scalability

1 Introduction

Sequential pattern mining is based on association rule
mining concepts of support, confidence, minimum
support, minimum confidence and frequent sequence
(pattern). When data are inserted or deleted from
a database, previous patterns may no longer be in-
teresting and new interesting patterns could appear
in the updated database. The process of generating
new patterns in the updated database (old + new
data) using only the updated part (new data) and
previously generated patterns is called incremental
mining of sequential patterns. Although sequential
mining is an important data mining task, it has re-
ceived relatively little attention compared with as-
sociation rules mining, especially in the area of in-
cremental mining of sequential patterns [4, 6]. Exist-

∗This research was supported by the Natural Science and
Engineering Research Council (NSERC) of Canada under an
Operating grant (OGP-0194134) and a University of Windsor
grant.

ing incremental sequential mining algorithms that are
apriori-based include [1, 4, 6]. Tree-based mining al-
gorithms are [3, 5] and these are much faster than the
apriori-based algorithms and incremental sequential
techniques may benefit from a tree-based mining ap-
proach. This paper proposes a method for incremen-
tal sequential data mining based on the PLWAP-tree
that can achieve better performance than existing al-
gorithms.

1.1 Related Work

Few existing algorithms [1, 4, 6] for incremental
sequential patterns mining are apriori-based rather
than tree-based. They are composed of iteratively:
(1) generating all large itemsets in the database and
(2) generating sequential patterns in the database ac-
cording to the large itemsets generated in the first
step. ISE algorithm is proposed by [4], to address the
maintenance problem for sequential patterns mining.
ISM [6] is also an apriori-like algorithm. WAP tree al-
gorithm [5] scans the database only twice to build the
WAP tree without generating candidate sets. It then,
mines the WAP tree to extract sequential patterns.
PLWAP algorithm uses a preorder linked version of
WAP tree and an algorithm to eliminate the need to
recursively re-construct intermediate WAP trees dur-
ing mining as done by WAP tree technique. Neither
WAP nor PLWAP algorithm is used for incremental
mining.

1.2 Contributions

In this paper, an algorithm named PL4UP (PLWAP
FOR UPdated sequential mining) is proposed. This
algorithm applies the PLWAP-tree [3] to the incre-
mental sequential mining problem. The PL4UP algo-
rithm eliminates the need to re-scan the old database
when new changes arrive, in order to update old pat-
terns. The approach is to initially build a PLWAP

1



tree that is based on a lower threshold minimum sup-
port, t, which is a fraction of the application’s regu-
lar minimum support, s. The tolerance support, t, is
based on the average computed changing rate of data
in the database.

2 The Proposed Incremental

PL4UP Algorithm

With F and S representing frequent and small items
in original database respectively, while F ′ and S′ rep-
resent updated large (frequent) items and updated
small items in the updated database U (old + new
data), all events (items) in updated database U will
fall into six categories of items as: (1) large in old
database, DB and still large in updated database
U (F → F ′); (2) large in old DB but small in
U (F → S′); (3) small in old DB but large in U
(S → F ′); (4) small in old DB and still small in U
(S → S′); (5) new items that are large in U (∅ → F ′);
and (6) new items that are small in U (∅ → S ′).

The main idea of PL4UP is to avoid scanning
the whole updated database, U (DB+db) but to
scan only the changes to the database (db). Then,
to perform incremental mining by building a small
PLWAP db tree for only these new changes to the
database (db). Once this small PLWAP db is built,
it can be used to update the existing old PLWAP DB.
With this approach, old patterns can quickly be up-
dated without the need to scan the old DB. However,
this will work for five of the six cases identified above,
but not for the third case, when S → S ′. If there are
any items in this category, the existing PLWAP DB

will not contain adequate information regarding all
sequences which had these previous small items (not
shown in the PLWAP DB) so that they could be up-
dated with the new data. The PL4UP solution is to
use a lower tolerance support in building the initial
PLWAP DB tree to accommodate most potentially
frequent items.

Thus, from the original PLWAP DB tree, the
small items S are broken into two groups to get those
that are highly likely to become frequent during next
database update (potentially frequent PF), and those
that are highly likely to still remain small (SS) using
the tolerance support t, which is lower than the reg-
ular minimum support such that t = factor * s for
0 ≤ factor ≤ 1. The limit on the t value suitable
for good performance is determined using the aver-
age rate of changes in the database collected over a
period of time.

2.1 Steps in Mining Frequent Pat-

terns Incrementally with PL4UP

1. Construct initial PLWAP tree using tolerance
minimum support, t (instead of minimum sup-
port s). We obtain the frequent 1-items (meet-
ing support s), F1, the frequent 1-items (meeting
support t), Ft, the Small 1-items (not meeting
support s), S1. From the S1 list, we obtain the
potentially frequent 1-items (in S1 list but meet-
ing support t), PF1. We also identify the poten-
tially still small 1-items, SS1 (in S1 list but not
meeting the support t). The candidate 1-items
CDB

1
, recording the support of all items in the

database are also obtained from the database.
From each transaction in the database, we ob-
tain two subsequences, the frequent subsequence
meeting s requirements (seqs) and the frequent
subsequence meeting the t requirements (seqt).

2. Construct a PLWAP tree using the seqt from
first step above and the frequent Ft items
for header link connections. This is called
PL4UPDB tree.

3. Now mine the PL4UPDB tree for tolerance fre-
quent patterns (called TFP), by extracting all
patterns with support greater than or equal to
t. Since TFP includes all SFP (for support s re-
quirements) patterns (that is, TFP ⊇ SFP ), we
obtain the needed SFP from the TFP as those
patterns with support greater than or equal to
minimum support, s.

4. Now, when database changes and we want to
update the patterns incrementally, Update all
intermediate candidate lists and patterns as fol-
lows: Obtain the updated candidate 1-items, C ′

1

C ′

1
= C1 ∪Cdb

1
. F ′

1
and F ′

t are obtained as items
in C ′

1
with supports greater or equal to regu-

lar support s, and tolerance support, t respec-
tively. F db

1
= Cdb

1
∩ F ′

1
, and F db

t = Cdb
1

∩ F ′

t ,
Next, the updated small, potentially frequent
and still small items in the changes to database
(db) are obtained as follows. Sdb

1
= Cdb

1
∩ S′

1
,

and PF db = Cdb
1

∩ PF ′,

5. Construct the small PL4UP tree using only the
changes to the database, db and with frequent
items based on tolerance support, F db

t
. A signif-

icant difference in this step is that the frequent
1-items used to construct the small db tree is not
that directly computed from tolerance support of
db, but computed from intersecting (Cdb

1
∩ F ′

t ).

6. Combine the frequent patterns from the changes
to database, db and the old database, DB, keep-



Table 1: The Example Database Transaction Table
with Frequent Sequences

TID Web Frequent Frequent
access Seq. subseq subseq
Seq. with s = 50% with t = 0.6s

100 abdac abac abac
200 aebcace abcac aebcace
300 baba baba baba
400 afbacfc abacc afbacfc
500 abegfh ab abef

ing only those patterns that meet the regular
support s’ in updated SFP’ and those that meet
tolerance support, t’ in updated TFP’. Thus,
update SFP’ and TFP’ as follows: SFP’ are
patterns in TFP ∪ SFP db with support greater
or equal to s’. Similarly, TFP’ are patterns in
TFP ∪ TFP db with support greater or equal to
t.

3 Mining an Example Database

with PL4UP Algorithm

PL4UP algorithm being proposed in this paper is a
more generalized form of the PLWAP tree algorithm
[3], which uses a lower tolerance minimum support
to accommodate future incremental mining when up-
dates occur. This section shows an example mining
with PL4UP algorithm presented in Section 2.

3.1 PL4UP tree Algorithm on a Sam-

ple Database

Suppose we have a database DB with set of items,
I= {a, b, c, d, e, f, g, h} and minimum support =
50% of DB transactions, t is given as 0.6s%. A simple
database transaction table for illustrating the idea is
given in the first two columns of Table 1. The first
process is to build the initial PL4UPDB tree using se-
quences in Table 1 with support greater than or equal
to the tolerance support t of 0.6s or 30% (equivalent
to 2 transactions in Table 1). The PL4UP tree is
built the same way the PLWAP tree is built but with
lower tolerance support, t. To, build, first scan the
database sequence (column 2 of the Table) once to
obtain the candidate 1-items with their supports as:
C1 = {a:5, b:5, c:3, d:1, e:2, f:2:, g:1, h:1}.
Next, with regular support of 50% or 3 transactions,
define the regular and tolerance frequent 1-items as:

a:4
1

f:1
11101

e:1
1110

b:2
11

c:1
1111

f:1
11001111

b:1
11001

a:1
111

f:1
1100

b:1
1101

Root

e:1
110

a:1
10111

b:1
1011

a:1
101

b:1
10

e:1
11011111

c:1
11011

c:1
110011111

a:1
110111

c:1
1101111

a:1
110011

c:1
1100111

a

b

c

e

f

Figure 1: The PL4UP tree with tolerance Support t
for the Example Database

F1 = {a, b, c} and Ft = {a, b, c, e, f}. Also, obtain the
regular small 1-items, the potentially frequent and
potentially still small items as: S1 = {e, f, d, g, h},
PF = {e, f} and SS = {d, g, h} respectively. Then,
scan the web access database (column 2 of Table),
a second time to create two frequent sequences from
each transaction, the regular frequent sequence (seqs)
that includes all items with support greater or equal
to regular support, s (seqs is shown on column 3 of
Table 1), and the tolerance frequent sequence (seqt)
which includes all items with support greater or equal
to tolerance support, t (seqt is shown on column 4
of Table 1). Figure 1 shows the PL4UP DB tree for
the example database. Each seqt sequence is inserted
into the tree and each node is labeled as (node name:
node count: node position code). Position code of a
node is ‘1’ appended to the position code of its par-
ent if the node is the leftmost child, otherwise it is
‘0’ appended to the position code of its nearest left
sibling. After building the tree, a pre-order traversal
mechanism (visit root, visit left subtree, visit right
subtree) is used to add a pre-order linkage on the tree
for all tolerance frequent 1-items, Ft = {a, b, c, e, f}.
The broken lines on Figure 1 starting with each fre-
quent Ft item is used to show the pre-order linkage
between nodes of this type. Next, this tree is mined
for frequent patterns the PLWAP approach. To mine
a PLWAP tree for frequent patterns, we easily iden-
tify the suffix root set of the node (e.g, ‘a’) under
consideration by getting all such nodes on different
branches of the tree at the tree level under consider-
ation. This node label is considered frequent if the
sum of the counts of these labels on different branches
is greater than the tolerance support t; and if found



Table 2: The Changes to Database Transaction Table

TID Web Frequent subseq Frequent subseq
access with s using% with t using
Seq. Cdb

1
∩ F ′

1
Cdb

1
∩ F ′

t

700 bahefg baef bahefg
800 aegfh aef aegfh

frequent, it is appended to the previously discovered
prefix sequence and the process continues until there
is no more frequent suffix to append. Progressively,
sequences “a”, “aa”, “aaa”, “aac”, etc. are discov-
ered frequent. After checking all patterns, the list of
TFP mined is: {a:5, aa:4, aac: 3, ab:5, aba:4, abac:3,
abc:3, abcc:2, abe:2, abf:2, ac:3, acc:2, ae:2, af:2, b:5.
ba:4, bac:3, bab:1, bc:3, bcc:2, be:2, bf:2, c:3, cc:2,
e:2, f:2}. The actual needed frequent pattern, SFP,
now are the ones based on the regular support of
3. These are all patterns in TFP with support 3 or
more. The SFP = {a:5, aa:4, aac: 3, ab:5, ac:3, aba:4,
abac:3, abc:3, b:5. ba:4, bac:3, bc:3, c:3}.

Now, assume that the original database, DB of
Table 1 is updated with the records in the changes
to database table shown as Table 2, the objective
of the PL4UP algorithm is to use old rules, SFP and
TFP from the previous section, with the new changes
to database and other intermediate information from
the previous section like candidate 1-items, frequent
1-items, and small 1-items, to compute the new fre-
quent patterns in the entire updated database, us-
ing the same regular support, s, of 50% and toler-
ance support, t, of 30%. Thus, the PL4UP algorithm
mines the updated database incrementally as follows:
C ′

1
= C1 ∪ Cdb

1
.

C1 = {a:5, b:5, c:3, d:1, e:2, f:2:, g:1, h:1}. Cdb
1

= {a:2, b:1, e:2, f:2, g:2, h:2}, Thus, C ′

1
= {a :

7, b : 6, c : 3, d : 1, e : 4, f : 4, g : 3, h : 3}.
Updated regular support, s′, of updated database,
U is 50% of 7 or 4 transactions, while the toler-
ance support, t′, of U is 30% of 7 or 3 transac-
tions(ceiling(2.1)). F ′

1
= {a : 7, b : 6, e : 4, f : 4}

and F ′

t
= {a : 7, b : 6, c : 3, e : 4, f : 4, g : 3, h : 3}.

F db
1

= Cdb
1

∩ F ′

1
, = {a : 2, b : 1, e : 2, f : 2, g : 2, h :

2} ∩ {a : 7, b : 6, e : 4, f : 4} = {a:2, b:1, e:2, f:2}.
F db

t
= Cdb

1
∩ F ′

t
= {a : 2, b : 1, e : 2, f : 2, g : 2, h :

2} ∩ {a : 7, b : 6, c : 3, e : 4, f : 4, g : 3, h : 3}. =
{a : 2, b : 1, e : 2, f : 2, g : 2, h : 2}. Sdb

1
= Cdb

1
∩ S′

1

= {g:2}. PF ′ = {c:3, g:3, h:3 }. PF db = Cdb
1

∩ PF ′

= {g:2, h:2}. SS′ = {d:1}. SSdb = Cdb
1

∩ SS′ = ∅
Next, we construct the small PL4UP db tree using
only the changes to the database, db and mine this

Root

b:1:1 a:1:10

a:1:11

h:1:111

e:1:1111

e:1:101

g:1:1011

f:1:10111

a

b

e

f

g

h

h:1:101111
f:1:11111

g:1::
111111

Figure 2: The PL4UP tree with tolerance Support t
for Changes to Database

PL4UP db to obtain the regular, SFP db, and the tol-
erance frequent patterns, TFP db. Figure 2 shows the
PL4UP db tree for the small db based on the tolerance
support t of 30% or 1 transaction. The mined TFP db

= {a:2, ae:2, aef:2, af:2, b:1, ba:1, bae:1, baef:1, be:1,
bf:1, . . . , e:2, ef:2, f:2} and the SFP db as usual is
obtained from its TFP db counterpart as sequences
that have support greater or equal to the regular sup-
port of changed db, which is also 1 transaction in this
case. Thus, SFP db = TFP db. Finally, we combine
frequent patterns from changes to database, db and
the old database, DB, keeping only those patterns
that meet the regular support s′ (which is 4) in up-
dated database, SFP ′ and those that meet tolerance
support, t′ (which is 3) in updated TFP . SFP ′ are
patterns in TFP ∪ SFP db = {a:7, aa:4, aac:3, ab:5,
aba:4, abac:3, abc:3, ac:3, ae:4, af:4, b:6, ba:5, bac:3,
bc:3, be:3, bf:3, c:3, e:4, f:4} with support greater or
equal to s′ (of 4 transactions). Thus, SFP ′ = {a:7,
aa:4, ab:5, aba:4, ae:4, af:4, b:6, ba:5, e:4, f:4} Simi-
larly, TFP ′ are patterns in TFP ∪ TFP db with sup-
port greater or equal to t (or 3 transactions). Thus,
TFP ′ = {a:7, aa:4, aac:3, ab:4, aba:4, abac:3, abc:3,
ac:3, ae:4, af:4, b:6, ba:5, bac:3, bc:3, be:3, bf:3, c:3,
e:4, f:4}.



4 Experimental and Perfor-

mance Analysis

A performance comparison of PL4UP, PLWAP and
ISE algorithms was conducted and the results of the
experiments are presented in this section. All these
three algorithms were implemented and run on the
same datasets generated using the resource code
for generating synthetic datasets downloaded from
http://www.almaden.ibm.com/cs/quest/syndata.html.
The correctness of the implementations were con-
firmed by checking that the frequent sequences
generated for the same dataset by the three al-
gorithms are the same. The experiments were
conducted on a Pentium 4 PC machine with 256
megabytes of main memory running Windows oper-
ating system. The programs were written in C++
under visual C++ environment. From observation
of experimental result, we can see that (i) as the size
of the support increases, the execution times of all
the algorithms decrease. (ii) for the same support,
the execution time of PL4UP algorithm is less than
that of PLWAP and ISE algorithms.
Experiment 2: Execution Time for Databases

with Different Sizes

We use different database sizes that vary from 20k to
100k to compare the three algorithms. The minimum
support 5% is used for PL4UP, ISE and PLWAP
and the result of the experiment show that when the
inserted transactions become large, all the execution
times become larger. Also, the larger size or updates
to database affect the execution time of ISE and
PLWAP with lower minimum support much more
than with higher minimum support. The PL4UP
always achieves better performance than PLWAP
and ISE.

5 Conclusions and Future

Work

ISE [4] or similar apriori-like algorithms generate nu-
merous candidate itemsets that need to be computed
at each level and scans the updated database U many
times. For all types of database updates, ISE up-
dates the old generated frequent patterns by mining
data level-wise the same way. If the PLWAP algo-
rithm is directly used to mine the updated database,
it has to scan the updated database U two times to
construct PLWAP tree, and mine the tree step by
step without using existing patterns and tree of the
original database DB, which wastes a lot of reusable
resources. The proposed PL4UP inherits the advan-
tages of PLWAP, and no huge candidate itemsets

need to be generated. They also fully utilize old ex-
isting information like the old patterns and tree for
mining the updated database U. Future work should
investigate applying technique to distributed and par-
allel mining that may involve continuous time series
data, and to web content and text mining.

References

[1] Agrawal, R. and Srikant, R.: Mining Sequential
Patterns, Proceedings of the 11th Int’l Confer-
ence on Data Engineering, Taipei, Taiwan, March
1995.

[2] Han, J., Kamber, M.: Data Mining: Concepts
and Techniques Morgan Kaufmann, 2001.

[3] Lu, Yi, Ezeife, C.I.: Position Coded Pre-Order
Linked WAP-Tree for Web Log Sequential Pat-
tern Mining, Proceedings of The 7th Pacific- Asia
Conference on Knowledge Discovery and Data
Mining (PAKDD 2003), Seoul, Korea, Apr. 30-
May 2003.

[4] Masseglia, F., Poncelet, P., Teisseire, M. Incre-
mental Mining of Sequential Patterns in Large
Databases, Actes des 16imes Journes Bases de
Donnes Avances (BDA’00), Blois, France, Octo-
ber 2000.

[5] Pei, Jian., Han,Jiawei., Mortazavi-asl, Behzad.,
Zhu, Hua.: Mining Access Patterns Efficiently
from Web Logs. Proceedings 2000 Pacific-Asia
Conf. On Knowledge Discovery and Data Mining
(PAKDD’00), Kyoto, Japan, April 2000.

[6] Parthasarathy, S., Zaki, M.J., Ogihara, M.,
Dwarkadas, S. Incremental and Interactive Se-
quence Mining, In Proc.(1999) of the 8th Interna-
tional Conference on Information and Knowledge
Management (CIKM99), 251- 258, Kansas City,
MO, November 1999

[7] Srikant, Ramakrishnan., Agrawal, Rakesh.: Min-
ing generalized association rules. In proceedings
of the 21st Int’l Conf. on Very Large Databases
(VLDB), Zurich, Switzerland, Sept. 1995.


