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ABSTRACT

Position Coded Pre-order Linked Web Access Pattern (PLWAP)

mining algorithm is one of the existing efficient web sequen-
tial pattern mining algorithms, which stores the frequent
sequences of the entire sequential database in a compressed
tree form with position coded nodes. However, for very long
sequences exceeding thirty two nodes, the number of bits
an integer position code can hold, the PLWAP algorithm’s
performance begins to degrade because it employs linked
lists to store conjunctions of long position codes and the
linked list traversals slow down the algorithm both during
tree construction and mining. PLWAP algorithm also uses
each and every node in the frequent 1-item event queue to
test for that event inclusion in the suffix tree root set during
mining.

This paper proposes (1) using a different position code
numbering scheme where each node is assigned two numeric
codes (startPosition, endPosition) instead of one, (2) using
pre-knowledge of “Last Descendant” of each tree branch to
lower the cost of creating the suffix tree root sets during min-
ing. Experiments show that the proposed new scheme, the
PLWAPLong outperforms the PLWAP for long sequences
and large databases as well as regular databases.

Categories and Subject Descriptors

H.2.8 [Database Management|: [Database Applications,
Data Mining]; K.6.5 [Management of Computing and
Information Systems]
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1. INTRODUCTION

Algorithms for mining frequent sequential patterns from
sequential databases include GSP [1], PrefixSpan [8], SPADE
[10], WAP [9] and PLWAP [2]. Discovering sequential pat-
terns in web server logs is one application of sequential
pattern mining and is helpful in predicting visiting pat-
terns of web users, and in turn helping targeted advertise-
ment or grouping related information based on frequent se-
quential web accesses. Sequential pattern mining discovers
frequent subsequences as patterns in a sequence database,
which stores a number of records that are ordered sequential
events. Sequential pattern mining discovers frequent sequen-
tial patterns by applying association rule mining methods to
discover rules of the form X — Y at a given minimum sup-
port frequency, where both X and Y are sequences of candi-
date 1-items from the set of possible items (events). Exam-
ple applications of sequential pattern mining include: anal-
yses of customer purchase behavior, web access patterns,
scientific experiments, disease treatments, natural disaster,
and protein formations [7]. Before sequential pattern min-
ing on web log sequence database, the raw web log is first
pre-processed to produce a sequential database in the form
of a transactional data for mining. A line of data in the raw
web log data has the format:
137.207.76.120-[30/Aug/2007:12:03:24-0500]
“GET/jdk1.3/docs/relnotes/deprecatedlist.html HTTP /1.0
200 2781”7, where 137.207.76.120 is the host/ip, ‘-’ repre-
sents anonymous user, [30/Aug/2007:12:03:24-0500] is the
[date:time], “GET/jdk1.3/docs/relnotes/deprecatedlist.html
HTTP/1.0” is the “request url”, ‘200’ is the status of the
URL request and 2781 is the number of bytes requested. An
example sequential database obtained after pre-processing
the web log, which is used for sequential pattern mining is
shown as Table 1 (columns 1 and 2).  From Table 1, the
1-items representing each web page accessed by each user
is the set {a, b, ¢, d, e, f} and there are only four user
page sequence accesses in this simple example. User with
transaction ID (TID) 100 has accessed page ‘@’ before ‘b’,
then page ‘d’ before revisiting page ‘a’ and finally before
accessing page ‘c’. Given the minimum support threshold,



Table 1: Example Sequential Database for Mining

TID | DB Sequences | Frequent Sequences (Seq list)
100 | abdac abac

200 | eaebcac abcac

300 | babfaec babac

400 | afbacfc abacc

all subsequences with frequency occurrence in the database
greater or equal to the given minimum support frequency
are considered frequent. And from such frequent patterns,
strong rules with confidence greater than or equal to the
minimum confidence can be generated in the second phase
of pattern mining. The relative support percentage of an
n-sequence is given as the number of records in the database
containing the n-sequence divided by the total number of
records in the database times 100. The absolute support of
an n-sequence is also simply taken as the number of records
in the database containing the n-sequence. For example,
given the minimum support threshold of 75% or 3 out of 4
transactions, since the 1-sequence a has a support count of
4, then, a is a frequent pattern. Another sequence with a
support count of 4 is aba which shows that sequences are
mined with gaps because although TID 100 has the original
record as abdac, the subsequences can skip some events and
can be repeated.

An efficient web sequential pattern mining algorithm is
the PLWAP or the Pre-order Linked Web Access Pattern
Tree [6], [2], [3]. The PLWAP algorithm eliminates the need
for recursive re-construction of intermediate WAP-trees dur-
ing mining by assigning unique binary position code to the
nodes of the tree. The binary codes help in determining the
suffix tree for any frequent pattern prefix as well as ancestor
and descendant relationships of the nodes on the suffix tree
for quick prefix-first pattern growth mining using the only
one original PLWAP tree.

However, for very long sequences exceeding thirty two
nodes, the number of bits an integer position code can hold,
the PLWAP algorithm’s performance begins to degrade be-
cause it employs linked lists to store conjunctions of long po-
sition codes and the linked list traversals slow down the algo-
rithm both during tree construction and mining [3]. PLWAP
algorithm also uses each and every node in the frequent 1-
item event queue to test for that event inclusion in the suffix
tree root set during mining. This is a very expensive oper-
ation since except for one node, all other nodes that are its
ancestors and descendants are not included in the root set.

1.1 Contributions and Outline

This paper proposes the PLWAPLong algorithm for very
long sequences, which provides the following extensions to
the PLWAP algorithm: (i) replaces the PLWAP’s position
code numbering scheme of one code per node to two numeric
position codes of startPosition and endPosition per node.
(ii) using knowledge of “Last Descendant” of each tree node
to lower the cost of creating the root sets and to eliminate
the unwanted nodes from ancestor/descendent tests during
mining. The objectives of the proposed techniques are:

1. Enabling mining of long sequences which from the liter-
ature are not effectively handled by existing sequential pat-
tern mining algorithms.

2. Improving Mining Efficiency: by reducing the CPU exe-
cution time for mining of large databases.

Section 2 presents related work, Section 3 presents the
proposed system, the PLWAPLong. Section 4 describes the
experimental results, while section 5 presents conclusions
and future work.

2. RELATED WORK

Existing sequential pattern mining algorithms include GSP
[1], PrefixSpan [8], SPADE [10], WAP [9], and PLWAP [2].
The GSP [1] is an Apriori based sequential pattern min-
ing algorithm [5], which generates the next level candidate
(k+1)-sequences Ck41 from the seed frequent k-sequences
Ly, through the operation L GSP-join Ly. The GSP-join,
like the Apriori-generate join requires that two sequences in
Ly, join with each other if two conditions are met. Here, a
sequence s1 (e.g., ba) in Ly joins with another sequence s2
(e.g., ab) in Ly if the subsequence obtained by dropping the
first (k-1) items of s; is the same as the subsequence ob-
tained by dropping the last (k-1) items of sz, the candidate
sequence generated is the sequence s; extended with the
last item in s2 (e.g., bab is the result of joining ba and ab)
and is added to Cy4+1. After pruning step to remove can-
didate (k+1)-sequences not meeting the Apriori property,
the frequent (k+1)-sequences are computed from candidate
sequences Cj11 by scanning the database for their supports
and keeping those with support greater or equal to minsup-
port.

SPADE relies on lattice theory to generate candidate se-
quential patterns. The database for sequence mining con-
sists of a collection of sequences. Each input sequence has a
unique record identifier called SID, and a sequence of events
eieses ... en, where each event e; consists of a set of items
from the candidate itemsets and each event has a time stamp
represented as an EID. SPADE only needs to access the orig-
inal database 3 times for support counting. One for comput-
ing 1-sequence, one for computing 2-sequence and another
for enumerating all other sequences via breadth-first search
and depth-first search.

PrefixSpan [8] recursively constructs patterns by growing
on the prefix, and simultaneously, restricting the search to
projected databases.

The WAP-tree algorithm or Web Access Pattern Tree was
developed by [9] for mining the sequential patterns from
web logs in non-Apriori like fashion similar to the FP-tree
approach [4]. The WAP algorithm transforms the database
into a compact WAP tree structure that stores only frequent
sequences for each transaction id from the Root node to the
leaf node and maintains a frequent 1-sequence header linkage
in the order the sequences are inserted in the tree. Recursive
mining of the original WAP tree starting from the suffix fre-
quent l-sequences, generating of conditional pattern bases
and intermediate WAP trees at each phase of recursive min-
ing, would result in complete list of all frequent patterns.

The PLWAP or the Pre-order Linked Web Access Pattern
Tree algorithm [2] transformed the WAP tree by assigning
binary position codes to the nodes of the tree and perform-
ing pre-order (visit root, then left, then right) frequent 1-
sequence header linkage in order to cut off the need for recur-
sively constructing intermediate conditional pattern bases
and WAP tree during mining. Given a sequence database
DB (e.g., Table 1 columns 1 and 2) and a minimum sup-
port threshold s (e.g., 75%), the steps in mining frequent
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sequences from DB using the PLWAP algorithm are:

1. Scan the DB once to compute the frequent 1-sequence Fj
as those 1-sequence with support count greater or equal to
75% or 3 out 4 records in the example database of Table 1
columns 1 and 2. This gives F1 = {a:4, b:4, c:4} with the
counts of the items listed next to them.

2. Build the PLWAP tree by first scanning the database
DB a second time to create the frequent sequence of each
record FS (shown in column 3 of Table 1) by deleting all
non-frequent 1-sequence from the original sequence in col-
umn 2. Then, insert each frequent sequence or FS record
from Root to leaf node of the PLWAP tree where each node
is labeled as (node item: count: position code). The position
code of the Root node is null and thereafter, the PLWAP
assigns to the leftmost child of a node, its parent node’s po-
sition code with binary ‘1’ appended to it, but assigns to
any other child of a parent node, the position code of the
child’s nearest left sibling node with binary ‘0’ appended
to it. Thus, the immediate children of the Root node from
left will have position codes of 1, 10, 100, 1000 and so on
and children of the leftmost child of Root will have position
codes of 11, 110, 1100 and so on. After inserting the F'S in
the tree, the frequent 1-sequence header linkages are built
pre-order fashion (root, left, right). The PLWAP tree ob-
tained for the example database is shown as Figure 1. The
header linkages are shown with broken lines starting from
the Fi event, and are used during mining to track all events
of this F; type. For example, a links to all a-node on the
tree.

3. Mine the PLWAP tree by first mining prefix frequent
1-sequence and using the original PLWAP tree, the fre-
quent 1-sequence header linkages, and the position codes.
PLWAP Algorithm starts mining with the first element from
the header linkage table. In our example it is ‘a’. Follow-
ing the ‘a’ linkage, the first occurrence of ‘a’ node in the
two suffix trees of the Root are found at nodes a:3:1 and

a:1:101. Since the sum of the counts of both these nodes is
greater than the minimum support, ‘a’ is considered as fre-
quent 1-sequence. Next, the algorithm looks at 2-sequence
with prefix sequence ‘a’. The ‘a’ suffix trees of a:3:1 and
a:1:101 rooted at b:3;11 and b:1:1011 are mined. The first
occurrences of ‘a’ in these suffix trees are found at nodes
a:2:111, a:1:11101 and a:1:10111. Since the frequency count
of these nodes at different branches of the PLWAP tree at
this level being mined, is higher than the minsupport of 3,
hence ‘a’ is appended to the last list of frequent sequence ‘a’
forming ‘aa’ frequent sequence. The algorithm next mines
the suffix trees of nodes a:2:111, a:1:11101 and a:1:10111
from the last step. The roots of these suffix trees c:2:1111,
c:1:111011 and ¢:1:101111 give ‘¢’ frequent event to make
‘aac’ frequent sequence. The last suffix tree is c:1:11111
which is not frequent hence ‘aacc’ is not frequent and this
causes this ‘a’ track recursive search to backtrack to look
for the next frequent 1-sequence ‘b’ suffix trees in order to
check if ‘ab’ is frequent. Following the ‘b’ header linkage,
the algorithm finds b:3:11 and b:1:1011 and generates ‘b’
frequent event giving ‘ab’ frequent sequence. The algorithm
progresses and finds other frequent sequences with ‘ab’ as
their prefix sequence, i.e, ‘aba’, ‘abac’ and ‘abc’. The algo-
rithm backtracks to find frequent sequences that have ‘c’
as prefix event. Algorithm finds frequent event ‘c’ from
c:2;1111, ¢:1:111011 and ¢:1:101111 to give ‘ac’ as the fre-
quent sequence. This completes finding all the frequent se-
quences that have ‘a’ as their prefix. The PLWAP algorithm
then finds the frequent sequences starting with ‘b’ and ‘c’.
The complete set of frequent sequences found by PLWAP
are {a,aa,aac,ab,aba,,abac,abc,ac,b,ba,bac,be,c}.

3. THEPROPOSED POSITION CODED PRE-

ORDER LINKED WAP-TREE LONG (PLWAP-

LONG)

Section 3.1 presents the algorithm PLWAPLong, being
proposed for enabling effective and efficient mining of fre-
quent long sequences using the PLWAP mining approach.
Section 3.2 discusses the implementation details of the algo-
rithm. section 3.3 presents an application of the proposed
algorithm on our example database.

3.1 PLWAPLong for Mining Long Sequences

The proposed PLWAPLong algorithm being proposed elim-
inates two main problems that degrade the performance of
the PLWAP and in particular, when processing long se-
quences with more than 32 nodes or events.

1. PLWAP algorithm’s implementation represents binary
position code of each node by storing its binary code in
a linked list data structure. However, for very long se-
quences exceeding thirty two nodes, the number of bits an
integer position code can hold, the PLWAP algorithm’s per-
formance begins to degrade because the linked list traversals
slow down the algorithm both during tree construction and
mining [3].

2. In the PLWAP algorithm’s implementation, during con-
struction of the suffix trees, in order to define an event root
set (e.g., ‘a’ root set), which consists of all first nodes of
this event on different branches of the tree, the ancestor-
descendant relationship between the first found root set el-
ement and all other events in its header linkage, has to be
checked. This is identified as making a lot of unnecessary



Figure 2: The PLWAPLong Tree Nodes with Two
Position Codes and inside annotation as node la-
bel:count:lastDesc

checks. This is because all events, with the same label, that
are descendants of the event for which suffix tree is being
explored, should not be tested for this relationship as they
will never be counted in the suffix tree support. When deal-
ing with long sequences where branches have hundreds of
event nodes having repeated events, the algorithm will per-
form relationship checks just to ignore their support count.
These support checks affect the performance when we have
very long sequences.

Proposed Solution

Solution for Problem 1: To overcome the first problem,
the PLWAPLong proposes a new position code numbering
scheme. The new approach uses two labels instead of one
for each tree node as ‘startPosition’ and ‘endPosition’. The
startPosition and endPosition codes of the tree nodes are
assigned by traversing the PLWAPLong tree in pre-order
fashion (root, left, right) starting with the Root node. Thus,
while the original example PLWAP tree is in Figure 1 for the
example database, the resulting newly coded PLWAPLong
tree is shown as Figure 2. From Figure 2, the startPosition
code for the Root node is 1, while the Root’s endPosition
code is 28. The startPosition and endPosition codes of the
a:3 leftchild of the Root are 2 and 17 respectively. The
startPosition code is labeled on the left side of the node, the
endPosition code is labeled on the right side of the node,
the event label, its count and its last descendant are labeled
inside the node. The rule that is used during the mining
process to determine the ancestor-descendant relationship
of any two nodes and relevant definitions are presented next.

Some Definitions and Rules

DEFINITION 3.1. startPosition of a PLWAPLong node p
is the unique number assigned to node p during tree de-
scent while traversing the PLWAPLong tree pre-order fash-
ion starting from the Root node which has a startPosition of
1. For example, the immediate left child of Root node will

have a startPosition of 2. |

DEFINITION 3.2. endPosition of a PLWAPLong node p
is the unique number assigned to node p during tree as-
cent while traversing the PLWAPLong tree pre-order fash-
ion starting from the Root node which has a startPosition of
1. For example, the immediate left child a:3:1 of Root node
for the example PLWAP tree will have an endPosition of 17
while Root has an endPosition of 28. |

DEFINITION 3.3. lastDescendant (lastDesc) of a PLWAP-
Long node p is pointer to the node with position index of the
event node q in header linkage, that is of the same type as
event p, such that q appears last on the same branch of the
PLWAPLong tree as event p. If there is no other descendant
event of p on the same branch, then, p becomes its own last-
descendant. For example, the lastdescendant of node a:3:2
of the example PLWAPLong tree is a:1:2 which has position
index 2 on the frequent header link and thus lastdescendant
of a:3:2 is 2, while the lastdescendant of a:2:1 is 1 as shown
in Figure 2 where nodes are annotated inside as node la-
bel:count:lastDesc. |

DEFINITION 3.4. The Suffix Root Set of a set of PLWAP-
Long node p is taken to be the set of p’s children nodes as
in the original PLWAP.

RULE 3.1. “Given two nodes mi and ns2, mi is ances-
tor of ng (or nz is descended of ni) if ni.startPosition <
na.startPosition and if ni.endPosition > na.endPosition”.

The Main PLWAPLong Algorithm

Given a sequence database DB, the process of finding all
frequent sequential patterns at a minimum support thresh-
old of s with the proposed PLWAPLong algorithm, has the
following four main sequence of steps.

1. Scan DB once, find all frequent F; events with support
>s.

2. Scan DB again, build PLWAPLong tree with seq list
(which is, frequent sequence version of DB, e.g., column 3
of Table 1), assigning two position codes and preordered Fi
header linkage after pre-order traversal.

3. Build Last Descendant, by calling buildDesc(PLWAPLong,
F header linkage), for each event node using its suffix trees
and the F7 header linkages.

4. Mine the PLWAPLong tree using lastDescendant.
Solution for Problem 2:

This solution addresses the second problem, which requires
avoiding unnecessary ancestor-descendant checks of all tree
nodes in the Fi event frequent header linkage, during min-
ing.

Build Last Descendant

After constructing the linked list PLWAPLong tree, which
has nodes with two unique codes of startPosition and end-
Position, buildDesc() method is called to create the last de-
scendant of each node. Formal definition of this method
is given as Algorithm 1. Rule 1 is applied to check if a
node ¢ like a:1:4 with startPosition and endPosition codes
of 19 and 26, is a descendant of another node p, like a:3:2
with startPosition and endPosition codes of 2 and 17 as fol-
lows. Node p is an ancestor of node ¢ only if p.startPosition
< q.startPosition and p.endPosition > q.endPosition. For
nodes a:3:2 with (2,17) and a:1:4 with (19,26), we can see



that while 2 < 19, 17 is not > 26, and thus, we conclude
that node a:1:4 is not a descendant of node a:3:2 as also can
be seen in the tree of Figure 2.

ALGORITHM 1. (buildDesc(): Compute the lastDescendant
of Tree nodes)

Algorithm buildDesc()
Input: PLWAPLong , F1 header linkages
Output: All nodes in PLWAPLong assigned lastDescendant
Other variables: unassignedNode stack to track nodes not
assigned lastDesc.
begin
/* Compare each event e; in PLWAPLong with other events in */
/* its F1 header linkages so that the index of the last event of */
/* its kind on its subtree is filled as e;’s lastDesc. */
1. for each event, e;, in F1 link header list
1.1. for index j=0 to number of e; events
1.1.1. If j + 1 > numberofe; events, set e;.lastDesc = j
1.1.1.1. if stack is not empty
Set (stack.pop).lastDesc = j
1.1.2. If ej is ancestor of ej41, push (ej) to stack
1.1.8. Else set ej.lastDesc = j
1.1.8.1. if stack is not empty
while stack.top not ancestor of e;j41)
Set (stack.pop).lastDesc = j
end

The PLWAPLong-Mine Algorithm

The step four of the PLWAPLong algorithm involves min-
ing the PLWAPLong tree using the lastDescendant. The
mining process proceeds recursively from Root the same
way the PLWAP-Mine occurs, except that the proposed
PLWAPLong-Mine now finds next suffix root set of node
by adding 1 to the lastDescendant of node p, so that the
total support count of a pattern being mined is quickly ob-
tained. The formal algorithm PLWAPLong-Mine algorithm
is presented as Algorithm 2.

ALGORITHM 2. (PLWAPLong-Mine: Mining with PLWA P-
Long Tree)

Algorithm PLWAPLong-Mine()

Input: PLWAP tree T, header linkage table L,
minimum support A (0 < X < 1),
Frequent m-sequence F)
suffiz tree roots set R (R includes root and F' is
empty first time algorithm is called).
Frequent m-sequence F=(, Rootset R={Root},

Output: Frequent (m+1)-sequences, F’

Other Variables: S stores whether node is ancestor of
the following nodes in the queue, C
stores the total number of events
e; in the suffiz trees

Begin

(1) If R is empty, return

(2) For each event, e; in L, find the suffiz tree of

e; in T (i.e, ec|suf fixztree), do

(2a) Save first event in e;-queue to S.
(2b) Following the e;-queue
If event e; is the descendant of any event in R
and is not descendant of S,
Insert it into suffiz tree header set R’
Jump to the last descendant of e;
Add count of e; to C
Replace the S with e;
(2¢) If C is greater than A
Append e; after F to F' and output F'
Call Algorithm PLWAPLong-Mine of Figure 2
passing R’ and F’.
end // of PLWAPLong-Mine //

Application of the PLWAPLong Algorithm
EXAMPLE 1: Given the example database of Table 1,
mine frequent patterns from this database at minimum sup-
port threshold of 75% using the PLWAPLong algorithm.

SOLUTION 1: Applying step 1 of the PLWAPLong algo-
rithm discussed in section 3.1 scans the database of Table 1
(columns 1 and 2) to generate the frequent F list as {a:4,
b:4, c:4}. In step 2, the algorithm scans the database to
build the PLWAPLong tree using the frequent transactions
(which consist of original sequence with only Fi events re-
tained) shown in Table 1 (column 3). This construction is
done the same way the PLWAP tree is built except that each
frequent event is assigned two position codes of startPosi-
tion indicated on the left side of the node and endPosition
indicated on the right side of the node. First the PLWAP-
Long tree is built and then, it is traversed pre-order fashion
to assign the startPosition and endPosition codes. The Root
is always assigned the startPosition code of 1, then, during
tree descent, the startPosition codes are assigned, such that
in PLWAPLong tree of Figure 2, the startPosition of 2 is
assigned to the “a:3:2” left child of Root and the same node
is assigned the endPosition code of 17.

In step 3 of the PLWAPLong algorithm, the tree is traversed
pre-order fashion using the Fi; header linkage list, in order to
compute the last descendant of each event, which is a pointer
to the last event of its kind on the same subtree and which
has its position index computed. If the event has no descen-
dant, then, its last descendant index becomes its own index
and it points to itself. The algorithm for computing the last
descendant is given as Algorithm 1. The F} header link-
ages of the PLWAPLong tree of Figure 2 is shown in Table
2 in the format < event >< count >< startPosition ><
endPosition >< parent >< leftchild >< rightsibling ><
lastDesc >. This representation more clearly shows how
the last descendant of each node is derived. Note that the
null pointers are represented on the table as zero (0) and
the Root is represented as Rt.

Since from this table, the last descendant of node a:3:2
left child of Root is the node a:1:2 left child of c:1:2, then,
the last descendant of a:3:2 is the array index of this a:l
node, which is 2.

In step 4, the algorithm PLWAPLong-Mine(PLWAPLong,
Frequent m-sequence F) is called to compute the frequent
patterns with the PLWAPLong tree. The mining is done
the same way the PLWAP tree is mined, except that the
PLWAPLong algorithm quickly uses the already computed
last descendant of each node to get the set of suffix tree root
set, whose supports should be added to confirm a pattern
frequent or not. For example, from Figure 2, mining starts
with Root, following the a-header linkage. The two suffix
tree Root sets are for a:3:2 and b:1:2. To confirm that the
1-sequence a is a frequent pattern (FP), the total support
counts of all the first a nodes on different branches of these 2
suffix tree root sets, have to be greater than or equal to the
minimum support count of 3. Since a:3:2 and a:1:4 produce
a total count of 4, then, a is confirmed an FP. The PLWAP-
Long algorithm uses the last descendant of a:3:2 to jump
to the a node at index position 241 = 3 and this a node
happens to be a:1:4. This way, it has skipped checking all
chain of a~events in all suffix trees to find the relevant events
on different suffix trees that should count. This same pro-
cess is applied recursively to retrieve all frequent patterns.



Table 2: PLWAPLong Tree I} Header Linkages

Table 3: Execution times for dataset 1M at different
MinSupports(Long Sequences)

Algorithms Runtime (in secs)

MinSupport | 30% 35% | 40% | 45% | 50% | 55% | 60%

Number of

FPs 282 124 61 47 32 16 7

PLWAP 13749 | 6799 | 3512 | 2622 | 1571 | 570 | 250

PLWAPLong | 8095 | 4281 | 2369 | 1852 | 1029 | 462 | 235
Table 4: Execution times for varying data sizes at
Minsupport 50%(Long Sequences)

Algorithms Runtime (in secs)

DB size 400K | 500K | 600K | 700K | 800K | 900K

PLWAP 525 876 1057 | 1207 | 1420 | 1581

PLWAPLong | 376 600 714 815 960 1060

It Index

em | 0 1 2 3 4

a <a> <a> <a> <a> <a>
<3> <2> <1l> <1l> <1l>
<2> <4> <11 > <19 > <21 >
<17 > <9 > <14 > < 26 > <24 >
< Rt > <b:3> <c:1> <b:1> <b:1>
<b:3> | <c:2> | <c¢c:1>|<b:1>|<c:1>
<b:1> <c:1> <0> <0> <0>
<2> <1> <2> <4 > <4 >

b <b> <b> <b>
<3> <1l> <1l>
<3> <18 > <20 >
<3> <18 > <20 >
<16 > < 27 > < 25 >
<a:3>| <Rt> <a:l>
<a:2> | <a:1>|<a:1>
<0> <0> <0>
<0> <2> <2>

¢ <c> <c> <c> <c> <c>
<2> <1> <1l> <1> <1>
<b5h> <6 > <10 > <12 > <22 >
< 8> <7> <15 > <13 > <23 >
<a:2>[<c¢c:2> | <b:3> | <a:1>|<a:1>
<c:1> <0> <a:1>|<0> <0>
<0> <0> <0> <0> <0>
<1l> <1l> <3 > <3> <4>

Another difference with the PLWAPLong is its use of two
codes to efficiently handle long sequences.

4. EXPERIMENTS AND PERFORMANCE

ANALYSIS

To test the proposed PLWAPLong algorithm, we con-
ducted experiments to
(1) determine performance gain in terms of CPU execution
time of the PLWAPLong algorithm in comparison with the
PLWAP algorithm for long sequences of over 32 events in a
sequence for large databases.
(2) determine performance gain in terms of CPU execu-
tion time of the PLWAPLong algorithm in comparison with
the PLWAP algorithm for long sequences in regular sized
databases.
(3) determine memory usages of the proposed PLWAPLong
in comparison with the PLWAP algorithm.

Comparing PLWAPLong and PLWAP Execution Times

Since a recent extensive sequential pattern mining survey (7]
shows the PLWAP algorithm outperforming other sequen-
tial pattern mining algorithms including PrefixSpan [8] in
most circumstances, thus, the two algorithms PLWAP and
our proposed PLWAPLong algorithm are compared in this
study to demonstrate the performance gain over the PLWAP
by the new version of the algorithm. Both the PLWAP and
our proposed PLWAPLong algorithm were implemented in
C++ with the same data structure. Then, the CPU exe-
cution times for the two algorithms were tested for trans-
actional databases of different sizes ranging from 400K to

1 million records generated for both long sequences of over
32 events and regular sized databases of between 2K and
14K for long sequences of more than 32 events, with the
IBM quest synthetic data generator publicly available at at
http://www.almaden.ibm.com/cs/quest/ and used by other
pattern mining research. The characteristics of the gener-
ated data are described as follows: |D|: Number of records
in the database, |C|: Average length of the records, |S|: Av-
erage length of maximal potentially frequent itemset, |N|:
number of items (attributes).

For example, C10.55.N20.D600K describes dataset with |C| =
10, |S| = 5, |N| = 20, and |D| = 600K. All experiments
are performed on a more powerful multiuser UNIX SUN mi-
crosystem with a total of 16384 MB memory and 8 x 1200
MHz processor speed, which generally produces faster execu-
tion times than when run on microcomputer environment.
The minimum support for the experiments range between
10% and 50% and the lower the minimum support, higher
the number of frequent patterns found and more work the
algorithms will be doing. The result of the experiments are
presented in Table 3 and Figure 3 for long sequences and
very large database of C39.510.N45.D1M. Table 4 and Fig-
ure 4 compare the performances of the two algorithms for
varying database sizes of between 400K to 900K records at a
fixed minimum support threshold of 50%. Table 5 and Fig-
ure 5 present the comparative performances for smaller sized
databases with long sequences of around C39.510.N45.D10K
at a low minimum support of 15%.

The proposed PLWAPLong algorithm provides between
30% to 41% improvement on the performance of the PLWAP
algorithm when processing long sequences and in particular
at low minimum support when many frequent patterns are
present. This is because it has eliminated endless chaining
of position codes to handle long sequences and also irrele-
vant ancestor/descendant node search during mining. It can
be seen that difference in performance of the two compared
algorithms increases as the size of data increases and as min-
imum support threshold decreases. Experiments on memory
usages also show the proposed PLWAPLong algorithm uti-
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Table 5: Execution times for Small Data Sizes at
15% Minsupport(Long Sequences)
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Figure 5: Execution times for Small Data Sizes at
15% Minsupport (Long Sequences)

lizing less memory than the PLWAP algorithm since it just
needs only two codes for each node while PLWAP may need
a chain with 10 codes for one node.

5. CONCLUSIONS AND FUTURE WORK

This paper presents a new algorithm PLWAPLong that is
an extension of the PLWAP algorithm for efficiently mining
very long sequences. PLWAPLong adapts the PLWAP tree
structure to use two position codes for each node for pur-
poses of identifying ancestor/descendant as well as sibling
relationships during mining. In order to avoid expensive and
useless comparisons of event nodes to determine the suffix
trees as done by PLWAP algorithm, PLWAPLong algorithm
uses ‘Last Descendant’ technique that quickly eliminates the
unwanted nodes from ancestor/descendant comparisons and
jumps to the next suffix root set member to continue find-
ing the suffix tree. Experiments show that mining sequences
using PLWAPLong algorithm is more efficient than PLWAP
algorithm, especially when the sequences become longer and
the web access sequence database becomes larger. Conven-
tional sequential pattern mining algorithms do not work well
with biosequences because they have small alphabet and
very large sequence length. Future work involving PLWAP-
Long algorithm could explore the possibilities of applying
PLWAPLong algorithm with such biosequences.

Algorithms Runtime (in secs)

DB Size 2K 4K 6K 8K 10K | 12K | 14K
# of FPs 5159 | 4707 | 4633 | 4417 | 4708 | 4686 | 4413
PLWAP 225 583 942 1248 | 1754 | 2163 | 2388
PLWAPLong | 148 | 310 | 560 | 746 | 990 | 1228 | 1372
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