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Abstract 

 
Business applications for decision support or online analytical processing (OLAP) 

are largely interested in discovering patterns in transactions data stored over time, on 
which executive decisions can be made. Data warehouses store such transactions data as 
integrated, historical and subject-oriented data which are made available for aggregate 
querying by business executives.  Since volume of data in warehouse tables is huge, one 
technique for improving warehouse query response time is to pre-compute and store 
(materialize) all needed aggregate tables (or views). 

Data cube provides a conceptual n-dimensional representation of 2n aggregate 
views for a set of n groupby attributes or subjects in the main warehouse fact table.  
Storing all the 2n data cube views may pose storage space problems as well as increase 
maintenance cost.  Many algorithms have been proposed for selecting a set of views of 
the data cube most beneficial to materialize.  One such algorithm is the Partition-
Selection scheme which recommends storing a materialized view as a set of horizontal 
fragments of the view.  The objective of this paper is to enhance the performance of  this 
Partition-Selection scheme for views by defining an algorithmic component which 
recommends the best set of fragments of a materialized view that answers any warehouse 
aggregate query.  
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1. Introduction 

A telephone company may want to generate statistics which displays the total monthly 

long distance bill by each of its customers for the past one or 2 years.  From this 

statistics, it becomes easy to identify the customers who make the most long distance 

calls and these customers could be target for a new and specialized service package that 

may best benefit the customers and by finding a way to please the customers, the 
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company gains competitive advantage as few customers would be willing to switch to a 

new company.  An emerging database technology that provides the means for business 

organizations to store and manage these types of snap shots of business data gathered 

over long periods of time and which integrates data from all distributed branches and 

departments is data warehousing.  Widom in [Wi95] defines data warehousing system as 

a single data repository which integrates information from different data sources like 

relational databases, object-oriented databases and others.  Chaudhuri and Dayal in 

[ChDa97] report that data warehousing technologies have been successfully applied in 

many industries including telecommunications, financial services, retail stores and health 

care.   

In relational OLAP systems, warehouse data are designed to have a star schema 

which allows a main fact table that holds all the integrated, time-variant data.  The 

attributes of the fact table are foreign keys while the other tables in the warehouse called 

dimension tables are associated to the fact table through the foreign key attributes of the 

fact table.  An example simple banking warehouse system consisting of a fact table and 

its dimension tables is given below: 

Fact table is: 
b-activity (cid (C ), accttype (A), transtype (R ), time-m(T), Amount) 
 
Dimension tables are: 
customer (cid, cname, ccity, cphone) 
account (accttype, date-opened) 
time (time-m, hour, day, month, year) 

Thus, the fact table has attributes customer id (cid), account type (accttype), 

transaction type (transtype), time in minutes (time-m) and amount in dollars (Amount) 

involved in a transaction executed by a customer.  With this fact table, all transactions on 

all four types of accounts available at the bank by any customer any minute are recorded.  

The dimension tables  or dimension hierarchies allow queries that need customer name 

instead of his/her id provided by the fact table to be answered.  Dimension hierarchies are 

also used for roll-up and drill-down analysis.  A roll-up analysis presents an aggregation 

first in the lowest level detail but proceeds to present it in a more general level detail.  An 

example of a roll-up analysis is a query to first get the total amount of dollars deposited 

in each account every minute, then from this aggregate we now want the total deposited 
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every hour, then every day, month and year.  A drill-down analysis presents summaries 

from the coarsest level detail to the lowest level detail.  The example warehouse given 

above does not have any aggregate tables or views yet stored.  The implication is that 

every aggregate query seeking the total amount of dollars by each customer, by each 

transaction, by each account type or by each minute needs to be answered using the fact 

table and the dimension tables.  These tables have millions of rows and queries may take 

long to be answered.  One way to improve warehouse query response time is to pre-

compute the needed aggregate tables and store.  A data cube with n attributes is called an 

n-dimensional data cube and in relational OLAP is a table with 2n subtables representing 

the 2n subviews of the data cube.  The n attributes are the subjects of interest to the 

organization around which the aggregate may grouped.  With our warehouse example, 

the four fact table attributes, cid(C ), accttype(A), transtype(R ) and time-m(T) make the 

4 dimensions of the data cube and 16 subviews can be represented by this 4-dimensional 

data cube.  The subviews arise from different combinations of the attributes.  The 16 

subviews are labeled CART, CAR, CAT, ART, CRT, CA, CR, CT, AR, AT, RT, C, A, 

R, T, {}.  The subview labeled CART corresponds to the following SQL query: 

Create View CART-trans(cid, accttype, transtype, time-m, TotalAmt) AS  
Select cid, accttype, transtype, time-m, Sum(Amount) AS TotalAmt 
From b-activity 
groupby cid, accttype, accttype, transtype, time-m; 
The view labeled {} corresponds to: 

Create View  {}-trans AS  
Select Sum(Amount) AS TotalAmt 
From b-activity; 

Thus, the label of the subview indicates which subjects or groupby attributes are involved 

in creating the view.  Storing all these 2n huge subviews may lead to storage space 

problems and increase in maintenance cost since all stored views need to be refreshed as 

updates are being made in the source databases.  [HaRaUl97] proposed a greedy 

algorithm for selecting a set of subviews of the data cube to materialize in order to reduce 

the time needed to answer the queries given some storage space.  Meredith and Khader in 

[MeKh96] argue that aggregate view partitioning can be used to improve warehouse 

performance. [EzBa98] propose a partition-selection scheme for partitioning any selected 

view and using the re-computed size of the partitioned view based on the actual 
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fragments of the view scanned by queries, the greedy algorithm is applied to further 

selection of views.  The effectiveness of the approach proposed by the partition-selection 

scheme is enhanced if the system is able to give directions on what constitutes the best 

execution path for any warehouse query.  In other words, given any query, which of the 

materialized views, and which of the fragments of this materialized view would best 

answer this query to give best response time? 

  

1.1  Related Work 

Gray et al.  In [Gretal96] presented the concept of the data cube, a multidimensional 

representation of a set of aggregate measures.  A lot of  algorithms have been proposed 

for selecting views and indexes of  cube views [Ez97a, Guetal97, HaRaUl96, 

LaQuAd97]. Harinayaran et al. in [HaRaUl96] defined the relationship between 

subviews using a lattice framework and defined a greedy algorithm for selecting a set of 

views of the data cube.  The greedy algorithm starts by selecting the top level view into 

the set S. Then, each of the cube views is checked for the one that yields the maximum 

benefit considering  the views that are already in the set  S. The benefit of a view, v not in 

the set  S is computed as the (number of rows in the smallest parent  u of view  already in 

S minus the number of rows in v) multiplied by the number of v's descendant views in the 

cube including the view v itself, which can be created using view  v.  The benefit of all 

remaining views in the lattice are computed each time and the view with the highest 

benefit is included in the set S.  Gupta et al. [Guetal97] extended the greedy algorithm to 

select both views and indexes.  [Ez97a] defines a uniform scheme based on a 

comprehensive cost model for selecting both views and indexes.  [Ez97b] extended this 

uniform scheme to handle dimension hierarchies.  [OzVa91] presented horizontal 

fragmentation schemes for relational databases based on simple predicates and with no 

access frequencies taken into consideration.  [In96, MeKh96, TiCh96] have all expressed 

the need for data partitioning schemes in the data warehouse aggregate materialization 

problem.  [EzBa98] defined a scheme based on the greedy algorithm for selecting views 

but which fragments every selected view horizontally using application access pattern 

and frequency.  The percentage of all rows of the view accessed on the average by 

queries and the frequency of their access is used to recalculate a new size for the 
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partitioned view.  The new size is used when making future selection.  For this approach 

to deliver the expected outcome, queries need to be directed to the appropriate fragments 

of some view and the work in [EzBa98] falls short of providing techniques for guiding 

queries on what constitutes the best execution path. 

 

1.2  Contributions 

The objective of this paper is to provide some optimization to the partition-selection 

scheme by incorporating a fragment-advisor algorithm.  The responsibility of the 

fragment-advisor is to use the query access information and their access frequencies 

together with the fragments of the selected materialized views to recommend the set of 

fragments of a view the query needs to execute.  The use of the size of the partitioned 

view in selecting future views with greedy algorithm is more justified if this component 

is included.  The fragment-advisor gathers and provides information needed for 

calculating the size of partitioned views and provides the basis for dynamic re-

fragmentation and re-selection of views.  The benefits and performance of the proposed 

scheme are demonstrated using elaborate examples. 

 

1.3  Outline of the Paper 

The rest of the paper is organized as follows.  Section 2 presents motivating example 

based on a banking warehousing system which shows selected views of the system and 

some queries as well as how decisions are made about what makes the best execution 

path.  Section 3 presents formal discussion of the fragment-advisor scheme, section 4 

discusses some performance justification while section 5 presents conclusions. 

 

 

 

2.  Motivating Example 

This section gives an example to show how a set of fragments of a materialized  view can 

be selected as the best for answering a warehouse query, although the formal presentation 

and discussion of the algorithm designed for this purpose is made in section 3. 
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Example 2.1 Consider a banking data warehouse with historical records of every 

transaction customers have asked for in all four types of accounts available 

(savings1(S1), savings2(S2), chequeing1(C1) and chequeing2 (C2)) from across many 

branches. 

The data warehouse has the following fact and dimension tables: 

b-activity (cid(C), accttype(A), transtype(R), time-m(T), amount(M)) 
customer (cid, cname, ccity, cphone) 
account (accttype, date-opened)  
time (time-m, hour, day, month, year) 
 

The domain of cid is c0001, c0002, .., c1000.  The domain of transtype is deposit 

(dep), withdrawal (wd), transfer, billpay and balance display.  A sample fact table data is 

given in Figure 1  for only 10 tuples although table holds millions of rows typically. 

cid   accttype  transtype  time-m   Amount 

C0001  S1  dep  199603210003 200  
C0518  C1  wd  199603210100  500 
C1000  C2  wd  199603210200  300 
C0001  S1  dep  199603221300  500 
C0518  S2  dep  199603230600  300 
C0411  S2  dep  199603230600  400 
C1000  C2  wd  199603231000 100 
C0300  S1  dep  199603231200  300 
C0411  C2  dep  199603240500 400 
C0001  C1  wd  199603241100  600 
 
Figure 1: Sample Warehouse Fact table data 

The time the transaction took place is recorded as year/month/day/minute.  Since in a day 

there are 1440 minutes (24 * 60), the last four digits of time is used to represent both 

minute and hour.  Some warehouse queries on this table are: 

• Q1: Get the number of customers who have made more than 2 withdrawals in savings 

account S1 in any month. 

For the purposes of our design, we decompose every warehouse query to consist of three 

attribute components namely (1) Partition attributes (PA), (2) analysis attributes (AA) 

and (3) measure attributes (MA).  Partition attributes are the attributes involved in the 

``where clause'' of the SQL version of the query.  Analysis attributes are those involved 
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in the ``group-by'' clause and measure attributes are aggregates of interest.  The first step 

in our approach is to be able to define simple predicates using the partition attributes. 

Simple predicates are of the form ``PA (relational operator) Value''.  We decompose each 

query into PA, AA and MA, then, from the PA we identify the set of simple predicates 

and the following attributes and predicate have been identified from the query Q1.  

PA = Accttype (A)   

AA = Month (T), transtype (R )  

MA = Number of customers  or Count (C )  

Predicates: P1: A = ``S1'' 

• Q2: Get all customers who have deposited some money in the morning minutes. The 

attributes and predicate from Q2 are: 

PA = Time-m (T)  

AA = none      

MA = Number of customers or Count(C ) 

Predicates: P2: T ≤  0720   

• Q3: Find the total amount of dollars involved in each transaction type and account 

type in the minutes between 0720 and 0780 (lunch hour).  We have from this query: 

PA = Time-m (T)  

AA = Accttype (A) and transtype (T)  

MA = Total amount of dollars or Sum(Amount) 

Predicates: P3: T ≥ 0720  AND T < 0780 

• Q4: Find the total amount of dollars deposited by each customer every minute in 

account C1.  From this query, we obtain: 

PA = Accttype (A)  

AA = Customer (C), Time (T)  

MA = total amount of dollars  

Predicates: P4: A = ``C1'`  

Applying the Partition-Selection algorithm to this example entails defining the 

importance value (IP)  of each of the predicates and selecting some n most important 

predicates which have the highest IP values.  The IP or importance value of each 
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predicate is obtained by multiplying the cardinality of the predicate (number of rows 

from the fact table or view that are true for this predicate) by application access 

frequency (the number of times the predicate is accessed by an application).  Further, it is 

assumed the queries Q1 to Q4 access the warehouse at the following frequencies 

respectively: 100, 40, 20 and 60 times.  We can then see, reading from our sample fact 

table that | P1| = 3, | P2| = 6, | P3| = 0 and | P4| = 2. Therefore, IP of P1= 3 * 100 = 300, IP 

of  P2= 6 * 40 = 240, IP of P3= 0 * 20 = 0, and IP of P4= 120.   The two predicates 

selected P1 and P2 were used to generate the following four horizontal fragments of the 

top level view CART.  

M1 = P1 ∧ P2 ⇒ A = ''S1'' ∧ T ≤ 0720 

M2 = ¬ P1 ∧ P2  ⇒ A  ≠ ''S1'' ∧ T≤ 0720 

M3 = P1 ∧ ¬ P2  ⇒ A = ''S1'' ∧ T > 0720 

M4 = ¬ P1 ∧ ¬ P2  ⇒ A  ≠ ''S1'' ∧ T > 0720 

This has provided fragmentation of only the top level view, and to select the rest of the 

views, we re-compute the size of the fragmented CART view using only the total number 

of rows actually accessed by queries through its fragments.  For example, since CART 

has 4 fragments, if all views are accessed 10 times by queries and each query on the 

average accesses only 2 fragments of the view (which are about the same size) 75% of 

the time, then the average number of rows accessed in the view by a query is (100/2 * 

.75) + (100 * .25) = 62.5 rows or approximately 63 rows.  Thus, the initial 100 million 

row size of  view CART is now taken as 63 million rows.  This new size is used in 

running the greedy algorithm to select three additional views from the main cube lattice 

of this warehouse given as Figure 2.  Every selected view is in turn fragmented and the 

final result from the partition-selection scheme is that the set of views to materialize are 

S={CART, CA, CT, C} and the lattice showing the materialized views with their 

fragments is given in Figure 3. 
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Figure 2:  The Main Cube View Lattice With Re-computed Size for CART 

 

In the cube lattice of Figure 2, the parent-child relationship between the views show that 

if a view is not materialized, it can be computed from any of its ancestor views. 

 
               Figure 3:  The materialized views with their Fragments 

Figure 3 shows the selected views and their horizontal fragments.  Information needed in 

addition by the fragment advisor includes the minterm predicates that defines each of 

these fragments and table 1 shows the minterm fragments for all the fragments of each 

selected view. 
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Materialized View Fragment Minterm Predicate Num of rows 

CART F1 A = ''S1'' ∧ T ≤ 0720 1 units 

 F2 A  ≠ ''S1'' ∧ T≤ 0720 5 

 F3 A = ''S1'' ∧ T > 0720 2 

 F4 A  ≠ ''S1'' ∧ T > 0720 2 

CA F1 A = ''S1'' 2 

 F2 A = ''C1'' 2 

 F3 A = ''C2'' ∨  “S2” 4 

CT F1 T ≤ 0720 6 

 F2 T > 0720 4 

C F1 ALL 5 

 Table 1:  Minterm Fragments of  Selected Stored Views 

Now that all the input data for the fragment advisor have been determined by the 

partition-selection scheme and are discussed, the question to be answered by the 

fragment advisor is: “given any warehouse query like Q1 to Q4, which fragments of a 

view should be used to improve response time?”  Taking Q1 for example, the approach 

used is to define all attributes needed to answer the query by concatenating the PA, AA 

and the non-aggregate form of MA.  For query Q1 that will give attributes C,A,R.T.  

Then, we rule out any stored view which does not have all needed attributes.  For Q1, we 

are left with only CART but for most cases, we are still left with a set of views.  From the 

set of  eligible views, applying the predicates of the query on the minterms of the 

fragments enables us to count the number of rows visited by a query as the size of every 

fragment whose minterm fragment includes the predicates of this query.  In the end, we 

select the view with the lowest total count of number of rows visited obtained from the 

sum of  the size of all fragments needed to answer the query.  The predicate for Q1 is A = 

''S1'' and since this predicate is found only in fragments F1 and F3 of CART, it means that 

the two fragments recommended for answering Q1 are F1 and F3 for a total number of 

rows of  (1 + 2) = 3 million rows as opposed to the 10 million rows in the original 

unfragmented CART. 
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3.  Fragment Advisor Algorithm 

This section starts by first presenting some formal definitions of the terms used in 

presenting the algorithm, then, the algorithm which defines the set of fragments of a view 

that best answers a given query is presented. 

 

3.1 Definitions 

 Definition 3.1  Primary horizontal fragmentation is the partitioning of a relation based 

on the values of its attributes such that each fragment contains only a subset of the tuples 

in this relation.          

Definition 3.2  A user query Qi accessing an aggregate view Vi is made up of a set of 

analysis attributes AA, a set of partitioning attributes PA and a set of measure attributes 

MA.            

Definition 3.3 An analysis attribute AAij from a user query Qi represents the a subject or 

groupby attribute of interest to the application.       

Definition 3.4  A partition attribute PAij in a user query Qi defines the subset of records 

found in view Vk which is relevant to the application.  It is an attribute in the ``where 

clause''.  A set of simple predicates are usually derived from each partition attribute.  

            

Definition 3.5 A measure attribute MAij in a user query Qi is an aggregation attribute of 

interest to the application.          

Definition 3.6 All Attributes of a query (Aq) is the concatenation of all the AA, PA and 

the non-aggregate part of MA.        

Definition 3.7  All Attributes of a view (Av) is the set of all groupby attributes that define 

the view v. For example, Av of  view CAR is C, A, R.     

Definition 3.8 Possible view set (Pv)  for answering a query  is the set of views among 

the materialized views that can adequately answer the query.    

 

3.2  Fragment Advisor Scheme 

The sequence of steps to execute in order to find the set of fragments of a view which 

best answers a query are discussed next.  Input to the scheme are PA, AA, MA and set of 
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predicates Prq of the query as well as the set of materialized views V with their fragments.  

Each fragment comes with the conjunctive minterm predicate that defines it and the size 

of the fragment which is the number of rows of this view for which the minterm predicate 

is true.  The steps in the scheme are: 

• Step 1: Define the set of possible views P that can be used to adequately answer this 

query.  To get the possible view set, we first define all attributes needed by the query 

by concatenating the query’s PA, AA and MA sets.  Thus, Aq = PA || AA || MA.  

Then, for every view, v, in the set of materialized views, if the set of all attributes of 

the query Aq is a subset of the set of all attributes of the view Av , v is made a 

member of the possible view set.  In other words,  

œv ∈ V | Aq f Av ⇒  v ∈ P 

• Step 2:  Once we have defined the possible view set, the next step is to determine 

which of these competing views should be selected to answer the query.  Intuitively, 

the view that should be chosen is the one that requires scanning of fewest rows.  The 

number of rows of a view scanned can be determined as the sum of the cardinalities 

of all its fragments that need to be visited in order to answer the query.  This means 

that the view which requires some of its fragments to answer the query which will 

lead to the lowest total number of rows for answering the query,  is the selected view 

and fragments.  Thus, the scheme selects a vj ∈ P and the set Fij of fragments of vj 

such that the following conditions are satisfied: 

vj ∈ P ∧ Prq f Fij ∧ œvk ∈ P |Fij | ∈ vj  <  |Fik | ∈ vk

The formal algorithmic definition of this solution is given as Figure 4. 

 

 

  

Algorithm 3.1  (Fragment advisor - Recommends a set of fragments of a view for a 

query) 

Input:  Query as PA, AA, MA and set of predicates Pr, Set of materialized views V and 
their fragments, minterms of each fragment and its cardinality. 

Output: A set of fragments F of a view 
begin 
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Aq = PA || AA || MA 
Define the possible view set as follows: 
P = {} 
for each v in V do 
   if Aq f Av   
 then P = P ∪ v 
end 
Smallest-total-row = 0 
for each v in P do 
    begin 
 Needed-Fragments of  v = {} 
 Number-of-rows for v = 0 
 for each fragment F of v do 
               begin 
   if the conjunction of all predicates Pr of  query f minterm of    F 
     then Need-Fragments of v = Needed-Fragments of v ∪ F 
   Number-of-rows for v = Number-of-rows for v + |F| 
     end 
 if Smallest-total-row > Number-of-rows for v 
     then Smallest-total-row = Number-of-rows for v 
   whichview = v 
   end 
Recommended = Need-Fragments of v 
end 
 

Figure 4:  The Fragment Advisor Algorithm 

 

4.  Performance Analysis 

Partitioning of stored views leads to some improvement in system performance because 

of reduced query response time since most queries will indeed scan fewer fragments than 

all, and in turn scan fewer rows than are stored in the original view.  This section argues 

the importance of the fragment advisor  and its contribution to the benefits of the 

partition-selection scheme.  Partitioning a view leads to both reduced query response 

time 

and maintenance cost.  The query response time is reduced because only a fraction f of all 

the rows in the view are accessed on the average by a query.  In the worst case, f is 1 in 

which case all fragments are visited and all the rows in the view are accessed on the 

average by each query.  In the best case, f is 0 meaning that no rows of the view are 

scanned on the average by a query.  This suggests the need for a fragment-advisor 
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algorithm whose responsibility is to recommend the best set of fragments of a view a 

query needs to visit.  Without the addition of the fragment advisor component the 

benefits of the partition-selection scheme may not be realized.  This is because queries 

may need to scan through the entire view again to ensure that no data is left out.  

Secondly, computing the new size of the partitioned view for running the greedy 

algorithm during selection of further views is based on estimated data which the advisor 

can easily and more accurately supply if it keeps track of the total number of rows visited 

by each query and that is used to compute the average number of rows visited by queries. 

The partition-selection approach for materializing views is better for applications 

accessing mostly parts of the view and the advisor serves the purpose of identifying when 

the approach is not very beneficial.  On how partitioning of view leads to a reduction in 

cost, the argument is that if high percentage of source database updates are directed to 

portions of the view kept in fragments, only a few fragments will be scanned and updated 

leading to lower maintenance cost.  Further proof of the gains of this approach can be 

accomplished through experimental analysis.  This will enable collection of data on both 

query response time gain,  maintenance cost gain with different query patterns, varying 

view sizes,  varying selections and partitioning of the views using the algorithm and this 

is intended for future work. 

 

5.  Conclusion and Future Work 

This paper investigated the problem of automating the process of deciding which 

materialized view and which fragments of the view would provide fastest response to a 

query.  The benefits of such a program includes both reduction in query response time as 

well as reduction in maintenance cost of stored views. 

 This work serves an enhancement or optimization to a partition-selection scheme 

for views which recommends storing selected views as a set of horizontal fragments.  The 

reasoning behind such an approach is that it provides some performance gain if queries 

do not spend precious CPU time scanning rows of the huge warehouse tables that they do 

not need to scan.   

 Examples to demonstrate the workings of these algorithms are given.  The 

foundation work presented in this paper can be extended to accommodate taking the 
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availability of indexes into consideration while making decisions about views and their 

fragments that should be recommended.  It can also be extended to keep track of changes 

in query access pattern that could trigger a re-fragmentation and re-selection of view 

when the query access pattern changes so much that most queries are needing to access 

all fragments of most stored views.  These extensions are currently being investigated.  
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