
Comparative Mining of B2C Web Sites by Discovering Web
Database Schemas

C.I. Ezeife
School of Computer Science

University of Windsor
Windsor, Ontario N9B 3P4
cezeife@uwindsor.ca

Bindu Peravali
School of Computer Science

University of Windsor
Windsor, Ontario N9B 3P4
peraval@uwindsor.ca

ABSTRACT

Discovering potentially useful and previously unknown infor-
mation or knowledge from heterogeneous web contents such
as “list all laptop prices from Walmart and Staples between
2013 and 2015 including make, type, screen size, CPU power,
year of make”, would require the difficult task of finding the
schema of web documents from different web pages, per-
forming web content data integration, building their virtual
or physical data warehouse integration before web content
extraction and mining from the database. Wrappers that
extract target information from web pages can be manual,
semi-supervised or automatic systems. Automatic systems
such as the WebOMiner system, use some data extraction
techniques based on parsing the web page html source code
into a document object model (DOM) tree, then traverse the
DOM for pattern discovery. Some limitations of these exist-
ing systems include using complicated matching techniques
such as tree matching, Finite state automata, not yielding
accurate results for complex queries such as historical and
derived.

This paper proposes building the WebOMiner S which
uses web structure and content mining approaches on the
DOM-tree html code to simplify and make more easily ex-
tendable, the web data extraction process of theWebOMiner
system. TheWebOMiner system is based on non-deterministic
finite state automata (NFA) to recognize and extract web
different types (e.g., text, image, links, and lists). The pro-
posed WebOMiner S replaces the use of NFA of the We-
bOMiner with a frequent structure finder algorithm which
uses regular expression matching in Java xpath parser and
methods (such as compile(),evaluate()) to dynamically dis-
cover the most frequent structure (which is the most fre-
quently repeated blocks in the html code represented as tags
< divclass = “ ′′ >) in the Dom tree. This approach elim-
inates the need for any supervised training or updating the
wrapper for each new B2C web page making the approach
simpler, more easily extendable and automated.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IDEAS ’16, July 11-13, 2016, Montreal, QC, Canada
Copyright 2016 ACM 978-1-4503-4118-9/16/07 ...$15.00.
http://dx.doi.org/10.1145/2938503.2938522.

Categories and Subject Descriptors

H.2.8 [Database Management]: [Database Applications,
Data Mining]; K.6.5 [Management of Computing and

Information Systems]: Data Extraction and Web Min-
ing—E-commerce software, automatic extraction

General Terms

Web Content Mining, Automatic Web Data Extraction, Wrap-
pers

Keywords

Web Content Mining, Automatic Web Data Extraction, Data
integration, Wrappers

1. INTRODUCTION
The World Wide Web (Web) is a popular and interac-

tive medium to disseminate pages into structured data, a
lot of efforts have been devoted in the area of information
extraction (IE) [2]. This involves using DOM trees ([2], [1]),
Document Object Model trees which are the representation
of underlying source html code of the web page and can be
addressed and manipulated using methods on the objects.
A web page of an e-commerce B2C website consists of sev-
eral information (navigation, advertisements, copyright no-
tices, shipping information, contact information) along with
the products information. Every B2C website showcases its
products arranged in a block by fetching them from underly-
ing databases. In a product rich web page, all the products
in it will be styled. According to W3 consortium [4], html
tags such as < div >, < table >, < tr >, < td >, < ul >,
< ol >, < li >, are block level tags and this list has up to
32 tags, but the above mentioned tags are those used to sec-
tion a web page or group elements in a page. In a product
list web page, all the product elements are grouped, each
attribute of the product will be applied the same style all
over the web page, e.g., all product images will be of same
height/width, all product names will be in same font/color
etc. This is done using the class attribute in the div tag ex-
pressed as < divclass >. Whenever content (such as prod-
uct laptop tuples) in a webpage repeats, its underlying html
source code also repeats, which means the same set of html
tags will be repeated in the html code of web page with just
the difference in the content instances between them. How-
ever, retrieving products information from webpages into
structured data is a challenging task.

To mine data on web documents, the html files are usually
converted to pre-parsed documents in a DOM (document ob-

ject model) tree by many systems ([2], [1]). In a DOM tree,
tag and tag attributes are represented with nodes that spec-
ify the hierarchical relationships between tags. Formally,
the comparative shopping agent given an input product list
page P from any e-commerce web site needs to be able to
first extract:
(i) its main table product schema T of page P, each with its
n attributes a1p, a2p, . . .i, anp,
(2) its m tuples of Table type T and Database type P , and
(3) store it in an integrated timestamped, historical rela-
tional database forming a data warehouse of products from
several e-commerce web sites to accommodate comparative
shopping and historical querying on web data.

1.1 Contributions and Outline
This paper proposes a web data extraction system called

the WebOMiner S (standing for the WebOMiner Simple),
which can discover the schema of any given set of Business
to Customer (B2C) product web pages such as Walmart lap-
top web page. The WebOMiner S follows the architecture of
the WebOminer web data extractor system described in [6].
The architecture of the WebOMiner system is summarized
below with its code downloadable from its journal web site
at http : //users.monash.edu.au/ dtaniar/IJDWM/. The
proposed system, the WebOMiner S contributes to the prob-
lem of web data extraction and mining with the following
enhanced major extensions to the WebOMiner system. The
WebOMiner system goes through the four main modules of
(A) Crawler module, (B) Cleaner module, (C) Extractor
module and (D) Miner module in automatically extracting
the table schemas and their tuples from different B2C web
sites. In the first step, it takes local html source code of
the web page, passes that to HTMLcleaner2-2 in the second
step to clean and obtain well formed html file which is con-
verted to DOM tree html web page in step 3. Then, Java
algorithm is run to parse the DOM tree to identify the data
body zone of the web page containing the relevant data to
be extracted. This body zone is passed through a Java algo-
rithm content extractor which extracts heterogeneous web
content data that can be of any type such as text, image,
list, form. These web contents are passed in step 4 through
the non-deterministic finite state automatas (NFA) which
will identify the specific content type and classify them into
tuples of their type so that they are stored in the database.
The NFA with the webominer system helps to increase the
process of automation of web data extraction by automat-
ically recognizing structures similar to those from the pre-
viously seen B2C web page structures. However, there is
need to simplify the complexity of the method used for data
extraction, need to make the system more available, more
extendable and adaptable. These are the goals of the pro-
posed WebOMiner S.
1) We propose to replace the use of the NFA in step 4 of the
WebOMiner system with a frequent structure finder (FS-
finder) algorithm using both web content and structure min-
ing. The FSfinder uses the Java xpath parser to summarize
the frequency of each tag occurrence in the web html code,
retaining only tags that meet a certain minimum occurrence
(e.g. 3), then for each tag, it uses the web page DOM tree
to find the tag’s block and retrieve the most frequently used
block. This most frequently used block is then marked as
the data block and its data region/table name is retrieved
with its schema.

2) Schema can be dynamically discovered for any given web
page using our technique while with the WebOMiner, to add
and learn about a new or re-structured B2C web page, the
NFAs need to be refreshed so that it can recognize new fea-
tures not previously in its structure. Our proposed system
uses regular expression matching in the Java xpath parser
through its methods such as compile(), evaluate() which will
discover the most frequent structure block level tag (e.g.,
< divclass = “ ′′ >) in the Dom tree. The most fre-
quent tags (such as tr tags) representing repeated pattern
(records such as laptop product instances) indicate needed
data blocks.
3) Our algorithm does not follow any hard matching tech-
niques like tree alignment (such as recognizing zones and
blocks of the DOM tree with series 1 and 2 observations) or
NFA as done in [6]. Instead we summarize and observed the
occurrence of tags that create similar block structure. The
research challenge of developing the FSFinder is with finding
a more dynamic automated approach in xpath parser, with
the use of css div class names in the web page html files,
and frequent pattern mining of relevant tag summaries to
handle data heterogeneity in different B2C web sites which
allows for future comparative mining.
4) WebOMiner Simple is more accessible, extentdable and
has the potential to be scalable to large websites because of
its simple and effective technique.
5) It is highly automated and no manual efforts (such as
description of sample training B2C pages) are required in
the extraction process. We only have to give the system a
product web page address and it will discover the database
schema.

1.2 Related Work on Web Data Extractors
Researchers have worked on this problem for years, ini-

tially there were systems that were manual ([3], [7]). An
Expert programmer has to manually observe the html source
code of every web page and write code according to it such
that it extracts required fields. This is a very resource con-
suming way although it yields highly accurate results, it is
impractical for the purpose. Some systems tried to ease
the task by using GUI where a user can select the required
data while the system will do the rest of the work [8]. Su-
pervised systems evolved where the algorithm learns from
training examples and performs extraction task by using
regular expression matching [10] and others like [11] had
used Embedded catalog formalism on a hierarchical data
extraction model. However, none of them was user inde-
pendent or scalable. Data extraction had become semi su-
pervised after IEPAD [2] in which PAT trees and multiple
sequence alignments were used and the user had to select the
required pattern out of extracted ones. But, some assump-
tions that were made were unrealistic and it was not fully
automated. The process was almost automated by using
techniques like partial tree alignment [14], ACME match-
ing technique [5]. Many IE systems only perform record
level extraction which is time consuming task that does not
support non html web pages while html pages can be de-
veloped from several other technologies such as xml, ajax.
Along with these, some of the existing systems have to scan
the page multiple times which is resource consuming and a
drawback. The WebOMiner [6] is a system that proposes
a 4 phase architecture for the comparative mining of web

data. This system takes as input a web page populated
with products to its first module the Crawler. They have
developed a mini crawler algorithm that crawls the web page
from internet and stores html files in a local repository. This
is then given to their second module the cleaner, because
according to [6], web data is ill formatted and before per-
forming mining it is important to preprocess and clean the
data to obtain well formed html files. They have used the
Html Cleaner 2.2 [12] to perform the data cleaning. All
the comments were removed and tags were well structured
after performing the pre-processing step. The output was
given to the extractor module, it then constructs DOM tree
from the cleaned html file and uses non-deterministic finite
state automata to extract product tuples. Then, the tuples
presented in array lists are stored in a database. Their archi-
tecture includes second level mining for future work, which
implies to build a data warehouse serving for complex quer-
ing such as comparative historical and derived query min-
ing. Their system performs matching with NFA for each
product tuple which is a complex process that needs to be
updated with restructuring of B2C web pages or emmer-
gence of new web pages, also it is not yet able to han-
dle long tag attributes. An example long tag attribute is:
src=“/ScriptResource.axd?d=yUWPCPZyEuJXx3ZFmg
TnxgX PUIOAaE3sD5dvOT0UArNJ-7jcDMMWg220GQi
97WCxi3NDXH7Bh wyFkyH0fCRKHALWCBp2kc
QE r wiV3p ZPD9YXmnEE-cci7LXLH0hDgsFG
IEEkqXN hDdvbtV7OBldsZw1mQ5nXtfxgirstuTL4
TL0&t=2e2045e2”.
To summarise, there is need for a system capable of using
a realistic and uncomplicated scientific technique for this
heavy web page data extraction task as it should be easily
understood so the system can be more easily extendable, de-
ployable, adaptable to other domains and more automated.

1.3 Paper Outline
Section 1 has introduced the topic of web data extraction

and wrappers, related work and existing such systems, con-
tributions of the proposed system. Section 2 presents the
proposed WebOMiner S system with all of its components
and algorithms with a running example, Section 3 discusses
the experimental evaluations of the system while conclusions
and future work are discussed in section 4..

2. THE PROPOSED WEBOMINER_S FOR

WEB SCHEMA EXTRACTION
In this section we present our proposed system, the We-

bOMiner S, an automatic web data extraction system which
extracts product tuples from B2C websites. Every B2C web-
site (such as Walmart or Best Buy), showcases its products
(such as laptops) arranged in blocks by fetching them from
underlying databases. As in [6], a data region contains data
blocks and both can be enclosed within one or more re-
gion/block level tags such as < div >, < table >, < tr >,
< span >. A data region (representing a database schema)
in DOM tree consists of a set of data blocks (representing
data records or tuples). All data records (blocks) in a re-
gion (such as data region, advertisement region), in general,
represent similar set of data and are contiguous in a data
region. In the context of web content, a data block Bi con-
tains usually heterogeneous data types such as text string,
image-file, price as string (of type long) representing distinc-

tive related instances. For example, a product data region
records (blocks) can be described as a schema in a tuple such
as:
Product (title: string, image: image-file, product number:
integer, brand: string, price:real). Thus, finding tags that
are repeated most frequently around a a data region in the
html file can be used to identify the attributes of a table
schema whose name is the data region node name. A con-
tinuous repeated pattern (indicating records of a product
table) will be found in the html source code which reveals
the database table schema of the main data block of the web
page.

Also, all the products on the same web page are styled
similarly using the cascading style sheets (CSS). The cas-
cading style sheets help the web developers to lay out the
information on the web page. It is the meta information on
how the html product data elements should be displayed on
the web page. A CSS can be created to define styles for
the webpages, including the design, layout and variations in
display. According to W3techs.com [13], nearly all (specif-
ically, 93.3%) of B2C websites use external CSS to get the
desired look for their webpages. An external CSS contains
several styles each identified by a unique class name. The
class attribute is referred in the html tag to which the pre-
ferred style has to be allocated. CSS will be defined first
then later it can be assigned to any field by using the html
tag attribute < class >. A sample CSS file with two styles
indicated by two classes is shown below.
div.prodlook{

1in font-weight:bold;
1in margin-left:30px}

div.prodprice{
1infont: sans-serif;
1incolor:red;
1inbackground:green}

A CSS file with Two Styles

This CSS is then defined in the web page html source using
the two following < divclass > tags.
< divclass = “prodlook′′ > . . . < /div >
< divclass = “prodprice′′ > . . . < /div >
The style prodlook is used by referring to its class attribute
in the div tag using class attribute.

Java Xpath parser [9] is a language for finding informa-
tion in an xml file. It is used to traverse an xml document.
XPath is a java API used to navigate through elements and
attributes in an XML document. XPath contains a library of
standard functions with which XPath uses path expressions
to navigate in XML documents. It uses path expressions to
select nodes or node-sets in an XML document. It has sev-
eral methods such as compile() and evaluate() for extracting
an entire block from the Dom tree given the parent node,
and for checking the occurrence of the given expression in
the Dom tree. An example summary of some Xpath func-
tions are: the slash symbol / used to select the root node;
// used to select nodes in the document from the current
node; the symbol period . used to select the current node;
.. used to select the parent of the current node; and @ used
to select attributes. We can specify dynamic xpath expres-
sions using variable name in the expression as “+variabel-
name+”. XPath wildcards can be used to select unknown
XML nodes. For example, ∗ matches any element node, @∗
matches any attribute node, node() matches any node of any
kind. Xpath compile() method compiles the path expression

Figure 1: The WebOMiner WebOMiner S Architec-

ture

into an xpath object while Xpath evaluate() method returns
specific data from xml file that matches the xpath expres-
sion.

After observing several B2C websites, we have noticed
that all the products on a web page will have the same CSS
for corresponding fields (such as product name, price). This
means the same class will be assigned to all the product
instances to the same fields (e.g., for each of the 8 laptop
instances on web page of Figure 2, the same class is used
for say field name) in the web page. We are making use of
this observation in our proposal to look for and identify the
block with most frequently repeated similar patterns for its
attributes as the data region. Our proposed WebOMiner S
system follows the base architecture of the WebOMiner sys-
tem [6]. Our WebOMiner S system architecture given in
Figure 1 has 5 modules namely, 1. The crawler, 2. The
cleaner, 3. The Parser Module, 4. The Frequent Structure
finder (FSFinder), 5. The schema Extractor. Each module
is explained with its functionality and a running example
as follows. The propositions 2.1 and 2.2 formalizing general
B2C web site source html features and use of CSS class at-
tributes to identify data blocks by our FSFinder algorithm
are presented next.

Proposition 2.1. Identifying Blocks Dynamically: Blocks
in an html file can be dynamically found by identifying all
block tags with the same class name as in < div class =
“classname′′ >. This is because all web sites using CSS
files to describe the styles of block attributes have their source
html code containing tags of the form
< div class = “classname′′ >.

Proposition 2.2. :Identifying Product Data Blocks: On
a B2C website, the product block is the block with wht high-
est number of child nodes (tuples) and is the block that is
repeated the highest number of time with the same CSS class
attributes defined in < div class = “classname′′ > tag.

The formal algorithm of the WebOMiner S is given as Al-
gorithm 1.

Algorithm 1. (WebOMiner S: Web Page Schema Ex-
traction)

Algorithm WebOMiner S()
Input: Web addresses of two or more product list

pages (Weburls).
Output: Set of Table Schemas (S) for each Web document.
Other: Set of HTML files (WDHTMLFile) of web documents,

WDHTMLFile# (set of clean HTML files),
TempXMLFile, tagoccur file

begin
(A) for each web address (Weburls)
begin
(1) WDHTMLFile = Call the Crawler() to extract
webpage (Weburls) HTML into local directory.
(2) WDHTMLFile# = Call HTMLCLEANER-2.2 to
clean-up HTML code
(3) Call the Parser() to first create temporary XML
file of WDHTMLFile# as TempXMLFile, and next use
the Xpath on TempXMLFile to summarize all tags’s
number of occurrence in a tagoccur file
(4) Call the Frequent Structure() finder to first create
a DOM tree with BuildDOMTree() using clean html file
WDHTMLFile# . Then, it uses the tagoccur file
with the DOM tree to identify block and its attribute
tags which has the most frequent similar repeating
sequence of tags.
(5) Call Schema Extractor() which uses the structure file
and the DOM tree to associate each block attribute with
data type and to output the discovered table schema in
a file called schema.
end for

end

2.1 Components of the Proposed WebOMiner_S
Step 1: The Crawler Module
Our crawler module is responsible for extracting the web-
page HTML source code of the given product web page
from the World Wide Web (WWW). This module takes as
its input the web page address, then extracts and stores its
HTML source code in a file in the local computer directory.
Our crawler module is similar to the WebOMiner’s [6]. They
(the WebOMiner system) have proposed a mini-crawler al-
gorithm which crawls through the WWW to find targeted
web page, streams entire web document including tags, texts
and image contents and it then creates a mirror of original
web document in the local computer directory. It dumps
the comments from the html document. Figure 2 shows a
sample input web page to our crawler, which is a product
rich web page from the bestbuy.ca website.
Step 2: The Cleaner Module
The process of web data extraction requires preprocessing
the input data which is an html page. Html is not a struc-
tured language and there can be missing tags, noise, com-
ments etc. The sheer volume of raw html input source is
also worth noting. For the example web page of Figure 2,
the source html code consists of 144 pages of code start-
ing with the tag < DOCTY PE/html > and ending with
< /html >. This html source file has 4813 lines of codes
with such tags as < script >, < noscript >, < forms >,
< div >, < span >. So, preprocessing is necessary step
to yield quality data. Like the WebOMiner system, we
have used the HTML CLEANER 2.2 [12] for performing
the cleaning task. The output file will be a cleaned html file
containing well formatted html structures with comments
excluded. This file is given as input to the parser module
to create temporary XML file and summarize the number of

Figure 2: A Sample B2C Product Web Page to Ex-

tract its Schema

occurrences of tags. HtmlCleaner is open-source html parser
written in Java. HTML found on the web is usually dirty,
ill-formed and unsuitable for further processing. For any se-
rious processing of such documents, it is necessary to first
clean up the mess and bring the order to tags, attributes and
ordinary text. For the given html document, HtmlCleaner
reorders individual elements and produces well-formed html.
By default, it follows similar rules that most web browsers
use in order to create Document Object Model. However,
users may provide custom tags and rule set for tag filtering
and balancing. The HtmlCleaner inserts all the necessary
closing tags and formats them to produce a clean html file
as shown in the Figure 3.
Step 3: The Parser Module
There is need to convert our clean html file from step 2 to a
temporary XML file containing only block level tags so that
we can use the Xpath parser to evaluate the tags to retrieve
their number of occurrences. The parser module takes as
input the cleaned html file from the previous module of step
2. A temporary xml file (such as Figure 4) is created by
recording all the blocks from the input html page. While
creating, all the attributes in these block level tags like “id”,
“src” etc., were excluded and only the class attribute (such
as < divclass = “ ′′ >) are retained as they hold the in-
formation regarding which particular class of CSS is being
used by this particular block. Figure 4 shows the temporary
xml file for the same page from the previous modules, where
all the block tags were recorded with only class attributes.
This entire document is parsed using Xpath parser ([9]) to
check if any blocks were repeated with the same class name.
Thus, the summary of found repeated tags (those occurring
at least 3 times since it is uncommon to have B2C web sites

Figure 3: Part of a Sample Clean HTML Source for

Product Web Page

listing less than 3 products) along with the number of oc-
currences are stored into a tag occurrence file as shown in
Figure 5. The number of pages of xml code obtained after
going through the parser reduces the original example html
of size 144 pages to only 6 pages of xml code used for further
processing.
Step 4: The Frequent Structure Finder (FSFinder) Mod-

ule:
This modules initially creates a Dom tree for the cleaned
html file from the second module. Figure 6 shows the part
of Dom file constructed from the running example. FSFinder
module takes as its input (1) tag occurrence file (Figure 5),
(2) the clean html file (Figure 3). It builds Dom tree (Fig-
ure 6) using the clean html file. Then, for every block level
tag with a class attribute such as < divclass = “ ′′ >, such
as < divclass = “proddetails′′ > with 17 occurrences, the
FSFinder creates a dynamic path expression for this tag.
The xpath parser then searches the entire Dom tree for
this expression using its methods compile() and evaluate()
and returns results in a node list variable called struct list.
This struct list now is the live reference to those partic-
ular nodes in the Dom tree, such as every occurrence of
the node < divclass = “proddetails′′ > in the Dom tree
is being referred from this node list. Now using this node
list we can access the complete block using methods like
getchildnode() and getlength(), as well as all the child node
tags to this parent block. Also, the Nodelist object repre-
sents an ordered list of nodes. The nodes in the Nodelist
can be accessed through their index number (starting from
0). The Nodelist keeps itself up-to-date. If an element is
deleted or added in the Nodelist or XML document, the list

Figure 4: Part of Parsed XML File of Input Web

Page

Figure 5: Summary of Tag Occurrences of Input

Web Page

Table 1: The Table Schema of the Input Web Page

< divclass = “a9 prodWrap′′ >
< divclass = “prodImage′′ >

< divclass = “prod− image′′ > . . . < /div >
< /div >
< divclass = “prodDetails′′ > . . . < /div >
< divclass = “quickview′′ > . . . < /div >

< /div >
< divclass = “clear′′ > . . . < /div >
< /div >

is automatically updated. In a Nodelist, the nodes are re-
turned in the order which they are specified in the XML
document (which corresponds to pre-order traversal (visit
node, visit left subtree, visit right subtree) of the DOM sub-
tree. Nodelists are live references to actual DOM elements.
The number of children and length of the struct list are re-
trieved using getchildnodes() and getlength() respectively to
realize the block that has maximum number of children and
which is repeated most number of times. This process is
repeated till the end of the file. As we complete, we have
the parent nodes to the product blocks in the Dom tree in
the node list data tuples. Using the first parent node indi-
cated by index 0 in the struct list, we retrieve the complete
structure from the Dom tree by reading each child node
into a Nodelist in the pre order format into FRS. There-
fore the FRS has the most frequently repeated structure
with more number of Childs in the dom tree. This structure
is further used to retrieve database schema. In our exam-
ple, the structure that is repeated most number of times
with maximum child nodes is shown below and in Table 1.
< divclass = “a9 prodWrap′′ >→< divclass =
“prodImage′′ >→< divclass = “prod− image′′ >
< /div >→< /div >→< divclass = “prodDetails′′ >
< /div >→< divclass = “quickview′′ >→
< /div >→< /div >→< divclass = “clear′′ >
< /div >→< /div >
Thus, through the FSFinder algorithm, we have obtained
the structure (FRS) and from this structure, we can extract
the underlying table schema of the web page. Also, note that
the FSFinder algorithm has in the Nodelist data tuple, all
the attribute values of the product data block which are the
tuples or records of the web page for the retrieved schema.
The formal algorithm for the frequent structure finder (FS-
Finder) is given as Algorithm 2.

Algorithm 2. (The File Structure Finder Algorithm)

Algorithm FSFinder()
Input: occurrence data file (occur), cleaned html file (clean)
Output: Nodelist frequent structure (FRS)=null

(for product blocks names), data tuples
(for product blocks values)

other: Domtree: file, product block:string,
FINAL nodelength = 0, no of childs = 0, final childs = 0
xmlnodetag: string (for complete block node),
xpathExpression expr: string, path : string
Nodelist prod block (for block node children)
Nodelist Tagstructure, struct list, data tuple
xmlnodetag IDCount = 0, nodes length: integer

Packages:Java DOM, Java Xpath, Java transformer
begin
1. Domtree = Call DocumentBuilderFactory(clean)

Figure 6: Part of DOM Tree of the Input Web Page

2. Create object xpath for xpathfactory() to use its
methods to retrieve all nodes that match the path
expression from Dom tree.
3. for each xml tag in tag occurrence file occur,
// find the number of occurrences and the number
// of children so we can find the tag with most
// number of children which is the most repeated tags.

3.1 Retrieved xml is stored into xmlnodetag[1]
3.2 path = “//div[@class=’“+xmlnodetag[1]+”’]”;
// The class attribute in xmlnodetag is assigned to
// the variable dynamically in each loop
3.3 xpathExpression expr =xpath.compile(path)
3.4 struct list= xpath.evaluate(Domtree,
XPathConstants.NODESET)
// This retrieves all the nodes that match the
// path expression from the DOM tree
3.5 node length = struct list.getlength()
3.6 no of childs= struct list(0).
getchildnodes().getlength()
3.7 If (node length >= FINAL nodelength and
no-of-childs > final childs)

3.7.1 product block = xmlnodetag[1]
3.7.2 FINAL nodelength=node length
3.7.3 final childs = no of childs
3.7.4 data tuple=struct list

end for
4. if product block has child
5. for each child node in product block

begin
5.1 FRS = FRS append product block.child
// this appends child node of product bloct to FRS
5.2 Read next node

end for
6. Return Nodelist data tuple
end

Table 2: The Extracted Table Schema of the Web

Page

Discovered schema for a single page
of bestbuyWebsite is below:
Product(prod-image: String, img300x300:
image, prodDetails: String, prodTitle:
String, prodPrice: String, priceblock:
String, pricetitle: String, shop-now:
String, customer-rating: String,
rating-title: String, rating-stars: String)

Step 5: The Extractor Module
This module performs the task of extracting both the ta-
ble schema and the product tuples from the frequent struc-
ture (sequence of tags) and the data tuple objects returned
by the FSFinder algorithm. It converts the schema of the
database table retrieved by the FSFinder algorithm to a data
warehouse schema by appending an integration attribute
called “storeid”, and a history attribute called “time”. Those
two attributes will enable integration of tuples from differ-
ent web sites at different timestamps for comparative and
historical querying. A product tuple P is a product with at-
tributes a1, a2, a3, . . ., an. This module takes as input both
the frequent structure pattern and the data tuple structure
generated by the previous module. It is given to a function
that assigns corresponding datatypes based on the tags to
the frequent structure pattern for the table schema. If it is
an < img > tag the data type image will be assigned, if it
is any of < p >, < span >, < li >, < a > tags, data type
“string” will be assigned, etc. Finally, the data warehouse
schema is discovered from the web page. This can be used
to create and update a database table and further creating
a data warehouse when an integrative attribute “storeid”
and a historical attribute “time” are appended to the table
schema. Having a data warehouse schema allows for com-
parative mining and historical querying. Table 2 shows the
table schema extracted from the running example. Once the
database or warehouse schema is defined, the actual data tu-
ple instances can be extracted from the nodelist data tuples
which holds all the product blocks with their parent nodes.
From the dom tree, each parent node is checked if it has child
nodes and values are updated into the database/warehouse
table.

2.2 Example Application of the WebOMiner_S
for Web Schema Extraction

EXAMPLE 1:
Given a product list web page (such as a laptop page from
bestbuy.ca) of one or more retail B2C web sites such as
that with 8 products as shown in Figure 2, using the We-
bOMiner S system, extract all types of information like: (i)
Those related to data records such as product image, prod-
uct brand, product id, short description, product price. In
our current example, a laptop page from best buy, the infor-
mation to be extracted will be laptop image, name, brand,
screen size, screen type, color, CPU info, HD info, RAM
info, OS, Ratings, Availability. The extracted information
will be stored in the database/warehouse for future compar-
ative mining and querying.

SOLUTION 1: The proposed WebOMiner S system given
as algorithm 1 implemented in JAVA runs in both Unix and
Windows based environment (with NetBeans or Eclipse) to
store the extracted data from the web page in a DBMS
like Oracle or MySQL tables. The directory where the sys-
tem is run requires having the following files: WEBOMIN-
ERS.jar, htmlcleaner-2.2.jar, ojdbc6.jar and the downloaded
and cleaned web page to be extracted which is stored as
cleanHTML# .html. The algorithm would download the
single pages when provided the link and the cleaned page
clean-HTML# .html was obtained after running steps 1 and
2 on the web page of Figure 2. Note that all cleaned web
pages to be extracted are currently stored in
cleanHTML# .html (e.g., bestbuy .html). The Unix com-
mand for initiating the extraction of the cleanHTML# .html
page is given below: java -cpWEBOMINERS.jar:htmlcleaner-
2.2.jar:ojdbc6.jar Main.class. This command has the effect
of going through steps 3 to 5 of the WebOMiner S algorithm
using the input file cleanHTML# .html such as given in Fig-
ure 3. The third line of the WebOMiner S algorithm calls
the parser() method to parse the cleaned html document of
Figure 3. For each line in this clean html file, the parser
looks for and retains the tags < div > , < table > , < tr > ,
< td > in the temporary xmlfile, as these are the tags that
are used by all the web sites to embed information in the
webpage and also to define a block section in the html docu-
ment. Only all of such block tags are saved into a temporary
xml file (4) by the parser. Note that only parts of the long
144 page original html source code of the example web page
are displayed in these figures. For example, the input clean
file of Figure 3 will yield the output xml file the following
tags:
< divclass = “services− content′′ > . . . < /div >< /div >
Next, for each line in the temporary xml file, the parser al-
gorithm returns the number of occurrences of the given line
in the entire temporary xml. For example, given the xml file
input of Figure 4, the parser and the tag line< divclass =
“department − headline′′ >, it searches the whole file to
find the number of lines containing this tag and inserts it
in the output tag occurrence file shown as Figure 5. Step 4
of the main WebOMiner S algorithm, calls the FSFinder()
which creates the DOM tree (Figure 6) using clean html file
of Figure 3 and retrieves a structure (a sequence of block
tags) with their data tuples, which has occurred most fre-
quently in the DOM tree also given the input tag occur-
rence file of Figure 5. For the running example the struc-
ture found is as shown in Table 2. In line 3 of FSFinder
algorithm, the loop iterates to read a line from the tag
occurrence file and the first line read is “ < divclass =
“a9prodwrap′′/ >′′. Since this line contains a class at-
tribute, so this line is processed. First, it extracts the value
of class attributes and creates a dynamic“path”string object
with the value of class (path=“//div[@class=a9prodwrap]”
). This “path” variable passes to compile method “xpath”
object “expr”. The evaluate() method of “XpathExpres-
sion” extracts all the nodes from the DOM tree which is
matched with “class=a9prodwrap” embedded with “div” tag
and saves this result set to Nodelist object struct list. Now,
the struct list has reference to every occurrence of the given
tag in the Dom tree. To know the number of occurrences,
the length of the node list is extracted using getLength() and
this value is saved to variable “numberofnodes”. There is
an integer variable called “finalofNodes”, which keeps record

of maximum number of nodes by comparing with “num-
berofnodes”. Initially, the value of “finalnoofnode” is set to
“0”. During the first iteration, the value of the number of
nodes is 12 and “finalnoofnodes” is 0 and noofchildnodes
is 18, finalchlds is 0. Since the value is greater than and
thus satisfies the condition, control will enter into IF block
and the values of finalnoofnodes and finachilds get updated
along with the product block which contains the parent to
the product block. Since this set of nodes had satisfied
our condition, we consider them to be our future prod-
uct blocks and store this node list into another node list
called data tuples. The loop iterator reads next line which
is < divclass = prodoffer >′′. Since this line contains a
class attribute so this line is processed. First, it extracts the
value of class attributes and creates a “path” string object
with the value of class (path=“//div[@class=“prodoffer”]”).
This “path” variable passes to compile method “xpath” ob-
ject “expr”. The evaluate() method of “XpathExpression”
extract all the nodes from the DOM tree which is matched
with “class=prodoffer” embedded with “div” tag and save
this result set to Nodelist object. Now the noofnodes is 17,
noofchild is 5 since this does not satisfy the condition, the
values of variables remain unchanged. Thus, this process
carries until the tag occurrence file data gets to the end.
After the loop ends, the variable product block will have
the parent of the block that repeated the most number of
times with the maximum child elements which is the block
of focus. Now, this block is read recursively in the lines of 5
and stored into a nodelist tagstructure. Finally, we have the
structure that is most repeated frequently all over the dom
tree which is later passed to the schema extractor module to
discover database schema of the web page and data tuples
which has the parent nodes to all the product block. Now
that we have the most frequently repeated structure all over
the web page, it is used to derive the database schema of the
web page. The main algorithm encounters step 5 where it
calls the schema extractor() method to extract schema from
the structure found. Each tag from the structure is passed
to this method, it then checks if the tag is < img >, it as-
signs blob or image as data type. If it is a text tag, it assigns
varchar as the data type as shown in Table 1. The nodelist
data tuples consist of all the product blocks with their par-
ent nodes. From the dom tree, each parent node is checked if
it has child nodes and values are updated into the database
table. This data further can be used to create a data ware-
house for comparative mining and historical querying. In
our own case, we append the data warehouse integration at-
tribute “storeid” of type string and the historical attribute
“time” of type string.

3. EXPERIMENTAL EVALUATIONS
The integration of all the modules are built in together to

form a software bundle which accepts the URL of the web
site. The software processes the web content and generates
the schema of the products. The experiment is done with
4 different web sites (bestbuy.com, futureshop.ca, canadi-
antire.com, walmart.ca) for empirical evaluation of our sys-
tem using different page structures. Our system is imple-
mented in Java programming language, run on 64-bit Win-
dows 7 home operating system with Intel Due Core 2.26
GHz, 4.00 GB RAM hp machine for empirical evaluation of
our schema extractor system. We use the standard precision
and recall measures to evaluate the results of our extraction

Table 3: Results of Webominer S extraction of

schema from web pages

Web Actual Extracted
page Schema Schema

Fie String Image Cor Wr- Miss Irre
lds g fie fie rect ong ing lev
count lds lds ant

best 11 9 2 10 1 0 1
buy.ca
future 12 10 2 12 0 0 6
shop.ca
canad 17 14 3 15 2 0 5
ianti
re.ca
wal 15 12 3 12 1 0 2
art.ca

system. Precision is measured as the average in percentage
for the number of correct data retrieved divided by the total
number of data retrieved by the system. Recall is measured
as the average in percentage for the total number of correct
data retrieved divided by the total number of existing data
in the web document. While the precision for the schema
extraction achieved by the system using the 4 web pages is
80%, the recall achieved is 90%. The precision includes ir-
relevant fields extracted even though all necessary product
fields on the web page are extracted. Results of the retrieval
by our schema extractor system are tabulated in Table 3:

The purpose of our experiment is to measure the perfor-
mance of the WebOMiner S schema extractor system. Ta-
ble 3 shows small scale experimental results as performance
measure for our schema extraction system. We have taken
one page per web site for experiment and the numbers in
the columns show different types of data in those pages.
The “Fields count” column shows the total number of at-
tributes in the schema of the product block for each of the
downloaded pages. For those pages schema extractor sys-
tem is able to identify schema correctly. Very few wrong
data record identification is observed and it makes sense
because our system is not based on use of sample training
pages. It misses no actual information on the page because
it extracts the data from web pages from different websites.
There are 14 irrelevant attributes which are generated in the
extraction of schema. We observed the reason for irrelevant
attributes. All of those irrelevant attributes extracted are in
the List type data records which mixes objects of different
types in a data tuple. Our definition of List data tuple is a
set of < text > and there should be at least 3-pairs in the
tuple to be qualified as List tuple. This means that those list
consisting of both < image > and < text > do not satisfy
this criteria and will not be recognised. This remains area
for future work.

4. CONCLUSIONS AND FUTURE WORK
There is need for a system capable of performing deeper

knowledge discovery consisting of comparative analysis of
such product features as prices, answering historical and de-
rived queries about products and other data on web pages.

This paper proposes an approach for solving this complex
data extraction problem using JAVA Xpath parser methods
with web page DOM tree tag node frequent structure count
summarization and mining. The proposed WebOMiner S
system summarizes the number of times each tag in a web
page DOM tree has occurred. Then, it uses this data to dis-
cover the most frequently occurring tags since those most
likely would belong to the product blocks. Then, it uses
these frequent tags to go back to the DOM tree to retrieve
the parent tag node (corresponding to the table name) and
all its children tags nodes which will correspond to the table
attributes. This approach advances the more complex non-
deterministic finite state automata employed by an earlier
system the WebOminer, which also requires sample training
B2C web pages. The proposed WebOMiner system discov-
ers the schemas of the B2C web pages without the need for
training web pages and building NFA for different content
types. This has the potential to make the system more ex-
tendable and accessible to users. We have demonstrated that
this first implementation phase of this system is effective for
extracting web schema and contents and storing them in
database tables for querying and mining. Future improve-
ment on the proposed system includes: the crawler module
needs to create the functionality for more automatic selec-
tion of the targeted documents from the web, cleaner module
needs to handle long tag attributes. Future extensions of the
system are ongoing research. We feel there is plenty of room
for improvement and to open new thread. With this method
the data types are not yet well defined and the analysis of the
child tag would give the data type close to the original data.
Current system does not handle “on click” contents on the
web sites which are dynamically generated on user’s request
and loaded with tools such as AJAX, jQuery functions like
jQuery.load() or content loaded by scrolling. Future work
should extend the system to dynamic contents. Our FS-
Finder can be extended such that frequent structures in the
dynamic web page is detected through their usage external
css with xpath parser.

5. ACKNOWLEDGMENTS
This research was supported by the Natural Science and

Engineering Research Council (NSERC) of Canada under an
operating grant (OGP-0194134) and a University of Windsor
grant.

6. REFERENCES

[1] E. Annoni and C. Ezeife. Modeling web documents as
objects for automatic web content
extraction-object-oriented web data model. In ICEIS
(1), pages 91–100, 2009.

[2] C.-H. Chang and S.-C. Lui. Iepad: information
extraction based on pattern discovery. In Proceedings
of the 10th international conference on World Wide
Web, pages 681–688. ACM, 2001.

[3] S. Chawathe, H. Garcia-Molina, J. Hammer,
K. Ireland, Y. Papakonstantinou, J. Ullman, and
J. Widom. The tsimmis project: Integration of
heterogenous information sources. In Proceeding of
IPSIâĂŹ94, Japan, March 1994.

[4] W. Consortium et al. Html5.
https://www.w3.org/TR/html5/, 2013.

[5] V. Crescenzi, G. Mecca, P. Merialdo, et al.
Roadrunner: Towards automatic data extraction from
large web sites. In VLDB, volume 1, pages 109–118,
2001.

[6] C. Ezeife and T. Mutsuddy. Towards comparative
mining of web document objects with nfa: Webominer
system. International Journal of Data Warehousing
and Mining (IJDWM), 8(4):1–21, 2012.

[7] H. Garcia-Molina, Y. Papakonstantinou, D. Quass,
A. Rajaraman, Y. Sagiv, J. Ullman, V. Vassalos, and
J. Widom. The tsimmis approach to mediation: Data
models and languages. Journal of intelligent
information systems, 8(2):117–132, 1997.

[8] J. Hammer, J. McHugh, and H. Garcia-Molina.
Semistructured data: The tsimmis experience. In
Proceedings of the of the 1st East-European
Conference on, pages 1–7, 1997.

[9] java.com. Learn about java technology.
https://www.java.com/en/about, 2016.

[10] A. H. Laender, B. Ribeiro-Neto, and A. S. da Silva.
Debye–data extraction by example. Data & Knowledge
Engineering, 40(2):121–154, 2002.

[11] I. Muslea, S. Minton, and C. A. Knoblock.
Hierarchical wrapper induction for semistructured
information sources. Autonomous Agents and
Multi-Agent Systems, 4(1-2):93–114, 2001.

[12] Sourceforge.net. Htmlcleaner web page: Transforms
html to well-formed xml.
http://htmlcleaner.sourceforge.net/index.php, 2015.

[13] W3Techs. Web technologies surveys: Usage of css for
websites.
https://w3techs.com/technologies/details/ce-
css/all/all,
2016.

[14] Y. Zhai and B. Liu. Web data extraction based on
partial tree alignment. In Proceedings of the 14th
international conference on World Wide Web, pages
76–85. ACM, 2005.

