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Abstract—An Intelligent Tutoring System (ITS) provides di-
rect customized instruction or feedback to students while they
perform a task in a tutoring system without the intervention of a
human. One of the main functions of an ITS system is to present
its students with course materials that are most appropriate
to their current knowledge of domain concepts, example being
one of the course materials. ITS systems typically compare and
analyze student model (SM) components for student’s current
knowledge of concepts (main topics, e.g. scanf in C programming)
that are required to understand the next example (e.g. codes for
scanf) suitable for learning a task (e.g. write C code to read
2 integers from the keyboard). Existing systems such as NavEx
and PADS perform an exhaustive matching of student knowledge
level with all examples in the database.

This research proposes a task-based technique for managing
and classifying examples for more effective retrieval of relevant
examples for learning a task. We propose a system called EASK
for translating task and example solutions into concepts for
similarity matching, which is more readily available, easily ex-
tendible and adaptable to other domains. Examples and tasks are
represented as vectors of weights computed with term frequency
measure TFIDF that signify the importance of a concept for an
example. Examples most similar to a task are found by using
a classification method called k-NN, which finds the closeness
between different objects such as examples and tasks using cosine
similarity measure and selecting the k objects (examples) with
highest similarity scores. As a by-product, k-NN also predicts
the class label (difficulty level) of the task. Our proposed model
achieves this prediction with 89% accuracy.

Index Terms—adaptation, data mining, classification, example-
based Learning, student model

I. INTRODUCTION

An ITS is a computer system that provides direct cus-
tomized instruction or feedback in real-time to students using
tutoring systems, without the actual physical presence of a
teacher. Functions of an ITS include adaptation and intelli-
gence. Adaptation is in terms of navigation (e.g. display of
material to be read next) and presentation (e.g. presenting the
material of exact difficulty). Intelligence shown by the tutoring
system is based on the objectives for which the ITS is designed
(e.g. providing support to students through hints or examples
at the appropriate time).

Every ITS system has modules which assist in meeting the
ITS objectives. The modules consist of the domain or expert
module defining knowledge to teach (e.g. correct solutions of
every example used in the ITS), tutor module defining knowl-
edge of how to teach (e.g. giving instructions to students when

they make a mistake), student module defining knowledge of
when to teach (e.g. student S’s current mastery in concept
c indicates that s is ready for lesson2) and a user interface
module which allows a student to interact with the first 3
modules. Student module of the ITS stores information about
each student using the ITS in a student model. A student
model (SM) is an approximate, partial, mainly qualitative
representation of the learner’s knowledge about a specific
domain [1]. It can store student attributes that are static (e.g.
learning style of a student), dynamic (e.g. student’s knowledge
level on concepts) or affective (e.g. emotional state of the
student). The objectives of an ITS dictate what comprises the
student model and how it should be represented. For example,
an ITS which supports teaching strategies that are adaptive to
a student’s learning style will require each student’s SM to
store his/her learning style. A SM can be represented using
various structures such as files, relational databases (RDB),
ontologies or more function-specific network structures such
as Bayesian networks [1]. An entity relationship model of an
RDB shown in Figure 1 allows for a simple representation of
data on independent entities (in rectangles) such as students,
concepts and examples and their relationships (in diamond
boxes) and yet, complex queries can be carried out on them.
Since data stored in an RDB is held in separate tables for
each entity and relationship, it caters for future requirements.
For example, all domain concepts and their pre-requisites that
can possibly be used in the future can be added to the RDB,
although the current examples and SM do not use them.

Our SM is represented as a relational database that stores
for each student, his/her current knowledge on the domain
concepts, as shown in figure 1. Each example / task has one
or more solutions and covers one or more concepts. A concept
is either a pre-requisite for other concepts or requires other
concepts as pre-requisites (shown as recursive relationship).
SM data can now be used as input to data mining techniques
such as classification to extract information about students and
provide them guidance when needed.

K-nearest-neighbor (k-NN) classifier takes as input a pa-
rameter k (k=number of neighbors), a test sample t, a set of
labeled training samples (e.g. set of existing examples with a
class label of the examples’ difficulty level) and a similarity
measure (e.g. cosine similarity) for determining the distance
in order to perform the following steps :



Figure 1. Relational model of students, examples and concepts

a. calculate the distance between the test sample t
and all training samples

b. Sort the distances and pick the top k samples –
these are the k nearest neighbors of test sample t

c. determine the class label of each of the k nearest
neighbors

d. find the class label that gets majority (majority
implies that the number of neighbors with this
class label is more than any other class label) and
assign it as the class label of test sample t.

For example, assuming k = 5, the difficulty level of task T8
(circle) in figure 2 is predicted to be D (difficult) since 4 of its 5
neighbors (majority) have a difficulty level of D. Our research
uses k-NN to search for a task’s k nearest examples using
TFIDF (Term Frequency – Inverse Document Frequency) and
cosine similarity and predict its difficulty level (Section 3
has the details). This generates a static list of most relevant
examples for a given task, which is then compared with the
current knowledge level of students for concepts required to do
that task and appropriate strategies such as ‘c5 is a prerequisite
of this task, so let’s work on examples e1, e4, e5 first’ are then
generated adaptively (where ‘c5’ is a concept; e1, e4 and e5
are the suggested examples).

Figure 2. Difficulty level of task T8 using k=5 nearest neighbors is predicted
as D (difficult).

II. RELATED WORK

A survey on existing methodologies [2], [3], [4]used in the
area of adapting examples to a student’s mastery of domain
concepts indicates that these methodologies can be broken
down into 3 phases : Concept extraction (CE), Knowledge
representation (KR) and Knowledge adaptation (KA). KR as
explained in section 1 defines methods and structures used to
represent student knowledge. Although many other existing
systems were extensively studied, this research compares CE,
KR and KA of two systems NavEx[4] and PADS[2] that
were very similar in their objective of adaptively finding
and presenting most relevant examples to students, yet very
different in the methodologies used. CE can be done either
automatically or manually. NavEx[4] uses a parser to automat-
ically extract concepts from C programs and then proposed
and used a splitting algorithm to develop a hierarchy of
concepts and their pre-requisites. PADS [2] is a part of a
web-based tutoring system that uses a method called IOC [5],
in which nine experts gave their opinion of whether or not
a concept should belong to an exercise (even though PADS
was experimented with exercises, the methodology applies to
examples as well). Then, an index value is calculated for each
concept i in exercise k

Iik =
(N − 1)

∑n
j=1 Xijk +N

∑n
j=1 Xijk −

∑n
j=1 Xijk

2(N − 1)n
(1)

where N = |concepts|, n = |experts| and Xijk= the rating
(1, 0, -1) of concept i on exercise k by expert j. An index
value Iik > 0.8 indicates that concept i is required by exercise
k, a value between 0.5 and 0.8 indicates that i is a sub-concept
of k and value of < 0.5 indicates that i is not a concept of j.
KR in NavEx [4] is Boolean – ‘known’ or ‘not known’ for
each concept. In PADS [2], progress of a student on a concept
is stored as 1 (low), 2 (medium) and 3 (high). The adaptation
(KA) in NavEx simply matched each student’s SM contents
with that of the example’s pre-requisite concepts – if student
has mastered all concepts of an example, it is marked as
‘Ready”. A threshold value to compute the number of clicks
that a student had to make to master the example concepts
was defined as 0.8*(#all_concepts - #mastered_concepts) /
(#all_concepts) * #clicks_possible, where #clicks_possible
for each example was given by an expert. PADS [2] used
a decision tree method to predict the difficulty level of an
exercise for a student S based on seven feature attributes and
one target attribute. The feature attributes are extracted from
different sources: Source 1: SM of S for mastery level of
main concepts of exercise, sub-concepts of the exercise and
of algorithm analysis; Source 2: expert opinion on algorithm
complexity and number of lines in program code of each
exercise; Source 3: web logs for S‘s grade in the previous
exercise and login times during the last 2 weeks. At the end
of an exercise, each student is asked if he/she completed the
exercise with any help – if S did it without any help or could
not do it, then target attribute is set to 0 (=> inappropriate); if
S did it with the help of course materials or peer collaboration,



then target attribute is set to 1 (=> appropriate). Mokbel et
al. [3] divide their solution’s syntax trees into sub graphs
using spectral clustering and then measure the proximity
between solution parts. Each solution part is represented
as a vector of TFIDF weights. The methods used by the
existing systems [2], [3], [4] are very subjective, dependent
on a complex knowledge of experts on areas such as parser
generation and are less-focused as they generate a broad set
of examples independent of any task . For example, PADS
uses expert opinion for 3 of its 7 feature attributes. Both
NavEx and PADS compare their SM with N examples (N
= #examples in the database). Our approach compares only
k out of N examples. NavEx and Mokbel et al. [3] require
each example to be represented as syntax tree , although
our research suggests that to present relevant examples, it is
sufficient to extract concepts and evaluate if those concepts
are relevant to the examples eliminating the need for a
syntax tree representation. Representing each solution as a
syntax tree for matching examples requires a complex expert
knowledge of parsers and compiler construction, and makes
the existing systems less adaptable to other problem domains.
Our proposed research represents domain examples as vectors
of concepts so that a weighting mechanism such as TFIDF
can be applied to them, and thereafter a prediction model
based on a proximity measure such as cosine similarity can
be used to compare the closeness of a given task with the
examples in the database. KA in NavEx[4] uses number
of clicks to determine whether a student has sufficiently
explored the example but students can easily game this
system by just clicking randomly to move on to the next
example. PADS [2] uses just the student’s opinion to find if
the example is at an appropriate level or not. The existing
systems also lack in adapting to situations where a student
may have explored the example but has not mastered its
concepts yet. Adding some objectivity to the examples
(e.g. ask a question on the example) can be a solution to
this problem. Further, social adaptive mechanisms such as
number of ‘likes’ given to an example by students can be
used to rate examples and recommend them to future students.

III. OVERVIEW OF THE SYSTEM / TECHNIQUES USED BY
EASK

In this research, a task and an example are defined as shown
in definitions 3.1, 3.2 and 3.3.

Definition 3.1: A task is a question on a subject such as
a C programming language to be answered by a student. An
example of a task t1 is “Write a C program to find the area
of a triangle”.

Definition 3.2: A task solution is the solution of the question
asked in a task. A task solution for task t1 is “float base,
ht, area; printf(“Enter the base and height”); scanf(“%f%f”,
&base, &ht); area=base*ht; printf(“Area = %.2f”, area);”.

Definition 3.3: An example is a solution of questions on
the subject. Some examples that may be relevant to task t1
above are e2: “float a; scanf(“%f”, &a);”, e15: “int a, b, c;

scanf(“%d%d”,&a, &b); c = a*b;” and e0 as shown in figure
3.

Concept extraction (CE) is done using IOC [5], where a
number of experts indicate whether or not a concept belongs
to an example. CE extracts the concepts covered by the task
a student is assigned and by all the examples in the database.
Figure 3 shows an example and concepts extracted from it.
Then, index value Iik is calculated to measure the importance
of this concept for the example. A value of Iik> 0.6 indicates
that example k requires concept i. We use a relational model
for knowledge representation.

Figure 3. An example and its concepts extracted using CE

Each student data has a static content such as id, name and a
dynamic content such as knowledge level on a domain concept.
Since there are more than one concepts that a student can work
on, there is an M:N relationship (knows) between students and
concepts as shown in figure 1. Similarly, each concept is a pre-
requisite to one of more other concepts. This is represented
using a recursive M:N relation between concepts and their
pre-requisites (related). For example, concept C3 (arithmetic
operators) is a pre-requisite of concept C4 (expressions). Each
example requires one or more concepts and a concept can
be covered by one or more examples. This is represented
by a M:N relationship (coversE). A similar relation exists
between task and concept (coversT). For KA, examples can
be presented to students either independent of any given task
or in context of a given task T. Our research focuses on the
latter – task-based retrieval of relevant examples(Section 3
has a detailed algorithm). In the first step of the algorithm, a
weighting mechanism using TFIDF weights is used to generate
a static list of examples closest to the task T. Although a
Boolean value can be used in order to denote the presence or
absence of a concept in an example, a weight (usually between
0 and 1) better signifies the importance of a concept for an
example [5]. Each example ei in the database (and/or task)
can be represented as a vector of concepts c1 to cn (where
n = total number of concepts in the database) denoted as
ei = [wi1, wi2, . . .win], wij(j = 1..n) represents a weight
assigned to concept j of example ei. These weights can be
assigned using methods such as TF (Term Frequency) and
TFIDF. TF is the number of times a concept (more commonly
known as a term in IR) occurs in an example computed as

wij = TFij = nij (2)

where nij is the number of times concept cjoccurs in example
ei. TFIDF [6] uses TF combined with inverse document
frequency (IDF obtained by dividing total number of examples



in the database by number of examples that contain the concept
and then taking its logarithm, computed as

wij = TFIDF (cj,ei) = TFij ∗ log
(
N

nj

)
(3)

where N is the total number of examples in the database
and nj is the number of examples that contain concept cj .
TF calculates weights locally, taking into account a specific
concept and an example, whereas IDF component of the
TFIDF method computes the weights globally by considering
the proportion in which a concept occurs with respect to the
total number of examples in the database (N) that contain the
concept. Task T, is also represented using a similar vector of
weights for each concept as [wt1, wt2, ..wtn]. For example,
task T8 is defined as “Write C code to compute and print
the sum and product of 3 integers”. Task solution of T8 and
examples e1, e4, e15 and e16 are shown in table 2 and TFIDF
weights of task (T8 and examples (e1 and e16) are shown in
table 1, where C1..C10 are 10 concepts used in our database.

Table I
TFIDF WEIGHTS FOR TASK T8 AND EXAMPLES E1 AND E16

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

T8 0.23 0.23 0.76 0.76 3.04 0 1.52 1.01 0.34 0.61 0.76

E1 0.23 0.23 0 0 0 0 0 0 0.34 0.61 0

E16 0.23 0.23 0.76 0.76 0 0 0 1.01 0.34 0 0

Exact matching is not possible when using TFIDF weights
(unlike if Boolean values were used), and therefore, a proxim-
ity measure such has Euclidean distance or cosine similarity
is used to find the proximity of a task with examples in
terms of concepts required for a task / example. Cosine
similarity is chosen over Euclidean distance in this research
since Euclidean distance between task T and example ei
measured as

d(Tj , ei) =

√√√√ n∑
j=1

(Tj−eij)2 (4)

where n = length of the vectors (= total number of concepts
in the database) greatly depends on the length of the vectors
being compared [6]. For example, when comparing the simi-
larity between a task T and 2 examples of different lengths es
(small) and el(large), there will be a great distance between T
and el as compared to T and el, although they both could be
equally relevant to the concepts . Cosine similarity between
task and example ei is computed as

CS(T, ei) =

∑n
j=1(wij ∗ wtj)√∑n

j=1 w
2
ij ∗

√∑n
j=1 w

2
tj

(5)

Cosine similarity used with TFIDF weights best meets the
objective of finding those examples that are most relevant to
the current task because it assigns a higher weight to those
concepts that can best distinguish the relevance of examples.
It gives a similarity of the topic of the contents in the task

and examples, not the similarity of the size of the contents. It
is used in the area of information retrieval but has not been
explored in ITS systems yet. For example, if the task in hand
is T8 and examples compared are e1, e4, e15 and e16 (table
2). The Euclidean distance between T8 and e1, e4, e15 and
e16 (table 3) indicates that example e1 is closer in distance
to task T8 than example e15, although, in terms of concepts
required, table 3 shows that e15 is more relevant to T8. The
distance values are also incorrectly indicative of the fact that
examples e15and e4 are exactly the same. Cosine similarity
between T8 and the examples indicates that examples relevant
to T8 (in order of similarity) are e16, e15, e4 and e1. Some
examples may result in the same cosine values or very similar
(<=0.05) values when compared to a given task. To break such
a tie, the formula we use for similarity is a modified cosine
method (MCS) that multiplies the cosine value to the number
of matching concepts between the example and the task (we
call it TR for tie resolution). Equation 6 defines MCS between
a task and an example.

MCS(T, ei) = CS(T, ei) ∗ TR (6)

Finding the k-largest example-task MCS values is similar to
finding the k nearest neighboring examples to the current task.
This led us to use the k-NN prediction method to achieve
2 objectives: find k most relevant examples for a task using
modified cosine similarity and TFIDF weights and predict the
difficulty level of the current task being pursued. k-NN is a
simple, non-parametric method which takes a test data point
x (e.g. a vector of weights as in our example) and finds the k
points closest to x using some function (e.g. cosine similarity).
It then classifies x based on majority voting on classes of k.
For example, if x = task T8 , the k (=4) examples closest
to x using cosine similarity are e1, e4, e15 and e16 and the
difficulty level of the examples respectively is (easy, difficult,
difficult, difficult), then task T8 is predicted to be a difficult
task. Although the prime objective of this research is to find the
most relevant examples, it meets another important objective
of predicting the difficulty level of the task. This can assist
students in self-managing to succeed in the task (e.g. student
might want to read more resources since the task is predicted
as a difficult task). Choice of k is important in k-NN for the
results to be accurate. Research recommends the value of k to
be
√
n for effective results[6]. In order to evaluate our model

and to estimate its performance, a special case of k-fold cross
validation (CV) called leave-one out (LOOCV) is used. In k-
fold CV, the dataset is first divided into k partitions or folds.
Then k iterations are performed such that each iteration uses
k-1 folds for training the model and 1 fold for validating it.
K-fold CV performs very well if the dataset is large and the
test data has the same or similar distribution as the training
data. LOOCV is a special case of k-fold CV where k equals
the total number of samples in the dataset (N). Therefore, in
each iteration, one sample of the dataset is chosen as the test
data and rest of the samples (N-1) are used to train the model.
This method is widely used when the data set is small and



rare [7] and is found to give unbiased performance estimates
such as accuracy and f-score.

Table II
TASK T8AND EXAMPLES e1, e4, e15 AND e16

Example / Task Code

e1
int a;
scanf("%d", &a);

e4
int a,b,c;
scanf("%d%d%d", &a, &b,&c);

e15
int a,b,c;
c = a*b;

e16

int a,b,c;
c = a*b;
printf("c = %d \n", c);

T8

int a, b, c;
int sum, product;
scanf("%d%d%d", &a, &b, &c);
sum = a+b+c;
product = a*b*c;
printf("Sum = %d and product = %d ", sum,
product);

Table III
EUCLIDEAN AND COSINE SIMILARITY FOR TASK T8

Euclidean Cosine
e1 2.4 0.2
e4 3.16 0.21
e15 3.16 0.27
e16 2 0.4

IV. EASK FOR KNOWLEDGE ADAPTATION

This paper proposes an EASK system which builds a list
of examples that are most appropriate and useful to students
working on a task while using an ITS. This is accomplished
using algorithms that are simple, quick, accurate and easily
adaptable across other domains. Four datasets defining student
models, concepts, examples and tasks and their relationships
are used as input by the main algorithm EASK. Figure 1
depicts the relationship between these datasets. EASK first
generates concepts of each example and task using CEET,
then calls GREPD that uses a k-NN model to generate a list
of examples closest to the task and thereafter, calls GAL that
analyzes student models (SM) by computing average score
for each example in this list using concept scores in the SM
in order to present them with examples that will help them
learn concepts that they are not good at yet. For example,
if a student asks for examples while attempting task T8, and
his grades on concepts named variable, assignments, simple
expression and print are 90, but on concept scanf is 55, it
indicates that this student needs to study examples on scanf to
improve his/her grades on it, and therefore, examples e1 and
e4 will be presented but not e15 and e16.

A. Datasets (Entities and Relationships)

Four entities used in this research and their relationships are
listed below.

Student dataset: SM of 10 students: Attributes: (studentId,
studentName, grades in concepts C1 to C11).

Concept dataset : 11 concepts from the domain of C
programming extracted using IOC[5] : {Datatype,
Variables, Assignment, Simple expressions, com-
pound expressions, format specifiers (FS), print
(simple messages), print (FS only), print (mes-
sages and FS combined), scanf(1 FS), scanf (n
FS)}

Example Dataset: A set of 20 examples and 5 tasks. At-
tributes : (ExampleId, ExampleTitle, {Solution},
Difficulty level)

Task Dataset: A set of 5 tasks. Attributes: (TaskId,
TaskTitle, {Solution})

knows : many-to-many relationship between students and
their knowledge on concepts stored as a relation-
ship attribute called knowledge.

pre-req: many-to-many recursive relationship of concept
with itself, either in the role of a pre-requisite to
another concept or as concept that requires other
concepts as pre-requisites.

coversE: many-to-many relationship of an example and
concepts it covers or requires.

coversT: many-to-many relationship of a task and concepts
it covers or requires.

B. Proposed Algorithm EASK

Algorithm EASK (Examples Adaptable to Student’s Knowl-
edge) is described below in three steps.

Step 1: CEET(E,T) - Represent each example in the
database as matrix of concepts : CEET (Concept Extraction
of Examples and Task) takes each example in E and task
T, and tokenizes them into n concepts (n = total number of
concepts used in the database) and their pre-requisites using
IOC method [5], so that they are now represented as vectors
of size n. Each element of the vector stores the number of
times a concept appears in it (e.g. if concept 1 appears once
and concept 2 appears 3 times in example e4, then e4’s vector
will be [1, 3, .] ).

Input: Examples E and task T

Output:
1. 25 X 11 matrix of examples and concepts CM_EX
2. 1 x 11 matrix of task and concepts CM_T

Algorithm 1 CEET : Concept Extraction of Example and Task
1. Extract concepts and their pre-requisites for each example
in E and task T using expert opinions to decide the concepts
covered by each example. Five experts gave opinions on
whether a concept should belong to an example.
2.Use equation 1 to calculate index value Iik to measure the
importance of this concept for this example. If Iik> 0.6, then
it is assumed that example k requires concept i.



Step 2: GREPD (CM_EX, CM_T, k, DL) - Find similarity
between each example and task using k_NN classification :
GREPD (Generate Relevant Examples and Predict Difficulty
of a task) takes as input the concept matrix of examples
CM_EX and concept_matrix of task that the student is
working on currently CM_T, an integer value k and a matrix
DL that stores the expected difficulty level of each example
assessed by an expert. It then computes the TDIDF weights
using equations 2 and 3 for each example and task, finds
the similarity between the task and each example using a
modified cosine similarity formula (MCS) given as equation
6 and generates a list of k examples closest to the task using
k_NN reviewed in section 1. It also predicts difficulty level of
the task by using difficulty level of its neighbors and assigning
a level to the task that maximum number of its neighbors have.

Input: CM_EX, CM_T, k, DL

Other Variables: :
MCST : One-dimensional array of size 25, to store the

modified cosine similarity (MCS) values between CM_T and
every example in CM_EX.

Output:
1. List of k examples L1
2. Predicted difficulty level of task

Algorithm 2 GREPD : Generate Relevant Examples and
Predict Difficulty of a task
1. Compute TFIDF weights for each row of example concept
matrix CM_EX and of task concept matrix CM_T using
equation 3 (details in section 3).
2. Compute modified cosine similarity (MCST ) between
CM_T and each row of CM_EX using equation 6 (details on
calculating MCS in section 3).
3. Sort the MCST values computed in step 2 in ascending
order and store top k of them in L1.
4. If the number of examples in L1 with difficulty level of
‘E’ is greater than number of examples with difficulty level
of ‘D’, then classify task T represented by CM_T as ‘E’;
otherwise classify it as ‘D’.

Step 3: GAL(L1, S) - Generate a list of most appropriate
examples matching student’s current knowledge on concepts:
GAL (Generate Adaptable List of examples) takes list L1
of size k (<=N) generated in step 2 by algorithm GREPD
and student’s SM to generate a new list of examples that
are adaptable to the student’s current knowledge of concepts
stored as grades out of 100. Each concept’s grade is converted
into a score using the following scheme: score=2, if grade
>=80; 1 if between 50 and 80, 0 if < 50 and -1 if null (null
indicates that the student has not been graded on it yet). For
each example in the list L1, an average score is computed.
An example with a low score indicates that the student needs

to work on its concepts and therefore is included in the output
list of suggested examples.

Input: L1, S

Other Variables:
1.C_T: Set of all concepts of an example
2. sum_s: Cumulative sum of student scores on concepts
3. avg_sj: Average student score on concepts of example j

Output : AL = List of examples most appropriate for a
student’s current mastery of concepts

Algorithm 3 GAL :Generate Adaptable List of examples
1. for each student s in S
2. for each example j in list L1
3. Let C_Tj = set of all concepts of j
4. Let zj = number of concepts in C_Tj = | C_Tj |
5. sum_s is initialized to 0
6. for each concept m in C_Tj
7. Add score achieved by s in concept m

to get cumulative concept sum sum_s
8. end for
9. compute average student score for j as

avg_sj = sum_s / (zj * 2)
10. end for
11. Sort avg_sj in descending order and store in AL.
12. end for

C. Example Application of EASK on Sample Data

Example 1:
Problem Definition: Generate a list of examples AL for
students s1 and s2 for task T8 (shown in table 2). SM
for student s1 = [2,2,1,0,1,-1,1,0,0,1] and for student s2
=[2,-1,-1,-1,1,-1,-1,1,-1,-1,1]. Each entry in the SM is a score
on a concept; score = 2 implies grade >=80, score = 1 implies
grade between 50 and 80, score = 0 implies grade < 50 and
score = -1 implies that student has not been graded on these
concepts yet.

Solution:
Step 1: CEET Input: E = 25 examples and task T = T8.

• It extracts concepts for task T8 as c1,c2,c3,c5,c8,c9,c11.
Concept c4 is a pre-requisite of c5, c6 is a pre-requisite of c8
and c10 is a pre-requisite of c11, they are also included in
the set of concepts required for task T8. So the final matrix
CM_T for T8 is [1,1,1,1,1,0,1,1,1,1,1]. The concept_matrix
CM_DB consisting of 25 rows (one for each example) and
11 concepts is also used as input but is not shown here due
to space constraints.

Step 2: GREPD
Input to GREPD is CM_T, CM_EX, k=5 and DL =
[EEEEDDEDEDEEEEDDDDEEDDEED]



• TFIDF for each example in the database is computed using
equation 2. TFIDF weights for examples e1, e16 and task T8

are shown in table 2.
• MCS values between 25 examples and task T8 are

computed using equation 4, and are shown for examples
e1, e16 and task T8 in table 3. These values are sorted in
descending order (higher the MCS, closer is the example) and
top k values are picked as k-nearest neighbors of T8 . With
k=5, L1 = { e4, e5, e9, e16, e22}. Difficulty level of examples
e5, e9, e16, e22 is ‘D’ and of example e4 is ‘E’, therefore the
difficulty level of T8 is predicted to be ‘D’.

Step 3: GAL Input to GAL is L1 = { e4, e5, e9, e16, e22} from
GREPD and student models for s1= [1,2,2,1,0,1,-1,1,0,0,1]
and s2 = [2,-1,-1,-1,1,-1,-1,1,-1,-1,1].

For student s1
• for example e4

• C_Te4 = {c1, c11}= {1,1}.
• ze4 = 2
• sum_s1e4 = 2
• avg_s1e4 = 2 / 4 = 0.5

• for example e9
• C_Te9 = {c1, c6, c9, c11}= {1,1,0,1}.
• ze9 = 4
• sum_s1e9 = 3
• avg_s1e9= 3 / 4 = 0.375

Similarly, scores computed for each example in L1 =
[e4 : 0.5, e22 : 0.6, e16 : 0.45, e5 : 0.4, e9 : 0.375]

• AL for s1 is {e9, e5, e16}, indicating that s1‘s knowledge
on concepts of e9 is the least and therefore he/she needs to
study it to be able to succeed in task T8 A similar reasoning
holds for examples e5, and e16.

For student s2
• for example e4

• C_Te4 = {c1, c11}= {1,-1}.
• ze4 = 2
• sum_s1e4 = 0
• avg_s1e4 = 0 / 4 = 0

• for example e9
• C_Te9 = {c1, c6, c9, c11}= {1,1,1,-1}.
• ze9 = 4
• sum_s1e9 = 2
• avg_s1e9= 2 / 8 = 0.25

Similarly, scores computed for each example in L1 =
[e9 : 0.25, e22 : 0.2, e5 : 0, e4 : 0, e16 : −0.1]

• AL for s2 is {e16, e22, e9}, indicating that s2 has to work
on concepts covered by these examples to succeed in task T8.

Scores for each of the ten students in the database are
computed for every example in list L1. As shown in table
4, each student’s list of suggested examples is adaptive to the
grades achieved in concepts covered by the 5 examples closest

to task T8. A final list of 3 examples is suggested to each
student. SM for student s5 is a special case because his/her
average score in each example is the same and therefore every
example in the list is presented.

Table IV
FINAL LIST OF SUGGESTED EXAMPLES FOR TASK T8 FOR EACH STUDENT

e4 e5 e9 e16 e22 Suggested list of
examples

to study for task T8

s1 0.5 0.4 0.4 0.45 0.5 e9, e5, e16
s2 0 0 0.3 -1 0 e16, e22, e9
s3 0.5 0.5 0.5 0.1 0.2 e16, e22, e9
s4 0 0 0.4 0.1 0.2 e4, e5, e16
s5 0.5 0.5 0.5 0.5 0.5 e4, e5, e9, e16, e22
s6 -0.5 -0.5 -0.1 0.4 0.4 e4, e5, e9
s7 0.25 0.25 0.3 0.4 0.26 e4, e5, e9
s8 0 0 0.4 0.6 0.7 e9, e16, e22
s9 0.25 0.25 0.3 0.5 0.4 e4, e5, e9

s10 0 0 0.4 0.8 0.8 e9, e16, e22

V. RESULTS AND EVALUATION OF EASK

A. Evaluation of CEET

For Concept Extraction (CE), CEET uses a methodology
partly similar to existing methods [2], [3], [4] in terms
of extracting features as concepts but our method is more
efficient since it does not need to consider their syntactic
relationships and therefore, does not have to encode solution
codes as syntax trees. Instead of using complex knowledge of
experts on parsers and syntax trees, our research uses teaching
assistants(TA) or graduate assistants(GA) who have majored in
the domain (e.g. TA in a course on C programming) as trained
experts to generate the concept matrix. This is in support
of the need for a more accessible and adaptable knowledge
representation such as the proposed model.

B. Evaluation of GREPD

To evaluate GREPD, leave-one-out method of cross-
validation and measures such as accuracy and f-score are used.
In each iteration, one sample (ith example or task) from the
complete dataset (of size N) is considered to be the test data
and the rest of the (N-1) samples are taken as training data
and are given as input to GREPD. GREPD then finds the k-
nearest neighbors of the test data and predicts its difficulty
level. Accuracy A measures the ability of the model to match
the actual value of the class label (e.g. easy predicted as easy
and difficult predicted as difficult) and is defined as

A =
#correct−predictions

#predictions
(7)

F-score F combines precision (how many of the actual true
values predicted as true / total number of values predicted as
true) and recall (how many of the actual true values predicted
as true / total number of true values) and is defined as

F =
2 ∗ precision ∗ recall
(precision+ recall)

(8)



The best accuracy value computed for the proposed modified
cosine (MCS) was 88% and f-score was 89%, for k=9. A
comparative performance evaluation is shown in figure 4 for
4 different values of k. It indicates that Euclidean distance is
certainly not a good similarity measure for finding k nearest
neighbors for an example or a task. Although these results for
cosine similarity are comparable to our method MCS, the tie
resolution used in MCS ensures that the retrieved examples
were more appropriate in terms of matched concepts with
the current task. For example, e4, e5, e22 have CS of 0.7129,
0.7129 and 0.6569 when compared with task T8. But since
e22 matches more concept values with T8 (8), its MCS is
higher than e4 and e5 and therefore, it gets retrieved as a
more relevant example than e4 and e5.

C. Evaluation of GAL

GAL algorithm is in its early stages and results of a class
of 10 students indicate that GAL works well in presenting
examples most relevant to their current knowledge of concepts,
as shown for 2 students in section 4.3.

D. Evaluation of EASK

EASK that uses algorithms GREPD and GAL has an overall
reduced complexity of O(|S| ∗ k) = |S| ∗ log(n), where
k , as compared to NavEx[4] and PADS[2], which have a
complexity of O(|S| ∗ N). Using a relational model for KR
(knowledge representation) enables us to use the power of
SQL, Oracle Apex and PL/SQL stored procedures for step 2
of this algorithm.

VI. CONCLUSIONS AND FUTURE WORK

We propose a model to facilitate the well-adapted theory
of example-based learning [8] – a model that is simple, fairly
accurate, easily extendible and adaptable to other domains.
It is highly important for ITS to recommend appropriate
examples to students in real-time for effective and improved
learning. Our model makes significant contributions in this
direction by:

• Allowing for a simple and quick build of concept matrix
using experts that are easily accessible and highly trained in
the domain.

• Effectively searching for only those examples that cover
concepts similar to the current task, thereby reducing the
number of relevant examples.

• Predicting the difficulty level of the current task.

• Computing student scores for each example in the
relevant list using a novel formula to recommend only those
ones that are adaptable to the student’s current scores.

Although our model predicts the difficulty level of a task,
we do not use this information in our current algorithms.
Nevertheless, it could prove very useful for ITS to know

the difficulty level of a task or an example, in areas such
as developing curriculum strategies adaptable to each SM,
without having to go through experts. The proposed algorithms
do not consider the sequence in which examples are attempted
by students and the impact it has on the success of a task
and therefore this could be a potential future direction. For
example, if Example1 is followed by Example 3, then Task1
= Successful with a 65% confidence. Social adaptive features
such as student ‘likes’ for an example can also be considered.

Figure 4. Performance evaluation of different similarity measures
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