
Data Min Knowl Disc
DOI 10.1007/s10618-009-0133-6

Fast incremental mining of web sequential patterns
with PLWAP tree

C. I. Ezeife · Yi Liu

Received: 1 September 2007 / Accepted: 13 May 2009
Springer Science+Business Media, LLC 2009

Abstract Point and click at web pages generate continuous data sequences, which
flow into the web log data, causing the need to update previously mined web sequential
patterns. Algorithms for mining web sequential patterns from scratch include WAP,
PLWAP and Apriori-based GSP. Reusing old patterns with only recent additional
data sequences in an incremental fashion, when updating patterns, would achieve fast
response time with reasonable memory space usage. This paper proposes two algo-
rithms, RePL4UP (Revised PLWAP For UPdate), and PL4UP (PLWAP For UPdate),
which use the PLWAP tree structure to incrementally update web sequential pat-
terns efficiently without scanning the whole database even when previous small items
become frequent. The RePL4UP concisely stores the position codes of small items
in the database sequences in its metadata during tree construction. During mining,
RePL4UP scans only the new additional database sequences, revises the old PLWAP
tree to restore information on previous small items that have become frequent, while it
deletes previous frequent items that have become small using the small item position
codes. PL4UP initially builds a bigger PLWAP tree that includes all sequences in the
database using a tolerance support, t, that is lower than the regular minimum sup-
port, s. The position code features of the PLWAP tree are used to efficiently mine
these trees to extract current frequent patterns when the database is updated. These

Responsible editor: Eamonn Keogh.

C. I. Ezeife (B) · Y. Liu
School of Computer Science, University of Windsor, Windsor,
ON N9B 3P4, Canada
e-mail: cezeife@uwindsor.ca
URL: http://www.cs.uwindsor.ca/∼cezeife

Y. Liu
e-mail: woddlab@uwindsor.ca

123

C. I. Ezeife, Y. Liu

approaches more quickly update old frequent patterns without the need to re-scan the
entire updated database.

Keywords Incremental mining · Sequential mining · Frequent patterns ·
Data streams · PLWAP tree · Scalability

1 Introduction

The goal of incremental mining of web sequential patterns is to generate current
frequent patterns for the updated database (consisting of both old and incremental
data) using mostly only the incremental (or newly added) data and previously mined
frequent patterns. When data (like web access patterns) are inserted into a database
(like web log), some previous frequent patterns may no longer be interesting, while
some new interesting patterns could appear in the updated database. Incremental min-
ing of web sequential patterns is beneficial because it may:

1. Scale web sequential mining to large datasets by speeding up processing time.
2. Be effective for mining fast changing and highly dynamic data environment like

in stream processing environment requiring fast and real time responses.
3. Be an approach for more efficient utilization of I/O, memory and CPU resources

that may be scarce in some applications.
4. Be more effective for detecting similarities and differences in versions of data

and their patterns for purposes of predicting and detecting such phenomena as
intrusions.

A web access sequential database is a special case of a general sequential database,
where every event ei in a web access sequence is a single event (or item) and not a set
of events as is the case in a general sequential database. Events in a web access sequen-
tial database could represent, for example, web pages accessed by users stored in web
log data, products accessed in an E-Commerce web site. In such web applications,
since each click is on a page, single element sets form members of each sequence.
While a general sequence looks like 〈{a}, {a, b, c}, {e, f }〉, a web access sequence
contains only sequences like 〈a, a, b, c, e, f 〉. Prominent and good generic sequence
mining algorithms include AprioriAll (Agrawal and Srikant 1995), GSP (Srikant and
Agrawal 1995), Suffix Tree (Wang 1997), SPADE (Zaki 2000), FreeSpan and Prefix-
Span (Pei et al. 2001). The few algorithms designed specifically for single-element
set sequences suitable for web navigational sequences include: WAP-tree (Pei et al.
2000), PLWAP-tree (Ezeife and Lu 2005; Ezeife et al. 2005; Lu and Ezeife 2003),
and FS-Miner (El-Sayed et al. 2004). Web sequence mining requires an incremental
algorithm. The PLWAP-tree (Ezeife and Lu 2005) sequential miner is a a good candi-
date for incremental web sequential mining because with the use of its position code
features, it stores relevant parts of the original database in a comparatively compressed
tree structure, and it does not require multiple scans over the entire original data. The
PLWAP’s position code labels for its nodes can also be used to maximize the reuse of
already mined information for incremental maintenance purposes.

123

PLWAP-based incremental web sequential mining

1.1 Problem definition

Given (1) an initial web access sequential database, (represented as DB), consisting
of a number of sequences S1, S2, …, Sm , where each sequence Si is in the form
e1e2 . . . ek , for ei ∈ E (set of events) (1 ≤ i ≤ numberof events), (2) the minimum
support threshold, s (throughout the paper s is given as either a percentage s% of the
number of records or simply as the number of records s), (3) the initial mined frequent
patterns, FPDB , (4) newly inserted records from the database (called the incremental
data db), the problem of incremental web usage sequential pattern mining is that of
finding all frequent patterns (FP′) in the updated database, U, (old DB + incremental
db), which have supports greater than or equal to updated minimum support count
s′, using mostly only the new incremental data db with previously generated frequent
patterns FPDB .

1.2 Background

Most web sequential pattern miners perform their pattern discovery tasks through
association rule mining techniques applied on a web log sequential database table or
file. Association rule is an implication of the form X → Y , where X and Y are
sets of items (e.g., sets of web pages) and X ∩ Y = ∅, Han and Kamber (2001). The
support of this rule is the percentage of transactions that contain the set X ∪ Y , while
its confidence is the percentage of “X” transactions that also contain “Y ” itemsets. In
traditional association rule mining, all sets of items with support higher than or equal
to a specified minimum support are called large or frequent itemsets. The first stage
of rule mining consists of generating all combinations of itemsets (frequent itemsets)
from the database that have support greater than or equal to the minimum support
(specified by the user). During the second stage of rule mining, association rules are
generated from each frequent itemset, and only rules with confidence greater than
or equal to the minimum confidence are retained. For web sequential pattern min-
ing, input to the mining process is a sequential database (for pre-processed web log
sequences (Berendt and Spiliopoulou 2000)) example of which is in Table 1, columns
one, (for transaction ID) and two (for the web access sequence record), where items
{a, b, c, d, e, f, g, h} represent access site pages.

Typically, web log data and other data stream applications (e.g., credit card database,
stock analysis data, cell phone database) contain thousands and millions of records

Table 1 The example database
transaction table (DB) with
frequent sequences

TID Web access seq. Frequent subseq Frequent subseq
with s = 50% with t = 0.6s = 30%

100 abdac abac abac

200 aebcace abcac aebcace

300 baba baba baba

400 afbacfc abacc afbacfc

500 abegfh ab abef

123

C. I. Ezeife, Y. Liu

that continuously grow. Each transaction in the database contains a sequence of data-
base events (or items), corresponding to the sequence of web pages visited by each
user id. Just as an itemset X is called an n-itemset if it contains n items, an n-sequence
has n items (events) in its sequence. For example, the 3-itemset abc is a frequent
itemset in the five record database of Table 1 because it has a support of 60%, which
is greater than the assumed user given minimum support of 50%. An example of a
sequential pattern from this database is “if web page a is accessed, it is often followed
by an access to web page b and then web page c”. This sequence abc has a support of
60% since it is present in three of the five transactions. While traditional association
rule mining finds patterns (presence of a set of items) among database transactions,
sequential pattern mining finds sequential patterns S (presence of a set of items in
a time-ordered sequence) among database transactions, where an item may re-occur
in the same sequence. Items in a sequence do not necessarily need to be consecutive.
Every item has only one support count from each database transaction access sequence
it is present in. In the above example, set of events E = {a,b,c,d,e,f,g,h} and a sequence
S is aebcace. An access sequence S′ = e′

1e′
2 . . . e′

l is called a subsequence of another
access sequence, S = e1e2 . . . ek , if and only if S is a super-sequence of S′, denoted
as S′ ⊆ S, if and for every event e′

j in S′, there is an equal event eq in S, while the
order that events occur in S is the order of events in S′. For example, with S′ = ab,
S = babcd, S′ is a subsequence of S and ac is a subsequence of S, although there is b
occurring between a and c in S. In S = babcd, while ba is the prefix subsequence of
bcd, bcd is the suffix sequence of ba. The candidate 1-item list C1 showing support of
each item and the frequent 1-items F1 are used during mining.

1.3 Related work

Work on mining sequential patterns can be classified into Apriori-based and Non-Apri-
ori based algorithms. The Apriori based algorithms include AprioriAll (Agrawal and
Srikant 1995), GSP (Srikant and Agrawal 1995), the PSP (Masseglia et al. 1999), the
G sequence (Spiliopoulou 1999), SPADE (Zaki 2000) and the graph traversal (Nanop-
oulos and Manolopoulos 2001) algorithms. The Non-Apriori based algorithms include
Suffix tree (Wang 1997), Manolopoulos (Nanopoulos and Manolopoulos 2000, 2001),
PrefixSpan (Pei et al. 2001). Algorithms specifically for mining web sequential pat-
terns include WAP-tree (Pei et al. 2000), PLWAP-tree (Ezeife and Lu 2005; Ezeife
et al. 2005; Lu and Ezeife 2003), and FS-Miner (El-Sayed et al. 2004). The Apriori-
based algorithms make multiple passes over data and during each iteration i, compute
candidate i-itemsets by joining large (i − 1)-itemset (Li−1) with itself and pruning
candidates having infrequent subsequences, before scanning the database for support,
for all candidate itemsets in the list, in order to compute the next frequent itemsets Li .
Unlike the Apriori-based approaches, the non-Apriori techniques use graphs, pattern-
growth trees (Han et al. 2004) and database projections to avoid level wise candidate
itemset generations. Some hybrid web sequential pattern mining approaches combin-
ing Apriori style techniques with other non-Apriori techniques like pattern-growth,
have recently emerged and include (Tang and Turkia 2007). The most related web

123

PLWAP-based incremental web sequential mining

sequential mining technique, the PLWAP algorithm is summarized before discussing
the incremental mining techniques.

1.3.1 The PLWAP algorithm

Example 1.1 Given a sample database shown in Table 1 (columns 1 and 2), a
minimum support threshold of 50% or three transactions, use the PLWAP algorithm
to mine all frequent patterns

Solution 1-1 The PLWAP algorithm first computes frequent 1-items, which it uses to
create frequent sequences (shown in column 3 of Table 1) for each database sequence
by deleting all non-frequent items from the sequence. Then, it proceeds to build the
PLWAP tree with these frequent sequences before mining the frequent patterns from
the PLWAP tree. Details of these three steps in the algorithm are discussed further as
follows:

Step 1. The PLWAP algorithm computes frequent 1-items from the database
transactions (column 2 of 1) as F1 = {a:5, b:5, c:3}, listing each event with
its occurrence. It generates frequent sequences from each transaction in the
second column of Table 1 by deleting all small events (not in F1 list) from it,
to get column 3 of Table 1.

Step 2. Using the frequent sequences (column 3 of Table 1), it builds the PLWAP tree
by inserting each sequence from Root to leaf node, where each node is labeled
as (label of the node:count of the node:position code of the node). The count
of each node (e.g., a) is incremented by one each time an event of this node
type is inserted at that node, and a new child of a parent node is created if there
is no path from Root that corresponds to the sequence being inserted in the
tree. Common prefix sequences share paths and counts, and uncommon suffix
sequences branch off towards the leaves of the tree. In defining the position
code of a node (e.g., the a node which is the left child of the Root has position
code of 1), the PLWAP algorithm applies the rule that the Root of the tree has
a null position code, but every other node has a position code that is equivalent
to appending ‘1’ to the position code of this node’s parent if this node is the
leftmost child of its parent, otherwise, its position code is obtained by append-
ing ‘0’ to the position code of its nearest left sibling. After building the tree, a
pre-order traversal mechanism (visit root, visit left subtree, visit right subtree)
is used to add a pre-order linkage on the tree for all frequent 1-items. Dashed
lines starting with each frequent F1 item, are used to show the pre-order link-
ages between nodes of this F1 item type. Thus, to build the PLWAP tree of
Fig. 1 for the example database, the frequent subsequence of each transaction
at minsuppport of 50% shown on column 3 of Table 1 is inserted one after the
other from Root to leaf. Starting with the first frequent sequence “abac”, node
a:1:1 is first inserted as the left child of Root with count of 1 and position code
of 1. Then, node b:1:11 is the left child of node a:1:1. The complete sequence
branch for the first transaction is a:1:1, b:1:11, a:1:111, c:1:1111. The second
sequence abcac is inserted as the branch a:2:1, b:2;11, c:1:1110, a:1:11101,
c:1:111011. The rest of the transaction frequent sequences are inserted in a

123

C. I. Ezeife, Y. Liu

Fig. 1 The PLWAP tree for the
example database Root

a:4:1 b:1:10

b:4:11

a:2:111

a:1:101

b:1:1011

a

b

c

c:1:1110

a:1:10111
c:2:1111

c:1:11111

a:1:11101

c:1:111011

similar fashion to obtain the PLWAP tree. Then, using the F1 header list of
{a, b, c}, the tree is traversed pre-order fashion (root, left, right) to link each
header event with nodes of its type for look-ahead mining purposes.

Step 3. Mine the PLWAP tree to generate frequent pattern, FPDB by following the
header linkage of the first frequent item, like “a”, and obtaining the support
of this prefix subsequence “a” as the sum of the counts of all first “a” nodes in
the current a:suffix root set (i.e., a:4:1 and a:1:101) on different branches of
the tree at this level of the tree being mined. If the sum of the counts of these
first a nodes on different branches of the tree at the level of the tree under con-
sideration is greater than or equal to the support of 3, we include this sequence
in the FPDB frequent pattern list. Next, we shall continue to check down the
suffix trees under use to see if new sequences (aa, ab, ac) are also frequent,
having already found prefix frequent patterns FPDB as {a}. To check for the
support of aa, we obtain the a:suffix root set that are children of the previ-
ous a:suffix root set considered, which are the nodes (a:2:111), (a:1:11101),
(a:1:10111). The a-header link serves the purpose of tracking and construct-
ing these root sets during mining. Since the sum of these “a” counts is 4 and
greater than 3, “aa” is included in the list of frequent sequences. We further
look for “a” nodes in suffix tree that are children of the above already used
a:suffix roots to check if the sequence “aaa” is also frequent. Since no other
“a” nodes are further down in the tree, “aaa” is not frequent. Backing up to
the suffix root set with three a:nodes given above, we look lower down in the
tree to see if “aab” is frequent. It is not. However,“aac” is frequent because
we can find the c:suffix root set as (c:2:1111), (c:1:111011), which totals 3.
Now, that we started with checking a, aa, aaa, we need to back up to each root
set, to check for prefix growing patterns having other frequent 1-item events
like aab, aac, ab, ac, aba, abb, abc, etc. Process continues in a similar fash-
ion recursively. After checking for frequent patterns starting with item “a”, it

123

PLWAP-based incremental web sequential mining

a:4
1

f:1
11101

e:1
1110

b:2
11

c:1
1111

f:1
11001111

b:1
11001

a:1
111

f:1
1100

b:1
1101

Root

e:1
110

a:1
10111

b:1
1011

a:1
101

b:1
10

e:1
11011111

c:1
11011

c:1
110011111

a:1
110111

c:1
1101111

a:1
110011

c:1
1100111

a

b

c

e

f

Fig. 2 The PL4UP tree with tolerance support t% = 30% for the example database

starts from the Root node of the tree again using “b” header linkage, to look
for patterns beginning with “b”, “ba”, “baa” and so on. Then, using the “c”
header linkage, it checks for patterns beginning with “c”. After checking all
patterns, the list of F P DB mined based on the support of 3 is: F P DB = {a:5,
aa:4, aac: 3, ab:5, ac:3, aba:4, abac:3, abc:3, b:5. ba:4, bac:3, bc:3, c:3}. The
proposed incremental web sequential mining techniques utilize the position
code features of the PLWAP algorithm to perform efficient and effective res-
toration of the database small events and maintain tree frequent sequences
without re-scanning the entire updated database. Note that the PLWAP tree
structure is a general tree with any number of branches depending on the trans-
actions and the minimum support. For example, if the same database, DB of
Table 1 is mined at a lower minimum support of 30% or 2 transactions, then
F1 = {a, : 5, b : 5, c : 3, e : 2, f : 2} and small S1 = {d : 1, g : 1, h : 1}.
This causes a PLWAP tree with more branches to be built from the frequent
sequences abac, aebcace, baba, afbacfc, abef (Fig. 2).

1.3.2 Existing incremental mining techniques

Many of the generic sequential mining algorithms have incremental sequential min-
ing versions proposed and these incremental mining algorithms include: Suffix Tree
Approach (Wang 1997; Wang and Tan 1996), ISL (an incremental algorithm based on
SPADE) (Parthasarathy et al. 1999), ISE (incremental sequential algorithm based on
GSP) (Masseglia et al. 2003), IncSpan (incremental sequential algorithm based on the
PrefixSpan) (Cheung et al. 2004; Nguyen et al. 2005), GSP+ and MFS+ (incremental
sequential mining algorithms based on GSP and its general form MFS) (Zhang et al.

123

C. I. Ezeife, Y. Liu

2002; Kao et al. 2005; Zhang et al. 2002), FS-Miner (an incremental sequential update
based on the FS-Tree algorithm) (El-Sayed et al. 2004). Some recent incremental
sequential mining algorithms are based on a hybrid of approaches including incre-
mental maintenance of clusters (Liu et al. 2005), recording positions of candidate
traversal sequences (Yen and Lee 2006), applying Markov chain model (Ou et al.
2008) and interactive semantic information (Lee and Yen 2008). The incremental
sequential mining algorithms (RePL4UP and PL4UP) being proposed are based on
the efficient PLWAP web sequential miner. All the incremental frequent sequential
pattern mining algorithms listed above, with the exception of IncSpan and FS-Miner,
are Apriori-based. The general technique employed by the Apriori-based incremental
mining algorithms is consistent with the method used in Cheung et al. (1996, 1997) for
their incremental non-sequential FUP algorithm, where the goal of FUP is to first filter
out all previous frequent itemsets not likely to be frequent in the updated database by
examining only the incremental database, db. Then, it scans the original database for
all items it cannot deduce their support because they were small previously. Details
of the more related algorithms are provided next.

1.3.2.1 Suffix tree approach With the suffix tree approach for computing sequential
pattern (Wang 1997; Wang and Tan 1996), a sequence S is taken as a set of records and
not a record. The sequence S is mapped to a suffix tree in breadth (rather than depth)
fashion, where a sequence with n events is represented by a tree with n branches at
depth 1, each for a suffix of the sequence. The algorithm assumes that the suffix trees
are materialized, implying availability of large memory, since representing a number
m of sequential records as in our example, would require constructing m suffix trees.
When updates occur, the algorithm scans only affected parts of the tree. Mining is
done recursively post-order fashion. Our technique has a different and more natu-
ral representation for sequences that facilitates mining, and requires less storage and
computation time for the one PLWAP tree than this method.

1.3.2.2 ISM algorithm ISM (Parthasarathy et al. 1999) is an Apriori-like algorithm,
which has two phases. It separates the sequence into two sets: the Frequent Set (FS),
which denotes the set of all frequent sequences in the updated database, and Negative
Border (NB), which is the collection of all sequences that are not frequent but have
their subsequences frequent. Phase 1 is for updating the supports of elements in NB
and FS, Phase 2 is for adding to NB and FS beyond what was done in Phase 1. It still
needs to rescan the entire updated database many times if previous small items become
large after database update. Unlike the ISM, our proposed incremental techniques do
not incur the cost of database transposition, and scanning of the entire old database
when small items become large in updated database, and do not engage in level-wise
generation of candidates or sequence list computation.

1.3.2.3 GSP+ algorithm The GSP+ (Zhang et al. 2002; Kao et al. 2005) is an incre-
mental version of the GSP algorithm, which updates frequent patterns in the updated
database (DB′) by minimizing the scanning of the unchanged part of the old database
(DB−). It utilizes support counts of old frequent patterns and the concept of maximum
bound frequent patterns, which is the longest (with highest number of items) frequent

123

PLWAP-based incremental web sequential mining

pattern of a negative border sequence (now no longer frequent). For example, while aa
is frequent, aab is not frequent, making aab a negative border sequence and aa is its
maximum bound frequent pattern. The idea is to apply pruning rules to eliminate candi-
date sequences not likely to be frequent in the updated database, DB ′. GSP+ first scans
the updated database as partitions of deleted database, db−, inserted database, db+ and
unchanged database, DB− so that it computes updated DB as DB− ∪ db+ to db−.
From this relationship, available frequent pattern count, maximum bound frequent pat-
terns, it goes through iterations of computing the entire candidate itemset as done by
the GSP algorithm, then, it eliminates a lot of candidate itemsets that cannot be frequent
before scanning either the incremental database db+ or for cases of small items being
frequent, scanning the old DB−. Unlike the GSP+, our technique avoids scanning the
entire original old database even when small items become frequent. In addition, the
massive iterative CPU intensive and I/O intensive level-wise candidate generation,
pruning and testing are avoided as shown in experimental comparisons section.

1.3.2.4 MFS+ algorithm The MFS+ algorithm (Zhang et al. 2002; Kao et al. 2005),
is another GSP-based incremental sequential algorithm. It is based on a more general
version of the GSP algorithm called MFS (maximal frequent sequences). The MFS+
is like the GSP+ except that rather than generating candidate i-itemset during each
iteration, it estimates the MFSS (maximal frequent sequence set), then, it applies the
same types of pruning rules applied in the GSP+ to eliminate MFSSs in the list, which
it confirms either frequent or not, without having to scan the unchanged database,
DB−. The main advantage of this algorithm over its GSP+ counterpart is that the
initial estimate and the use of maximal sequences enable it cut down on the number of
iterations drastically and thus, reduce the number of database scans. Our approach is
different from this algorithm and is still superior in its technique of not scanning the
entire original old database when small items become large, during which time this
algorithm would scan the database.

1.3.2.5 IncSpan incremental sequential mining algorithm IncSpan (Cheung et al.
2004) is a system that buffers semi-frequent patterns (having support less than mini-
mum support, but greater than or equal to a specified tolerance support), and performs
incremental mining with PrefixSpan sequential mining technique. IncSpan’s idea is to
reduce the need to scan the old unchanged database DB−, by getting the support counts
of newly inserted sequences from the buffered semi-frequent sequences (SFS). The
algorithm, like many other incremental algorithms, partitions the updated database,
DB′ into sets of newly inserted sequences, db+, newly deleted or altered sequences
(db−), and unchanged database, DB−. Whenever there is an update, it scans db+ to
update support of frequent and semi frequent sequences (FS) and (SFS). Six types of
changes can be identified in patterns after a database update as: case 1 are patterns
that are frequent in old DB and still frequent in updated DB′, case 2 is for patterns that
are semi frequent in old DB but frequent in DB′, case 3 is for patterns that are semi
frequent in both old DB and updated DB′, case 4 is for patterns that are new in the
updated DB′, case 5 is for patterns that are small in old DB but frequent in updated DB′
and case 6 is for patterns that are small in old DB but semi frequent in updated DB′.
Only for cases 1–3, does this algorithm not scan database, but deduces the support

123

C. I. Ezeife, Y. Liu

counts from available frequent patterns. For case 4, it scans incremental database db+
and proceeds with recursive prefix database projections and mining as done by Prefix-
Span. For cases 5 and 6, the bigger database, old unchanged DB− has to be scanned
and the database projections are done when mining recursively the usual PrefixSpan
fashion. Our proposed algorithms, unlike IncSpan, would avoid scanning the entire
old database for cases like 5 and 6 above and does not incur the cost of intermediate
database projections. However, just as IncSpan buffers its already found frequent and
semi-frequent patterns, the proposed RePL4UP would also keep frequent patterns on
the compressed frequent database sequences as PLWAP tree and the compressed posi-
tion codes of the small items in sequences as small code profile. The PL4UP algorithm
also buffers near frequent patterns through a compressed PLWAP tree.

1.3.2.6 FS-miner algorithm The FS-Miner (El-Sayed et al. 2004) proposes a method
for mining web sequential patterns using a data structure called FS-tree that is similar
to the WAP and PLWAP tree, which were proposed before this FS-tree algorithm.
The differences between the FS-tree and WAP, PLWAP trees are that the FS-tree,
unlike both WAP and PLWAP trees, stores both the frequent and potentially frequent
sequences (those with support count less than minimum support count but greater
than or equal to a lower tolerance minimum support). While the WAP and the PLWAP
algorithms maintain a more concise frequent header linkage tables for only frequent 1-
items, the FS-tree maintains a header table (HT) for all links, their counts and link head
pointers. This places some demand on storage as this metadata may need more storage
than the original database when the size of database increases with long sequences.

FS-Miner (El-Sayed et al. 2004) provides the option of incremental mining of
patterns in the same sequential mining algorithm by including two more data struc-
tures (Non-frequent links table NFLT, and further adding to each node of the FS-tree
a sequence end structure, seqEnd consisting of sequence id and count) in its FS-tree.
The algorithm scans the incremental database db to obtain the count of links in db
so that it can update counts in HT and NFLT header tables. It then updates the min-
imum support count and minimum link support thresholds so that it can move link
entries between NFLT and HT tables. Then, it inserts all links that moved from the
NFLT to HT tables into the FS-tree. This process may entail deleting some re-occur-
ring sequences that had been at the top of the tree as this algorithm’s insertions are
done from current node. After updating the FS-tree as described above, it mines only
updated links by either dropping patterns that no longer meet minimum support or
calling the FS-Mine algorithm for the updated links. The maintenance techniques of
this algorithm are similar to our approach in some respects, which are that it stores the
database concisely in a tree and does not engage in level-wise candidate generation and
avoids scanning the entire old database to handle database updates. The differences
between our techniques, based on the PLWAP algorithm, and the FS-Miner algorithm
are that while FS-Miner stores the entire database as links with a lot of supporting data
structures for monitoring counts, it still performs recursive intermediate generation of
conditional sequence bases, CFST (conditional FS-tree) trees during mining as done
by the WAP algorithm. The proposed incremental RePL4UP, like the PLWAP, mines
only updated branches of the revised tree using position codes without the need to
construct and store intermediate PLWAP trees.

123

PLWAP-based incremental web sequential mining

An initial draft outline of the two techniques for incremental mining using the
RePL4UP (Ezeife and Chen 2004a) and PL4UP (Ezeife and Chen 2004b) were pre-
sented in conference papers. These do not discuss many of the recent literature dis-
cussed in this paper as the systems were not developed then, and these earlier drafts
do not include full system implementations, proofs of correctness, algorithmic details
and experimentations with other existing systems.

1.4 Contributions

This paper proposes two algorithms namely, the novel RePL4UP (Revised PLWAP
FOR UPdated sequential mining) and the more traditional PL4UP (PLWAP FOR
UPdated sequential mining). These algorithms apply the PLWAP-tree (Ezeife and
Lu 2005; Ezeife et al. 2005; Lu and Ezeife 2003) to the incremental web sequential
mining problem. The algorithms eliminate the need to re-scan the old database when
new changes arrive, in order to update old patterns. The RePL4UP initially builds a
PLWAP tree that is based on regular minimum support percentage, s%, which stores
compact position codes of all small items in the database. When new database records
are inserted or deleted, only these new incremental records are scanned to revise
the original PLWAP tree and to mine new patterns. With the PL4UP algorithm, the
approach is to initially build a PLWAP tree that is based on a lower tolerance minimum
support percentage, t%, which is lower than application’s regular minimum support
percentage, s%. The tolerance support, t%, is used to predict and accommodate items
likely to become frequent after database update in the tree. These incremental tech-
niques yield better performance and allow for application scalability.

1.5 Outline of the paper

Section 2 presents the proposed RePL4UP algorithm with example mining using this
algorithm detailing how to build and mine this version of PLWAP tree. Section 3
presents PL4UP algorithm with examples. Section 4 discusses experimental perfor-
mance, time complexities and algorithm overhead analysis, while Sect. 5 presents
conclusions and future work.

2 The first proposed incremental RePL4UP algorithm

The first algorithm, RePL4UP being proposed for mining frequent sequential patterns
incrementally is based on the PLWAP tree structure, which carries with it, some meta-
data description of virtual positions of all small items in the database sequences as
would have been recorded in that version of the PLWAP tree called RePL4UP tree.

2.1 Definitions

This section presents four formal definitions for small code profile, RePL4UP and
PL4UP trees.

123

C. I. Ezeife, Y. Liu

Definition 2.1 Small Code Profile ScodeDB : is the set of “would have been” position
codes of all small 1-items in the database tree. The small code profile for a small item,
l written as Scodel is the position code that this small item would have been assigned
if it were large enough to be inserted in the database tree like PLWAP or RePL4UP.

Definition 2.2 Small Code for a Small Item l, Scodel : is the position code that corre-
sponds to the first vacant virtual child position code for a suffix item (event or node),
which follows an immediate parent prefix event p on the same sequence, already
inserted on the RePL4UP tree or has a small code. Thus, the Scodel of a small item l
in a sequence is formed as the code of l’s parent node p with binary ’1’ appended to
it, if l is the leftmost child of p, otherwise, Scodel is formed as the code of l’s nearest
virtual left sibling (either physical on the tree or virtual on small code profile) with
binary ’0’ appended to it.

For example, given that the transaction has a sequence like . . . pl . . ., and p is
already inserted into the tree with a position code of binary 10, then the small item l
should have a small code Scodel equivalent to the code of an item in sequence fol-
lowing the event p, which is 101 if p does not have any children, but l has small code
of 1010 for the second child of p if p has a leftmost child and so on. If parent node p
has one physical child on the tree with code 101, and a virtual small child l with code
1010, and another small child l1 arrives, l1 is assigned a code of 10100. Note that the
RePL4UP, like the PLWAP, considers only physical frequent nodes on the tree when
assigning position codes to frequent nodes physically on the tree, but considers both
physical and virtual small item children codes already assigned, when assigning new
small item codes.

Definition 2.3 A RePL4UP tree: is a PLWAP tree based on minimum support s, but
which carries with it the small code profile of all small 1-items in the database.

An example RePL4UP tree for the sample database of Table 1 mined at a minimum
support threshold of 50% or 3 transactions, consists of the PLWAP tree of Fig. 1 and
the following small code profile ScodeDB representing position codes of all small
1-items in the database sequences. For example, in TID 100 <abdac>, the small
1-item d has a code of 111 because node b in its prefix sequence ab has a code of 11.
The first small item e from TID 200 〈aebcace〉 has a code of 110 because its prefix
sequence a has already one physical child node b from TID 100 with position code
11, thus, item e should assume the next vacant child position code of 110. Then, fol-
lowing virtual branch 110, the second small item e has the code 11011111. For the
five example sequences, the rest of the small code profiles are defined in a similar
fashion.

Scoded = {111} or {7}
Scodee = {110, 11011111, 11100} or {6, 223, 28}
Scode f = {1100, 11001111, 1110011} or {12, 207, 115}
Scodeg = {111001} or {57}
Scodeh = {11100111} or {231}

Definition 2.4 A PL4UP tree: is a PLWAP tree based on lower tolerance minimum
support t%, which is lower than the regular minimum support s%.

123

PLWAP-based incremental web sequential mining

2.2 Mining incremental patterns with RePL4UP

Every event ei in DB (old database) is either a frequent event (belonging to the set F
of events) or a small event (belonging to the set S of events). Similarly, every event,
e′

i in the updated database (DB + db) belongs to either the set of now frequent events
F ′ or now small events S′. This allows the classification of every item or event e′

i
in updated database, U, into one of the six categories of events (frequent-frequent,
frequent-small, small-frequent, small-small, new-frequent and new-small items):

1. Frequent-frequent items (F → F ′) are frequent in old database, DB and still
frequent in updated database (old + new data), U.

2. Frequent-small items (F → S′) are frequent in old DB but small in updated
database.

3. Small-frequent items (S → F ′) are small in old DB but frequent in updated
database.

4. Small-small items (S → S′) are small in old DB and still small in updated data-
base.

5. New-frequent items (∅ → F ′) were not in old DB but are frequent in updated
database.

6. New-small items (∅ → S′) were not in old DB and are small in updated database.

The RePL4UP algorithm being proposed, aims at computing new frequent patterns
for updated database when new records are inserted or deleted without having to scan
the entire updated database. The RePL4UP algorithm assumes that the original fre-
quent patterns of the database, DB have been generated using an original RePL4UP
tree with its small code profile ScodeDB metadata collected. The RePL4UP algo-
rithm then scans only the incremental database (db). The incremental database (db) is
taken as the union of the inserted (db+) and the deleted (db−) records, where counts
of deleted records are negative and those of inserted records are positive. The most
important update made to the old RePL4UP tree are for two classes of items namely:
frequent-small items in category 2, which are, F → S′, that now need to be deleted
from the old tree to get current tree, and the small-frequent items in category 3, which
are S → F ′ that need to be inserted into the current tree. The S → F ′ items pose the
greatest difficulty in incremental mining because the old PLWAP tree does not carry
any information about transactions in the old database that have any of these previous
small items, which now need to be included in the current tree. Existing algorithms
normally will need to scan the entire old database to get information about these small
items. The RePL4UP approach is to take advantage of the position code property of
the RePL4UP tree and during initial construction of the RePL4UP tree, store the list
of position codes of all small items.

2.2.1 The RePL4UP algorithm

The RePL4UP algorithm (presented formally as Algorithm 2.1) RePL4UP for incre-
mentally mining web log sequential patterns, accepts seven input datasets, 1. cardi-
nality of original database |DB|, 2. the incremental database db, 3. minimum support
percentage (λ), 4. original database tree (ReP L4U P DB), 5. small code profile of DB

123

C. I. Ezeife, Y. Liu

(ScodeDB), 6. old DB mined frequent patterns (F P DB), and 7. old DB candidate lists
(candidate 1-items (C1), frequent 1-items (F1), small 1-items (S1)). The RePL4UP
algorithm then goes through seven steps to generate updated versions of five of the
above input datasets as its output datasets. The five output datasets of the RePL4UP
algorithm consists of the updated (1) cardinality of the updated database |U |, (2) fre-
quent patterns (F P ′), (3) RePL4UP tree for the updated database U (ReP L4U PU),
(4) updated candidate lists (C ′

1, F ′
1, S′

1) and (5) updated small code profile (ScodeU).
The summary of the seven steps of processing undergone by the RePL4UP algo-

rithm is:

Step 1. The RePL4UP updates all candidate lists (C1, F1, S1) in the most efficient
way.

Step 2. From the updated candidate lists, (C ′
1, F ′

1, S′
1), it classifies items into one of

the earlier six item change categories.
Step 3. It then uses the classification of items to revise the old RePL4UPDB so as to

delete new small items and insert new large items using the small code profile
ScodeDB .

Step 4. It mines modified branches of the RePL4UPDB tree to get ReFPDB (revised
FP).

Step 5. It builds and mines a RePL4UPdb for only the incremental db to obtain FPdb.
Step 6. It combines all three types of frequent patterns consisting of (i) old FPDB

not including the revised FPs from old DB ReFPDB , (ii) now the revised FPs
from old DB ReFPDB , and (iii) FP from incremental database RePL4UPdb.

Step 7. Using the new Fdb
1 from the incremental db, and the frequent sequences from

db transactions, update the RePL4UPU by inserting each frequent sequence,
updating links and ScodeDB .

The formal algorithm for mining sequential patterns incrementally with RePL4UP
is given as Algorithm 2.1 RePL4UP.

Algorithm 2.1 (RePL4UP-Mines Web Log Sequences Incrementally)

Algorithm RePL4UP()
Input: original database, DB or its cardinality, Incremental database, db, minimum

support percentage λ (0 < λ ≤ 1), original DB tree ReP L4U P DB , old fre-
quent pattern, F P DB , old candidate lists (C1, F1, S1), small code profile
ScodeDB .

Output: updated frequent patterns for updated database, U (FP’), updated
ReP L4U PU tree. updated candidate lists (C ′

1, F ′
1, S′

1). updated
small code profile ScodeU .

Intermediate data: support counts in databases (s, sdb, s′), incremental db
candidate lists (Cdb

1 , Fdb
1 , Sdb

1))
begin

(1) Update all candidate lists as follows:
C ′

1 = C1 ∪ Cdb
1 ; s’ = λ of (|DB| + |db|).

F ′
1 = elements in C ′

1 with support count ≥ s′
S′

1 = elements in C ′
1 with support < s′.

Fdb
1 = Cdb

1 ∩ F ′
1; Sdb

1 = Cdb
1 ∩ S′

1.

123

PLWAP-based incremental web sequential mining

(2) Classify items in the updated data, U into one of 6 classes as:
F1 ∩ F ′

1 are in class F → F ′; F1 ∩ S′
1 are in class F → S′.

S1 ∩ F ′
1 are in class S → F ′; S1 ∩ S′

1 are in class S → S′.
F ′

1 − F1 are in class ∅ → F ′; S′
1 − S1 are in class ∅ → S′.

(3) Modify the old ReP L4U P DB tree such that all F → S′ items are
deleted (see Algorithm Smallitem_Delete 2.2) from the tree,
and all S → F ′ are inserted (see Algorithm Largeitem_Insert 2.3)
into tree using the ScodeDB .

(4) Mine only modified branches of ReP L4U P DB to obtain frequent
patterns ReF P DB .

(5) Construct and mine small ReP L4U Pdb to obtain frequent patterns FPdb

(6) Combine the three frequent patterns to obtain F P ′ as:
FP′ = (FPDB − ReFPDB) ∪ ReFPDB ∪ FPdb

(7) Insert the frequent sequence transactions with (∅ → F ′ items) from the
incremental database into the original ReP L4U P DB tree to get
ReP L4U PU ; update the links and small code profiles and to include
items in class ∅ → F ′.

end // of RePL4UP //

Algorithm 2.2 (Smallitem_Delete - Deleting a Small Item l from Tree)

Algorithm Smallitem_Delete()
Input: RePL4UP tree, smallitem l
Output: RePL4UP tree
begin

(1) Follow l linkage from tree to last l node on tree, record l’s
position code as l’s small code profile, delete last l node, back up
and keep deleting l nodes and recording as small code profile until the
l header linkage is deleted.

(2) Adjust tree nodes, counts and position such that if a parent node
of a node n is deleted, the closest grand parent of n
becomes the new parent of n and if two siblings of the new
parent have the same node labels, they are merged using the
Definition 2.11

end // of Smallitem_Delete //

Algorithm 2.3 (Largeitem_Insert - Inserting a Frequent Item f into the Tree)

Algorithm Large item Insert()
Input: RePL4UP tree, frequent item f,

small item code profile Scode f

Output: RePL4UP tree
begin

(1) Following the PLWAP tree position labeling scheme,
find the binary position of the small code profile of

123

C. I. Ezeife, Y. Liu

frequent item f Scode f if it exists and insert f.
If position Scode f does not exist, insert f in
the maximum prefix code of Scode f found in the tree
as presented in Definition 2.5 for small code restoration.

(2) Adjust tree nodes, counts and position codes if needed.
end // of Large item Insert//

More details of the sequence of seven steps in the RePL4UP algorithm as summa-
rized in the formal Algorithm 2.1 and earlier, are discussed next.

Step 1: In the first step, the RePL4UP algorithm updates all candidate lists (C1, F1,
S1) from the previous mining state of original database, DB, to obtain their
updated versions (C ′

1, F ′
1, S′

1) for the updated database U. This algorithm
scans only the small incremental database, db, at this stage, to get the incre-
mental db candidate lists (Cdb

1 , Fdb
1 , Sdb

1), which are used to quickly update
the candidate lists of the updated database as: C ′

1 = C1 ∪ Cdb
1 . Now, the

updated minimum support (s′) is computed as the minimum support percent-
age of the new cardinality of updated U, which is the sum of the cardinalities
of the old DB and the incremental db. This updated s′ is now used on updated
C ′

1 to compute the updated frequent 1-item list F ′
1 as all elements in C ′

1 with
support less than s′ form the updated small 1-item list S′

1. The algorithm
computes the frequent and small 1-items in the incremental database using
the set intersection operation of the candidate 1-item list of the incremental
db with the already found frequent 1-item list for the updated database, F ′

1.
Thus, Fdb

1 = Cdb
1 ∩ F ′

1 and Sdb
1 = Cdb

1 ∩S′
1. This approach has the advantage

of retaining only those Fdb
1 items as frequent that are also frequent in the

updated database, U. Note that the meanings of the set union and intersect
operations adopted in these algorithms for updating candidate lists are taken
as follows. The union operator as in C ′

1 = C1 ∪ Cdb
1 operation, returns as

its result, all members in either one or both of its input set (e.g., C1, Cdb
1)

and the count of each event (item) in the result set, is the same as the sum of
the counts of this event in the two input sets. For the intersect operation as
in Cdb

1 ∩ F ′
1, it would return as its result, all members in both input sets and

the count of each event in the result set, is the same as the count of the input
event with lower count.

Step 2: Using the updated frequent and small 1-items (F ′
1,S′

1) from the first step above
with their original versions from input data (F1,S1), the algorithm now classi-
fies all items in updated C ′

1 into one of six item categories (frequent-frequent,
frequent-small, small-frequent, small-small, new-frequent, new-small). This
enables it know which items to delete from old tree to get current tree and
which items to insert into the current tree. The classifications are handled
as follows. Items in the first class F → F ′ (that is frequent in both old DB
and updated database U, called frequent-frequent items) are found with the
operation F1 ∩ F ′

1. Items in the second class F → S′ (frequent-small items)
are found with the operation F1 ∩ S′

1. Items in the third class, S → F ′ (small-
frequent items) are found with S1∩ F ′

1. The fourth class of items (small-small

123

PLWAP-based incremental web sequential mining

items) S → S′ are found with S1 ∩S′
1. The fifth class of items (new-frequent)

∅ → F ′ are found with operation F ′
1 − F1, while the sixth class of items

(new-small) ∅ → S′ are found with the operation S′
1 − S1.

Step 3: This step updates the ReP L4U P DB tree. The important class of items
are the frequent-small (F → S′) items, which are first deleted from the
ReP L4U P DB tree, and the small-frequent (S → F ′) items, which are next
inserted into the ReP L4U P DB tree being modified. To delete a frequent-
small (F → S′) item, as summarized in formal Algorithm 2.2 Smallitem-
Delete, the item link is followed from the item’s frequent header linkage
entry in the RePL4UPDB tree to each of its node label on the tree until its
final leaf node. Then, each of this item’s nodes is deleted while backtracking
till its frequent header linkage entry is deleted. Every deleted node has its
position code saved in the updated small code profile for this item. After
deleting each small element, the remaining tree nodes, their counts and posi-
tion codes are adjusted such that if a parent node of a node n is deleted, the
closest grand parent of n becomes the new parent of n and if two siblings
of the new parent have the same node labels, they are merged. For example,
consider the sequence aebcace, where the parent of node “b” is “e”, if item
“e” was frequent and on the tree but became small after incremental update,
then, the item “e” will be deleted from the ReP L4U P DB tree causing the
new parent of node “b” to be its closest grand parent node, which is “a”. This
operation will result in a new sequence “abcac” from the previous sequence
“aebcace” as theoretically expected. When two sibling nodes (with the same
label) merge, the resulting node is assigned the same label as the merged
nodes, a count that is the sum of the counts of the merged nodes, and a
position code that is consistent with the position code assignment scheme
of the PLWAP tree. After deleting all F → S′ items from the tree, next,
all small-frequent (S → F ′) items are inserted into the ReP L4U P DB tree
using the small code profile (ScodeDB). As presented in the Algorithm 2.3
Largeitem-Insert, to insert a new frequent item, f, the RePL4UP algorithm
finds the binary position in the ReP L4U P DB tree, that corresponds to each
small code in the small code profile set for this frequent item f (Scode f) and
inserts a node for item f. If Scode f does not exist in the tree, f is inserted at the
position in the tree that corresponds to the maximum prefix code of Scode f .
Thus, for every small item l, with an Scodel (a small item code for l), there is
always a safe small item restoration spot found in the existing ReP L4U P DB

tree, where this small item l should be inserted. This safe restoration spot
has the same binary position code as Scodel or the codes’ maximum prefix
position found in the tree. For example, for an Scodel = 223 or 11011111 in
binary, if the maximum prefix position found in the tree is 1101, this position
is where this item l is inserted.

Step 4: The algorithm at this stage, after updating the RePL4UPDB tree as in third
step above, mines only modified branches from the Root of the updated
RePL4UPDB tree, in order to obtain the revised frequent pattern, ReFPDB.
In mining the modified branches, any frequent subsequence from this branch
already in old frequent pattern list is ignored since including it will inflate its

123

C. I. Ezeife, Y. Liu

support count. The ignoring of patterns found in modified branches, which
already exist in the database frequent pattern list, can be done during final
integration of the three types of patterns by using only those patterns in old
FPDB branches that had not been modified to compute remaining unchanged
FPDB patterns as FPDB − ReFPDB.

Step 5: At this stage, the RePL4UPdb tree for only the incremental database, db, is
constructed, to obtain the new frequent patterns present in the incremental
db, FPdb. This RePL4UPdb tree is built using the Fdb

1 = Cdb
1 ∩ F ′

1 from step
1. Thus, Fdb

1 is not directly computed from incremental db.
Step 6: This step obtains the updated frequent pattern FP′ from the union of the three

frequent patterns (i) those from previous mining of original database, not
including patterns that have changed after tree revisions (FPDB − ReFPDB),
(ii) patterns from mining only modified branches of the revised RePL4UPDB

tree (ReFPDB), and (iii) patterns from mining only the incremental data-
base (FPdb). The updated frequent patterns FP′ are patterns in (FPDB −
ReFPDB) ∪ ReFPDB ∪ F Pdb with support count greater than or equal to s′.

Step 7: This step involves ensuring that the updated database tree, RePL4UPDB tree
with the small code profiles are updated with the incremental database records
for the next round incremental mining and updating. Thus, the algorithm
inserts the frequent sequence transactions (with ∅ → F ′ items) from the
incremental database into the updated RePL4UPDB tree, while small code
profile of the new small items (∅ → S′) in the incremental db records as well
as the small code profiles of all deleted nodes (F → S′) from the tree are
recorded in the small code profiles.

2.2.2 Discussions on RePL4UP algorithm features

The correct incremental computation of frequent patterns with the RePL4UP algo-
rithm is based on the two properties, that had been tested experimentally, and logical
correctness shown through heuristics.

Property 1 Given a set of database sequences, the RePL4UP algorithm can be used
to construct the entire PLWAP tree incrementally starting with the first sequence of
the database, and building small code profile as needed.

Property 2 Given a RePL4UP tree with small code profile, when some small items
become frequent, the small code profiles can be used to restore the small events in
equivalent correct positions in the tree to mine the frequent patterns correctly.

These two facts were analyzed using different datasets on both the RePL4UP and
PLWAP algorithms and the results generated the same frequent patterns for various
test case scenarios.

Heuristic argument for correctness of properties 1 and 2: Given a database con-
sisting of a set of sequences S1, S2, …, Sn with minimum support percent of s%. Each
Si is a sequence of events ei1ei2 . . . eim . The RePL4UP algorithm inserts the first event
ei1 belonging to Si into the RePL4UP tree if ei1 is a frequent event starting from Root.
The event ei1 is assigned a label ei1, a count 1 if it is the first node with this label,

123

PLWAP-based incremental web sequential mining

Case 1: S1 inserted; both
events frequent

Case 2: e11 frequent,
e12 small

Case 3: small e11,
frequent e12

Case 4: small e11,
small e12

Root

e11:1:1

e12:1:11

Root

e11:1:1
S-code(e12)={11}

Root

e12:1:1
S-code(e11)={1}

Root

S-code(e11)={1}
S-code(e12)={11}

The Restored PLWAP trees after small items become frequent for 8 cases are given below.

Root

e11:1:1

e12:1:11

e21:1:10

The next 4 cases have a second incremental sequence S2(e21e22), where e21 is frequent but e22 is
small in addition to the above four scenarios for sequence S1.
Case 5: frequent e11, e12,
frequent e21, small e22

S-code(e22) = {101}

Root

e11:1:1 e21:1:10

S-code(e12) = {11}
S-code(e22) = {101}

Case 6:freq e11,small
 e12, freq e21, small e22

Root

e21:1:10e12:1:1

S-code(e11) = {1}
S-code(e22) = {101}

Case 7:small e11,freq
 e12, freq e21, small e22

Root

e21:1:1

S-code(e11) = {10}
S-code(e12) = {101}
S-code(e22) = {11}

Case 8: small e11, e12
freq e21, small e22

Root

e11:1:1

e12:1:11

Restored Cases 1 to 4

Root

e21:1:10e11:1:1

e12:1:11 e22:1:101

Restored Cases 5 to 7

Root

e11:1:10e21:1:1

e22:1:11 e12:1:101

Restored Case 8

Note that the restored trees(5 to 7) and (8) are equivalent and would yield the same
frequent patterns. Case 8 happens when all events on a sequence are initially small and
small code for some items are revised to ensure uniqueness of small codes when the
previous small items become large. Revision entails assigning a new small item code to
events i that have the code of the not-yet assigned sibling (e.g., code 1 changed to 10 for
e11 and code 11 changed to 101 for e12).

Fig. 3 RePL4UP incremental building of tree and restoration

otherwise the count of this node label is increased by 1. The position code of ei1 is
binary 1 if it is the leftmost child of Root and binary 10 if it is the second child from left
and so on. If ei1 is small, it is not inserted into the RePL4UP tree but its “would have
been” position code is recorded as its small code profile Scodeei1 , which is {1} for this
case. Assume, we continue to work with the frequent ei1 track, the next event ei2 can
be either frequent and inserted with position code 11 or small and not inserted but with
small code Scodeei2 = {11}. Figure 3 shows that using the RePL4UP algorithm to
insert m (with m = two for simplicity here) sequences covering a number of scenarios
incrementally, yields a PLWAP tree. This demonstrates correctness of Property 1.

Property 2 is discussed by showing that for each constructed RePL4UP tree of
Fig. 3, the small code profiles are used to restore the small items assuming the small
items become large.

Property 3 Small item l code Scodel uniqueness: Given an Scodel for a small item
l, this code is unique and different from any other small item code for any small item
except if this small item code l at this specific node position has occurred more than
once (that is, has a count n > 1), in which case the code is listed n times. For example,
an Scodel = 223 or 11011111 is listed only once in the small code profile if this l node
has occurred once but is listed n times if it has occurred n times. When a sequence
(e.g., S1) has all of its items small, then, this sequence is not at all represented on the
initial RePL4UP tree indicating that a later DB sequence (e.g., S2) may have occupied
a branch (e.g., branch 1 from Root) of the tree that would have been assigned to events
of the small sequence (S1) if they had been frequent. Thus, frequent sequence S2 event

123

C. I. Ezeife, Y. Liu

now becomes the leftmost child of Root with position code 1 because sequence S1
events were small with small codes as 1, 11, etc. Property 4 shows how uniqueness is
preserved for this scenario.

Property 4 Small item l code Scodel Collision Resolution: To avoid possible conflict
or collision between events belonging to different sequences, if all events in a sequence
are small, the small codes of the events are revised to be the code of rightmost vacant
virtual sibling spot available on the tree, when a new sequence is inserted, in order to
ensure uniqueness and avoid two sequences like S1 (now small) and S2 (now frequent)
both occupying branch 1 of Root. Since S1 arrived first, it had been assigned small
code 1 corresponding to the first branch, but none of its events are attached to the Root
yet, because they are not frequent. When S2 arrives and is attached to Root at branch
1, we revise the previously assigned small codes of S1 to branch 10 so that when they
become frequent, there are no conflicts of events of both sequences S1 and S2 both
sharing the same branch of 1. This special case is presented in case 8 of Fig. 3 for
showing correctness of technique. The only other case that may appear like collision
is when a virtual small item code assigned earlier, is similar to a physical frequent
event code on the tree. However, as Property 6 discusses when those small items join
the physical tree if they become frequent, they are placed in their correct positions
on the tree and the position codes of events on the tree are adjusted to be unique and
consistent with the PLWAP code assignment scheme.

Property 5 Small item l code Scodel computation from code of first small item i in
a transaction sequence: Given the Scodei for the first small item i in a transaction
sequence, and the offset (number of character positions from item i to item l) the
Scodel is computed quickly from the Scodei by appending “1” to the binary value of
Scodei number of times corresponding to the “offset”. This is equivalent to computing
the Scodel as Scodei ∗ 2of f set + (2of f set − 1).

For example, given the transaction sequence “abegfh” where e, f, g, h are small
items and the code profile for the first small item in this sequence “e” is 11100 = 28.
To compute the small code profile of “g” with offset “1” from “e”, we append “1”
only once to the small code profile of “e” since the offset of “g” from “e” is 1 to
get 111001 or 57. This is also computable from Scodei ∗ 2of f set + (2of f set − 1) as
(28 ∗ 21 + 21 − 1 = 57). Similarly, the small code profile for “f” with offset “2” is
computed as 1110011 = 115 or (28 ∗ 22 + 22 − 1 = 115). The small code profile of
“h” with offset “3” is computed as 11100111 or 231.

Property 6 Small item l code Scodel similarity with frequent item code: Given an
Scodel for a small item l, this code is similar to a frequent item f code if (1) small
item l is on the same sequence and is a direct parent of the frequent item f in the
original database sequence, and (2) if the small item l is a sibling node of the frequent
item f . In both cases, the small item is assigned its virtual code first because it arrives
first and if it becomes frequent, this code places it in its correct physical position and
all codes are revised to be frequent unique.

For example, given a database sequence “abdac” where “d” is the only small item,
the frequent item “a” (second one) would have the same physical position code of
“111” as the small item “d” which is not in the tree but appears before the second “a”
on the database sequence.

123

PLWAP-based incremental web sequential mining

2.2.3 Example mining of the original RePL4UPDB tree

Example 2.1 Suppose we have a database DB as given in the first two columns of
Table 1 with the set of items, I = { a, b, c, d, e, f, g, h} and minimum support
count=50% of DB transactions, build and mine a RePL4UP tree of this database for
initial frequent sequential patterns.

Solution 2-1 Mining original database sequences with RePL4UP tree entails first build-
ing a PLWAP tree that remembers small code item profiles (ScodeDB) and then mining
this tree to obtain original frequent patterns as shown in the four steps below.

1. Compute all Candidate Lists: frequent 1-items, F1, small 1-items, S1 and candi-
date 1-items, C1. For Example 2.1 above, these are: C1 = {a:5, b:5, c:3, d:1, e:2,
f:2:, g:1, h:1}.
With support s = 3, F1 = {a, b, c}, S1 = {e, f, d, g, h}.

2. Generate frequent sequences for all database records (seqs as shown in column
3 of Table 1) by deleting all small events.

3. Construct the ReP L4U P DB tree with seqs . The ReP L4U P DB tree is built
using the sequences in seqs the same way that the PLWAP tree is built, but also
collecting the small code profile ScodeDB . A RePL4UP tree using the seqs of
the database is shown as (Fig. 1) and its ScodeDB given with Definition 2.3.
The frequent sequences starting with sequence “abac” are inserted into the tree
from Root with each node annotated as node label: node count: node position
code. While inserting the frequent items in the sequence, the algorithm checks
the original transaction to mark location of small items in the transaction. For
example, small item d in the original first transaction abdac would have had the
position code (d:1:111) in the created branch if this d were frequent. It will write
this position code in the small item code profile for item d as Scoded = {111}.
The complete small item code profiles from the second sequence aebcace is for
small item e as: Scodee = {110, 11011111}. The third (baba), fourth (afbacfc)
and fifth (abegfh) sequences are all inserted into the tree in a similar fashion to
create the ReP L4U P DB tree shown as Fig. 1.

4. The initial ReP L4U P DB is then, mined to generate the initial frequent pattern,
F P DB the same way the PLWAP tree is mined. The generated list of F P DB

mined based on the support of 3 is: F P DB = {a:5, aa:4, aac: 3, ab:5, ac:3, aba:4,
abac:3, abc:3, b:5. ba:4, bac:3, bc:3, c:3}.

2.2.4 Example incremental mining of frequent patterns with RePL4UP

Example 2.2 Assume that the original database, DB of Table 1 is updated with the
records in the incremental database table shown as Table 2, use the RePL4UP algo-
rithm to obtain the updated frequent patterns, F P ′, given the old frequent patterns,
F P DB , the old ReP L4U P DB tree from the previous section, the new incremen-
tal database (db), and other 1-itemset information from initial mining (candidate
1-items, frequent 1-items, small 1-items, small item code profiles ScodeDB), the
same minimum support percent, s%, which is 50% of the updated database cardi-
nality.

123

C. I. Ezeife, Y. Liu

Table 2 The incremental
database transaction Table (db)

TID Web access seq. Frequent subseq Frequent subseq
with s using% with t using
Cdb

1 ∩ F ′
1 Cdb

1 ∩ F ′
t

600 bahefg baef bahefg

700 aegfh aef aegfh

Solution 2-2 The RePL4UP steps for incrementally mining the database using mostly
incremental db and old available patterns are:

1. Update all candidate 1-itemset lists and patterns by scanning only the incremen-
tal database (db) to compute C ′

1, F ′
1, S′

1 as: C ′
1 = C1 ∪ Cdb

1 . Fdb
1 = Cdb

1 ∩ F ′
1.

Sdb
1 = Cdb

1 ∩ S′
1. For Example 2.2, these are: C1 = {a:5, b:5, c:3, d:1, e:2, f:2:,

g:1, h:1}, F1 = {a, b, c}, S1 = {e, f, d, g, h}. Cdb
1 = {a:2, b:1, e:2, f:2, g:2,

h:2}. C ′
1 = {a : 7, b : 6, c : 3, d : 1, e : 4, f : 4, g : 3, h : 3}. The cardinality

of updated database, |U | = 5 + 2 = 7, making the support cardinality, s′, of
updated database, U = 50% of 7 or 4 transactions of U. F ′

1 = {a:7, b:6, e:4, f :4}.
Fdb

1 = Cdb
1 ∩ F ′

1 = {a:2, b:1, e:2, f:2}. S′
1 = {c:3, d:1, g:3, h:3}. Sdb

1 = Cdb
1 ∩ S′

1
= {g:2, h:2}.

2. From the updated data patterns in step 1 above, we want to classify all items in
C ′

1 such that each will belong to one of the earlier identified six classes of (i)
Frequent-frequent class = F → F ′ = F1 ∩ F ′

1 = {a, b} for the example. (ii)
Frequent-small class = F → S′ = F1 ∩ S′

1 = {c}. (iii) Small-frequent class =
S → F ′ = S1 ∩ F ′

1 = {e, f}. (iv) Small-small class = S → S′ = S1 ∩ S′
1 = {d,

g, h}. (v) New-frequent class = ∅ → F ′ = F ′
1 − C1 = ∅. (vi) New-small class =

∅ → S′ = S′
1 − C1 = ∅.

3. Modify old ReP L4U P DB tree to delete from each branch of the tree, all
frequent-small or F → S′ items constituting the set {c}, and to insert into
the tree at the position defined by their small code profile ScodeDB , all S →
F ′ or small-frequent items, which are items in the set {e, f} for the exam-
ple. For example, we insert the small-frequent items {e, f} in the tree at the
positions indicated in the small item code profile, ScodeDB collected from the
database previously as: Scodee = {6, 223, 28} or {110, 11011111, 11100};
Scode f = {12, 207, 115} or {1100, 11001111, 1110011}. Also, during the ini-
tial tree construction, some frequent nodes share branches and this will cause
some of the computed small codes to not be physically present in the old tree
being revised. However, every small item code profile has a unique position
in the tree, determined by the maximum matching prefix of its binary position
code found in the tree by applying code restoration logic. Thus, if the small
code profile is 1110011 and the closest prefix node position in the tree being
updated we can find is for the prefix 11100, then, we insert the small-to-fre-
quent item there. The new code profile of the item is its physical position code
in the tree. The small code profile list is updated for small-frequent items {e,
f} after tree modification as: Scodee′ = {110, 1101, 1110} and Scode f ′ =
{1110, 11001, 11101}.

123

PLWAP-based incremental web sequential mining

a:4:1

b:4:11 e:1:110 f:1:1100

a:3:111 e:1:1110
e:1:1101 f:1:11001

f:1:11101

b:1:10

Root

a:1:101

b:1:1011

a:1:10111

a

b

e

f

Fig. 4 The RePL4UP after deletions and insertions

Fig. 5 The RePL4UP tree for
incremental database db

Root

b:1:1 a:1:10

a:1:11

e:1:111

e:1:101

f:1:1011

a

b

e

f

f:1:1111

4. Mine only the modified branches of RePL4UPDB to obtain revised frequent pat-
terns, ReFPDB. All branches of the tree that were modified are mined from Root
using the PLWAP mining technique with a minimum support count of 1. The
modified branch of the RePL4UPDB is the left branch of Root in Fig. 4 and min-
ing it gives the frequent sequences called ReFPDB as {aee:1, abef:1, aff:1, ae:2,
af:2, be:1, bf:1, bef:1, ef:1, ee:1, ff:1, e:2, f:2}.

5. The RePL4UPdb tree is computed with frequent sequences of small db based on
Fdb

1 = Cdb
1 ∩ F ′

1={a, b, e, f} and is shown as Fig. 5.
Following this process, the useful mined FPdb = {b:1, a:2, e:2, f:2, ba:1, be:1,
bf:1, bae:1, baf:1, baef:1, ae:2, af:2, ef:2, aef:2, baef:1}.

6. FP′ are patterns in (FPDB − ReF P DB) ∪ ReF P DB ∪ FPdb with support count
greater than or equal to s′ or 4, and FP′ = {a:7, aa:4, ab:5, aba:4, b:6, ba:5, ae:4,
af:4, e:4, f:4}.

7. Insert the frequent sequence transactions from the incremental database into the
original ReP L4U P DB tree to keep it updated for next round mining, and updat-
ing. For the example, (baef, aef) are inserted into the main revised ReP L4U P DB

to keep it up-to-date (as shown in Fig. 6), while the small code profile of the new

123

C. I. Ezeife, Y. Liu

Fig. 6 The final revised RePL4UP tree after all modifications

small items in the new changes as well as the small code profiles of all deleted
nodes from the tree are recorded in the small code profiles.

3 The second proposed incremental PL4UP algorithm

This section presents the second algorithm, PL4UP being proposed for mining
frequent sequential patterns incrementally based on a PLWAP tree structure. The
main idea of PL4UP is to avoid scanning the whole updated database, U (DB+db)
when the database changes, by building an initial bigger PLWAP tree that is based on
a lower tolerance minimum support percentage t%, which is lower than the regular
given minimum support percentage (s%). This database tree that is based on support
percentage t% is called P L4U P DB . With the P L4U P DB , performing incremental
mining entails building and mining a small P L4U Pdb tree for only these new incre-
mental database (db), which are used for updating existing old patterns. Since regular
PLWAP tree for original database, DB based on regular minimum support percentage
of s% stores no information about small items that become frequent when new incre-
mental tuples arrive (that is, items in class S → F ′), PL4UP method is to predict small
items likely to become frequent when database is updated so that a lower tolerance
support percentage is used to include them in the initial tree. These current small but
later “may be” frequent items are called potentially frequent items.

3.1 Use of lower tolerance support t% for building PL4UP tree

The approach adopted by the proposed PL4UP algorithm is between the two extremes
of building a huge tree with all items initially and building a small tree that is based
on only frequent items as done by regular sequential mining algorithms. Thus, the
success of the PL4UP algorithm depends on its ability to correctly predict potentially
frequent (PF) and potentially small items (PS). The PL4UP algorithm uses a formula

123

PLWAP-based incremental web sequential mining

to predict the best minimum tolerance support percentage t%, which is smaller than
the regular minimum support percentage s% such that t = factor * s.

3.1.1 How to choose the tolerance minimum support t% value

In choosing the t%, the objective is to select a t% that includes the previous small items
in the old DB which may become large in the updated database, U. Thus, the value of
best recommended t% is derived as t% ≥ (1 + C R) ∗ s% − C R, where 0 ≤ C R ≤ 1,
and CR is the rate of change in the database or the ratio of the size of the new changed
database (|db|) to the size of the original old database (|DB|). Thus, change rate
(CR) = |db|

|DB| . Since t% has to be positive and must be lower than regular minimum
support, then (1 + CR) * s% − CR ≥ 0 and this means that s% ≥ CR/(1 + CR). Eval-
uating the formula, we arrive at the simple fact that the best recommended t% value
is: t% ≥ (|DB|+|db|)∗s%−|db|

|DB| . This is equivalent to: t% ≥ (
|DB|
|DB| + |db|

|DB|) ∗ s% − |db|
|DB|

or t% ≥ (1 + C R) ∗ s% − C R, where 0 ≤ C R ≤ 1. Also, t% is equal to a factor * s
or (t% = F ∗ s), where 0 ≤ F ≤ 1. A t% value that exceeds F * s is closer to regular
support, s% and not helpful in achieving the goals of the technique. However, a t%
value less than F * s is close to the entire database and is outside the recommended
t% limit. The average changes in the database (e.g., what percentage of the database
changes every update, hour, day or week) collected over a period of time should be
used as the CR in computing the value of t%.

3.2 Incremental mining of FPs with PL4UP using tolerance support

The first process is to build the initial P L4U P DB tree using sequences in a sequential
database with support greater than or equal to the tolerance support t%. The initial
PL4UPDB tree is built the same way the PLWAP tree is built (Ezeife and Lu 2005).
In both the PL4UPDB and PLWAPDB trees, there are no records of small items in
sequences as done in the RePL4UPDB tree using small item code profile. The process
of building and mining an original PL4UPDB tree and that of incrementally updating
and mining it are presented.

3.2.1 The PL4UP algorithm for incremental web frequent patterns

As formally presented in Algorithm 3.1 PL4UP, the eight input datasets to the PL4UP
algorithm are: (1) the original database (DB) or its cardinality, (2) the incremental data-
base (db), (3) minimum support percentage percentage (λ), (4) original (PL4UPDB)
tree, (5) tolerance support percent (θ), (6) old frequent patterns based on tolerance
support t (TFPDB), (7) regular support (SFPDB), and (8) five old candidate lists con-
sisting of (i) candidate 1-item list (C1), (ii)frequent 1-items list based on tolerance
support t (Ft), (iii) small 1-items (S1), (iv) potentially frequent 1-items (PF) as items
in S1 with support ≥ t, (v) potentially small 1-items (PS) as items in S1 with support
< t. The output of the PL4UP algorithm consists of the updated versions of four of
the input datasets consisting of updated (1) database U, (2) frequent patterns for the

123

C. I. Ezeife, Y. Liu

updated database U (FP′), (3) updated tolerance and regular frequent patterns TFPU

and SFPU , (4) candidate 1-item lists for the updated database U (C ′
1, F ′

t , S′
1, PF′, PS′).

The steps in incrementally mining the database with the PL4UP algorithm using
mostly changed db and old available patterns are:

1. Update all 1-itemset candidate lists and patterns (F ′
t , S′

1, C ′
1, PF ′, PS′) using

the original DB lists (Ft , S1, C1, PF, PS) and the incremental database, db lists.
C ′

1 = C1 ∪Cdb
1 . Fdb

t = Cdb
1 ∩ F ′

t , The updated regular small 1-items, S′
1 are those

in C ′
1 with support less than the updated regular support, s′%, updated potentially

frequent (PF ′) are items in S′
1 with support greater than or equal to the updated

tolerance support, t ′%, and potentially small items (PS′) are items in S′
1 with

support less than the updated tolerance support t ′%. Thus, Sdb
1 = Cdb

1 ∩ S′
1, and

PFdb = Cdb
1 ∩ PF ′.

2. If no updated potentially small items are now frequent (i.e, PS′ ∩ F ′
1 = ∅), then,

continue with tolerance t% and proceed with steps 3 and 4, otherwise, recompute
t% with the formula on Sect. 3.1 or set to 0% to use the entire database before
recomputing input datasets and running from step 1.

3. Construct the small PL4UP tree using only the incremental database, db and with
frequent items based on tolerance support, t% computed as Fdb

t = Cdb
1 ∩ F ′

t . Mine
this PL4UPDB to obtain the regular, SFPdb, and the tolerance frequent patterns,
TFPdb.

4. Combine the tolerance frequent patterns from the incremental database, db and
the old database, DB, keeping only those patterns that meet the regular support
s′ in updated SFP’ and those that meet tolerance support, t ′% in updated TFP′.
Thus, updated SFP′ and TFP′ are as follows: SFP′ are patterns in TFP ∪ TFPdb

with support greater or equal to s′%. Similarly, TFP′ are patterns in TFP ∪TFPdb

with support greater or equal to t%.

Algorithm 3.1 (PL4UP-Mines Web Log Sequences Incrementally with tolerance
MinSupport)

Algorithm PL4UP-Tree()
Input: original database, DB or its cardinality, Incremental database, db,

minimum support percent λ (0 < λ ≤ 1), original PL4UPDB tree, tolerance
support θ (0 < θ ≤ 1),old frequent patterns based on t and s, TFPDB,
and SFPDB old candidate lists (C1, Ft , S1, PF, PS).

Output: updated frequent patterns for updated database, U (TFP’ and SFP’),
updated candidate lists (C ′

1, F ′
t , S′

1, PF′, PS′).
Intermediate data: incremental db candidate lists (Cdb

1 , Fdb
t , Sdb

1 , P Fdb, P Sdb)),
tolerance and regular minimum support counts (t′, s′)

begin
(1) Update all candidate lists as follows:

C ′
1 = C1 ∪ Cdb

1 ; s′ = λ of |DB| + |db|; t′ = θ of |DB| + |db|
F ′

t = element in C ′
1 with support ≥ t′

S′
1 = element in C ′

1 with support < s′;
P F ′ = elements in S′

1 with support ≥ t′
P S′ = elements in S′

1 with support < t′

123

PLWAP-based incremental web sequential mining

Fdb
t =Cdb

1 ∩ F ′
t

Sdb
1 =Cdb

1 ∩ S′
1; PFdb=Cdb

1 ∩ P F ′.
PSdb=Cdb

1 ∩ PS′
(2) If no updated potentially small item is also now frequent
i.e., if PS′ ∩ F ′

1 = ∅
then
begin /*proceed with current tolerance t% tree */

(2.11) Construct the small P L4U Pdb
t on tolerance support, t, using

Fdb
t and mine to obtain the frequent patterns, SFPdb and TFPdb

(2.12) Combine the two tolerance frequent patterns
to obtain TFP’ and SFP’ as:
TFP′ = TFPDB

t ∪ TFPdb

SFP′ = patterns in TFP’ with support ≥ λ

end
else /* recompute tolerance t% or set to 0 */
begin

(2.21) Recompute tolerance t% as discussed in Sect. 3.1.
or use the entire database by setting t% to 0.
(2.22) Recompute input dataset with new t% and go to step 1.

end
end // of PL4UP //

When there are small items with occurrence count lower than the minimum toler-
ance support percent, t%, that become large in the updated database, it might be better
to reconstruct the original PL4UP tree using the entire updated database or newly
computed tolerance support t%.

3.2.2 Example application of the PL4UP algorithm

Example application of the PL4UP algorithm on datable of Table 1 with regular sup-
port s% = 50% and tolerance support t% = 0.6s% = 30% would first construct
a PL4UP tree (Fig. 2 with seqt in column 4 of Table 1). Mining the tree PLWAP
fashion produces tolerance frequent patterns, TFP as: {a:5, aa:4, aac: 3, ab:5, aba:4,
abac:3, abc:3, abcc:2, abe:2, abf:2, ac:3, acc:2, ae:2, af:2, b:5. ba:4, bac:3, bab:1, bc:3,
bcc:2, be:2, bf:2, c:3, cc:2, e:2, f:2}. The actual needed frequent pattern, SFP, now are
the ones based on the regular support count of 3. These are all patterns in TFP with
support 3 or more. The SFP = {a:5, aa:4, aac: 3, ab:5, ac:3, aba:4, abac:3, abc:3, b:5.
ba:4, bac:3, bc:3, c:3}. When the incremental database of Table 2 occurs, following
the PL4UP algorithm of Algorithm 3.1, generated updated TFP′ = {a:7, aa:4, aac:3,
ab:4, aba:4, abac:3, abc:3, ac:3, ae:4, af:4, b:6, ba:5, bac:3, bc:3, be:3, bf:3, c:3, e:4,
f:4} and SFP′ = {a:7, aa:4, ab:5, aba:4, ae:4, af:4, b:6, ba:5, e:4, f:4}.

123

C. I. Ezeife, Y. Liu

4 Performance analysis and experimental evaluation

4.1 Experimental analysis

A performance comparison of the two proposed incremental web sequential mining
algorithms, the novel RePL4UP, and more traditional PL4UP, with the non-incremental
PLWAP algorithm (Ezeife and Lu 2005), and three other incremental sequential min-
ing algorithms GSP+, MFS+ (Kao et al. 2005; Zhang et al. 2002), IncSpan (Cheung
et al. 2004) was conducted and the results of the experiments are presented in this
section. All these six algorithms were implemented and run on both synthetic and
real web log datasets. The synthetic datasets were generated using the source code
found under http://www.almaden.ibm.com/software/quest/Resources/index.shtml of
the IBM’s project QUEST.

The synthetic data is in the format (Tid, Number of elements in sequence, the
sequence). Thus, a sample record in the input file for transaction id 128 is: 128 9 2
6 9 13 6 21 22 29 25. The real dataset was generated from the web log data of a
Computer Science department server by first applying a web log cleaner (source codes
and sample test datasets attached to recent papers are downloadable from our web site
http://www.cs.uwindsor.ca/~cezeife/). Our WebLogCleaner program accepts any web
log and generates four tables representing the warehouse fact table with schema
(timeID, userID, protocolID, pathID, sessionID, nbyte), for the integrated records of
the web access log, and its dimension tables PathDimTbl(for pathID), ProtocolDimTbl
(for protocolID), UserDimTbl (for userID). This fact table is further processed to pro-
duce a transaction table in the format of (Tid, Number of elements in sequence, the
sequence), which our sequential mining algorithms mine. The processed real datasets
have between 10 thousand and 80 thousand records and show the same result patterns
as the synthetic datasets. While there are a few records with very long sequences (e.g.,
218 and 165 items in a sequence), a large percentage of the real dataset has only one
element that had been repeated in the dataset. An example record with id 168 from
this Real web log data file is: 168 12 17 15 16 17 16 17 18 711 712 17 713
714. The frequent patterns generated for the same dataset by all algorithms are the
same indicating correct implementations of the techniques. To accommodate a sixth
algorithm (IncSpan), all six algorithms were run on a single user Windows XP Media
Center Edition Service Pack 2 Personal Computer environment with processor speed
of 1.60GHz Intel core and with 1GB random access memory. Five of the algorithms
were at first compared on multiuser UNIX SUN microsystem with a total of 16384 MB
memory and 8 × 1200 MHz processor speed where the proposed techniques maintain
better performances consistent with results obtained in the Windows platform now
being reported next.

4.1.1 Experimental set up and parameters

While experiments 1–5, and 8 compare execution times of the programs, experi-
ments 6, and 7 compare their memory usage needs collected through the Windows
Ctrl/Shift/Esc (which opens up Task Manager), then going to process tab and getting
the programs’ memory usages as the programs run. The same was accomplished on

123

http://www.almaden.ibm.com/software/quest/Resources/index.shtml
https://cezeife.myweb.cs.uwindsor.ca/

PLWAP-based incremental web sequential mining

Unix with (top -U account) command as the programs run. Experiment 5 further dem-
onstrates scalability of the proposed techniques by running the algorithms on large
dataset of 2.5 million rows. Five of the six algorithms compared (RePL4UP, PL4UP,
GSP+, MFS+ and PLWAP) were implemented by us in C++ and compiled with “g++
filename” before execution with a.out. The sixth algorithm, IncSpan is also a C++ pro-
gram, which we downloaded its available executable code from the Illimine project
(http://illimine.cs.uiuc.edu/) and run as described later.

4.1.2 Dataset descriptions

For the synthetic data, the average size of transactions (length of sequences) (T) is 10,
|T | = 10, average length of maximal pattern (that is, average number of items in the
longest frequent sequence) (S) is 5, or |S| = 5, number of items or events (N) (the
total number of attributes) is 30, N = 30 for all but experiment 8 (which tests behavior
with many small items when N = 100). N is kept at 30 to increase number of frequent
patterns generated. A dataset described as T10.S5.N30.U200 K has 200,000 rows, 30
attributes, average length of longest pattern as five and average length of transaction
sequence as ten. Three other parameters updated database U, incremental database, db
and minimum support s% affect performance of the algorithms, thus, the experiments
have been run to keep two of the variables fixed, while the other varies.

4.1.3 Dataset generation and preparations

To run the programs, we first generate what will become the updated database U using
the synthetic data generator. Then, we use a C++ split program written by us, to obtain
the original database (DB) and the incremental database (db) by splitting the generated
U into n% of U as DB and (100 −n)% of U as db. The commands used for generating
the datasets we used are summarized next. The synthetic data generator parameters are
ncust (for number of rows), nitems (for number of attributes), seq.npats (for number
of sequential patterns), seq.patlen (for average length of maximal pattern), fname (for
filename). To generate dataset T10.S5.N30.U200 K on our Unix server we used the
command:

gen seq -ncust 25.9 -nitems 0.03 seq.patlen 5 -fname 200 K
To generate data T10.S5.N30.U2.5 M, we used the command:
gen seq -ncust 323.82 -nitems 0.03 seq.patlen 5 -fname 2_5 K
To generate data T10.S5.N100.U200 K, we used the command:
gen seq -ncust 25.82 -nitems 0.1 -seq.npats 50 seq.patlen 5 -fname 6_200 K

Thus, with the DB part of U in a data file called Original.data, and the db part in a
file called Incremental.data, we can run executable Repl4up.o or pl4up.o, GSPplus.o,
MFSplus.o to get the frequent patterns. For the IncSpan program, we converted the
generated DB (data before update) and U (data after update) to the format for IncSpan
data using a conversion program we wrote called change2incSpan.cpp. Thus, to cre-
ate the two needed data files ‘before’ and ‘after’, we would first issue the following
commands:change2incSpan Original.data before

123

http://illimine.cs.uiuc.edu/

C. I. Ezeife, Y. Liu

Table 3 Expt 1: Execution times for dataset at different supports

Algorithms CPU time (in secs) at supports of

0.05% 0.1% 0.5% 1% 5% 10% 15% 20%

FPs 2320 1249 265 134 20 9 6 3

F1’s 30 30 30 28 19 9 6 3

PLWAP 14.282 9.047 3.843 3.125 2.438 2.025 2.015 2.016

PL4UP 2 1.094 0.5 0.36 0.11 0.234 0.235 0.234

RePL4UP 2.21 1.957 0.813 0.422 0.265 0.35 0.375 0.351

IncSpan 2.53 2.312 2.281 2.13 1.5 1.59 1.343 1.39

GSP+ 737.096 390.033 108.43 68.672 21.219 5.922 4.437 2.421

MFS+ 235.709 187.096 85.346 51.656 17.297 5.938 3.547 2.407

change2incSpan Updated.data after
Next, we would run the IncSpan program on the ‘before’ and ‘after’ data with appro-
priate parameters as: increspan 2 before after 0.01 30 0.8 0.1
This runs IncSpan on a support of 0.01, large item found in sequence is 30 (meaning
30 attributes), and buffer ratio of 0.8 and percentage of sequences in U that is modified
(similar to db percentage) is 0.1.

Experiment 1 Execution times for datasets at different supports: This experiment
monitors performance of PLWAP, RePL4UP, PL4UP, GSP+, MFS+ and IncSpan algo-
rithms on updated database size of |U |= 200,000 records, and incremental database db
size of 10% of U, at changing support thresholds of between 0.05% = 0.005 of records
and 20% = 0.20 of records. The dataset description is given as T10.S5.N30.U200 K.
The experimental results are shown in Table 3 and Fig. 7(a).

Note that the first two rows of the tables show the number of frequent patterns (FPs)
and number of frequent 1-items. The figures show only the most relevant comparisons.
For example, since the GSP+ and MFS+ execution times are much higher than the
proposed techniques, including them in all figures does not allow meaningful com-
parisons with the IncSpan algorithm. Incremental updates are most useful at lower
minimum support thresholds when more patterns are frequent and when the incre-
mental db is as small as 10% of updated database, U. At lower support threshold, it
can be seen that the two proposed incremental algorithms (RePL4UP and PL4UP) are
nearly ten times faster than the non-incremental algorithm, PLWAP, between twice
and 13 times faster than IncSpan incremental sequential miner, over 50 times faster
than the MFS+ and 300 times faster than the GSP+ incremental sequential miners for
the same support. This is because the proposed techniques avoid scanning original
databases but use direct access of efficient compressed versions of the small item and
potentially frequent database in the form of small code profile and potential frequent
small items.

Experiment 2 Execution time for updated databases with different sizes: We use
different updated database (U) sizes that vary from forty thousand to two hundred

123

PLWAP-based incremental web sequential mining

(a) (b)

(d)(c)

(e) (f)

Fig. 7 Execution times trend with different supports/updated database sizes

thousand to compare the six algorithms. The minimum support of 1% is used and
the result of the experiments is shown in Table 4 and Fig. 7(b) when the size of
inserted and deleted records (incremental database db) in each updated database
(U) is 10% of U. The five datasets used for the experiment are T10.S5.N30.U40 K,
T10.S5.N30.U80 K, T10.S5.N30.U120 K, T10.S5.N30.U160 K, and T10.S5.N30.U
200 K. From the results of Table 4 and Fig. 7(b), we observe that: at a fixed min-
imum support of 1%=0.01 of records and fixed incremental database (db) size of
10% of entire database (U), as the updated database size increases, the execution time

123

C. I. Ezeife, Y. Liu

Table 4 Expt 2: Execution times at different updated database sizes on support 1% = 0.01

Algorithms Different main updated database sizes
(times in secs)

40 K 80 K 120 K 160 K 200 K

FPs 132 132 134 134 134

F1’s 29 29 29 29 28

PLWAP 0.828 1.391 1.922 2.532 3.078

PL4UP 0.062 0.109 0.157 0.219 0.25

RePL4UP 0.172 0.25 0.297 0.36 0.438

IncSpan 0.344 0.859 0.906 1.546 2.13

GSP+ 23.672 29.344 39.719 52.782 68.672

MFS+ 13.5 24.031 31.468 42.953 51.656

for mining the updated U increases a lot faster with the non-incremental algorithm,
PLWAP. The proposed two incremental algorithms, RePL4UP and PL4UP outperform
the three existing incremental algorithms MFS+ and GSP+ by over 50 times, and Inc-
Span by between twice to 10 times. The numbers of frequent patterns and frequent
1-items are also listed as 134 FPs and 28 items in the F1 list for when the size of U is
200K and db is 10% of U and the reasons for proposed algorithms’ performance are
the same as presented in Experiment 1.

Experiment 3 Execution times at different higher incremental db sizes: This exper-
iment is used to compare the effect on execution times of the proposed algorithms
with the PLWAP, GSP+ and MFS+ and IncSpan at fixed updated database U of 200 K
records (T10.S5.N30.U200 K), fixed support of 1% = 0.01 of records, but changing
sizes of the incremental database (db) of 10, 20, 40, 60, 80 and 100% of the entire
updated database (U) size. Table 5 and Fig. 7(c) show the results of this experiment.

From this experiment, it can be seen that although the benefit of incremental algo-
rithms are higher when the incremental database is much smaller than the updated
database (e.g., when the percentage of the incremental db to the updated U is lower
than 10%), the incremental algorithms RePL4UP and PL4UP consistently run faster
than the non-incremental algorithm, PLWAP, and the other incremental algorithms
GSP+, MFS+ and IncSpan when the incremental db is less than 60% of U. When
the incremental db is over 60% of U, the IncSpan algorithm begins to run faster than
the proposed algorithms. This is because the overhead of building, repairing the old
tree and updating the structures for next round mining with the small code as well as
managing a relatively sizeable incremental db tree, has surpassed the gain obtained
from avoiding the scanning of projected parts of original DB several times as done by
IncSpan. However, even when db is 100% of U incremental RePL4UP and PL4UP
perform better than the PLWAP, meaning that the incremental algorithm may be used
to build and mine the entire database faster than the non-incremental PLWAP algo-
rithm and the lower the minimum support and higher the number of found frequent
patterns the higher the benefits of RePL4UP and PL4UP. For example, for the same

123

PLWAP-based incremental web sequential mining

Table 5 Expt 3: Execution times at different incremental higher db sizes on support 1%

Algorithms Different incremental database sizes (Higher db sizes)
(times in secs)

20 K 40 K 80 K 120 K 160 K 200 K
10% 20% 40% 60% 80% 100%

FPs 134 134 134 134 134 134

F1’s 28 28 28 28 28 28

PLWAP 3.062 3.062 3.062 3.062 3.062 3.062

PL4UP 0.265 0.469 0.938 1.312 2.313 2.39

RePL4UP 0.438 0.75 1.55 2.047 2.781 2.454

IncSpan 2.125 2.468 1.579 1.686 1.735 1.532

GSP+ 68.672 104.8 195.111 273.545 358.231 443.37

MFS+ 51.656 74.705 120 167.64 217.64 288.484

Table 6 Expt 4: Execution times at different incremental lower db sizes on support 1%

Algorithms Different incremental database sizes
(times in secs)

200 1 K 2 K 10 K 20 K
.1% .5% 1 5% 10%

FPs 134 134 134 134 134

F1’s 28 28 28 28 28

PLWAP 3.063 3.063 3.063 3.063 3.063

PL4UP 0.15 0.031 0.047 0.157 0.265

RePL4UP 0.062 0.125 0.125 0.312 0.5

IncSpan 2.268 2.702 1.655 1.718 2.047

GSP+ 30.724 15.555 20.344 34.827 68.672

MFS+ 25.581 12.593 10.689 25.862 51.656

set up, when the minimum support is 0.1% = .001 frequency, while the PLWAP time
is 3.062sec, the RePL4UP takes 2.454 secs to rebuild and mine, and PL4UP took 2.39
sec when incremental db = 100% of updated DB.

Experiment 4 Execution times at different lower incremental db sizes: This exper-
iment is used to compare the effect on execution times of the proposed algorithms
RePL4UP, PL4UP and the PLWAP, IncSpan, GSP+, MFS+ at fixed updated database
U of 200 K records described as T10.S5.N30.U200 K, fixed support of 1% = 0.01
frequency, but changing sizes of the incremental database (db) of 0.1, 0.5, 1, 5, and
10% of the entire updated database (U) size. Table 6 and Fig. 7(d) show the results of
this experiment.

From this experiment, it can be seen that while the non-incremental algorithm
PLWAP runs at a constant time for this size of updated database, as the size of incre-
mental database db changes, the running times of the incremental algorithms RePL4UP

123

C. I. Ezeife, Y. Liu

and PL4UP do not increase but remain between 0 and 1 seconds for this low incre-
mental database sizes. RePL4UP and PL4UP continue to clearly outperform the other
incremental sequential mining algorithms IncSpan by magnitude as high as 36 times
better, while they are even better than the MFS+ and GSP+ by as high as 400 times at
lower minimum supports. Good performance here is because at lower incremental db,
the small code profile is not too big and the incremental db itself does not turn into a
huge db with higher overhead cost, causing the proposed algorithms to perform very
well.

Experiment 5 Scalability: CPU times at different lower incremental db sizes: This
experiment tests for scalability by using a much larger database size of U of 2.5 million
records with description as T10.S5.N30.U25000 K. The effect on execution times of
the proposed algorithms RePL4UP, PL4UP and the PLWAP, IncSpan, GSP+, MFS+
at this very large fixed updated database U of 2.5 million records, fixed support of 1%
= 0.01 frequency, but changing sizes of the incremental database (db) of 0.1, 0.5, 1, 5,
and 10% of the entire updated database (U) size are compared. Table 7 and Fig. 7(e)
show the results of this experiment.

From this experiment, it can be seen that while the non-incremental algorithm
PLWAP runs at a constant time for this size of large updated database, as the size
of incremental database db changes, the running times of the incremental algorithms
RePL4UP and PL4UP increase only marginally in comparison to the other algorithms
(IncSpan) when the incremental database goes over 60% of the original DB because
of the increased overhead of managing both sizeable small codes and incremental db.

For the storage space demands (as reported on Table 9 experiments on storage space
demands), it can be seen that while the maximum memory needed by the RePL4UP
for this size of data is 19MB, the memory demands for the PL4UP is 16MB. On the
contrary, the IncSpan algorithm demands 50MB of memory for this large dataset. The
GSP based incremental algorithms demand about 5MB and 3MB of memory for the
same dataset. Thus, while the memory demands depend to some extent on imple-
mentations as arrays are used in the RePL4UP and PL4UP current implementations
to hold old frequent patterns, the hard disk size of the 2.5 million records is 105MB
and making the about 17MB memory demand for processing such data for fast speed
very reasonable. Moreover, the RePL4UP and PL4UP have much better reasonable
memory demands than the IncSpan algorithm for very large datasets and about the
same demands for regular sized datasets.

Experiment 6 Storage space usages at changing incremental database sizes: This
experiment is used to compare the memory space demands of the proposed RePL4UP,
PL4UP algorithms and the PLWAP, IncSpan, GSP+, MFS+ at fixed updated database
U of 200 K records (T10.S5.N30.U200 K), fixed support of 1% = 0.01 frequency, but
changing sizes of the incremental database (db) of 10, 20, 40, 60, 80 and 100% of the
entire updated database (U) size. The maximum memory needed by each program is
recorded by running the Windows Task manager (Ctrl/Shift/Esc) as the programs are
running. It can be seen that the programs demand about the same amount of mem-
ory for different changes in incremental database. Both the RePL4UP and PL4UP
programs demand slightly more memory of around 5MB than the non-incremental

123

PLWAP-based incremental web sequential mining

Table 7 Expt 5 on Scalability: CPU times at different incremental db sizes on support 1%

Algorithms Different incremental database sizes
(times in secs)

250 K 500 K 750 K 1 M 1.25 M 1.5 M
10% 20% 30% 40% 50% 60%

FPs 136 136 136 136 136 136

F1’s 29 29 29 29 29 29

PLWAP 32.672 32.672 32.672 32.672 32.672 32.672

PL4UP 2.859 4.719 7.515 9.407 12.703 13.062

RePL4UP 3.891 6.375 9.687 11.235 14.698 14.922

IncSpan 13.031 14.862 11.687 12.532 14.85 12.366

GSP+ 643.291 1253.16 1652.56 1963 2571.95 3191.566

MFS+ 258.481 517.073 652.882 884.25 1035.366 1394.1

Table 8 Expt 6: Memory demands for U = 200 K at support 1%

Algorithms Different incremental database sizes

20 K 40 K 80 K 120 K 160 K 200 K
10% 20% 40% 60% 80% 100%

PLWAP 4.42 4.42 4.42 4.42 4.42 4.42

PL4UP 4.9 5.05 5.15 5.2 5.03 4.6

RePL4UP 5.45 5.66 5.72 5.86 5.69 5.46

IncSpan 3.96 3.96 3.52 3.96 3.96 3.96

GSP+ 2.9 2.9 2.9 2.9 2.9 2.9

MFS+ 3.88 3.88 3.88 3.88 3.88 3.88

PLWAP algorithm requiring about 4MB of memory. While for this regular size of
data, the IncSpan requires about 4 MB of memory, the GSP+ requires about 3MB and
MFS+ requires about 4 MB. Thus, for this regular size of data, there is no significant
difference in the memory demands of all these programs. Table 8 shows the results of
this experiment.

While the RePL4UP and PL4UP store the compressed data in the form of PLWAP
tree for speed, the GSP based algorithms as well as the IncSpan algorithm only scan
the database several times for support when those cannot be deduced and also do not
store any data in arrays making for slightly lower memory demands for the algorithms
for regular sized dataset. The RePL4UP also keeps only small code profiles while the
PL4UP algorithm stores a bigger PLWAP tree. Thus, these with the storage of patterns
in arrays account for the slightly higher storage needs, which are still very reasonable
for the speed gain and considering that when the dataset size increases, the memory
demands of IncSpan very much surpasses that of RePL4UP and PL4UP (as shown in
Table 9) which still outperforms it a lot in speed.

Experiment 7 Storage space usages as size of updated database increases: This
experiment compares the memory space demands of the proposed RePL4UP, PL4UP

123

C. I. Ezeife, Y. Liu

Table 9 Expt 7: Memory demands for increasing U database sizes at support 1%

Algorithms Increasing updated database sizes

40 K 80 K 120 K 160 K 200 K 250000 K

PLWAP 2.72 3.27 3.684 4.08 4.42 14.42

PL4UP 2.87 3.5 3.985 4.45 4.9 16.78

RePL4UP 3.18 3.89 4.387 4.98 5.45 18.7

IncSpan 0.781 1.574 2.361 3.16 3.96 49.947

GSP+ 2.95 2.98 2.98 2.98 2.98 2.99

MFS+ 3.88 3.88 3.88 3.88 3.88 3.88

algorithms and the PLWAP, IncSpan, GSP+, MFS+ as the updated database sizes
increase at fixed support of 1% = 0.01 frequency. Thus, the U sizes compared are
T10.S5.N30.U40 K, T10.S5.N30.U80 K, T10.S5.N30.U120 K, T10.S5.N30.U160 K,
T10.S5.N30.U200 K, T10.S5.N30.U250000 K. The incremental database (db) is 10%
of the entire updated database (U) size. It can be seen that the IncSpan program is the
most affected by the increase in size of data as its memory demand increases from
4MB for 200 K records to 50MB for 2.5 million records. The PL4UP and RePL4UP
remain at around 17MB for 2.5 million records indicating the scalability of the pro-
posed approaches even for memory demands. Table 9 shows the results of this exper-
iment.

Experiment 8 Many small items: execution times at support 3%: This experiment
monitors execution times when we drastically increase the number of small 1-items
in the database. This, we did by increasing the number of attributes to 100 (not 30
as in the earlier experiments) and also using a parameter in the data generation pro-
gram to force fewer frequent patterns to be found in the dataset. The gen command
used to generate each of the datasets of experiments 1–8 are described earlier in
sect. 4. The dataset for this experiment is described as T10.S5.N100.U200 K and has
200 thousand records with 100 attributes. To collect adequate data for comparisons,
we ran the experiment on the same U but for changing incremental database sizes
of 10, 20, 30, 40, 50, 60, 80% of U. The results of this experiment are shown in
Table 10.

It can be seen that the number of frequent 1-items F1 is 31, while the number of
small 1-items S1 is 67 in all cases since the same U is used but split into original DB
and incremental db of different percentages. Thus, with the number of small items
being as large as 67% of all candidate 1-items, the proposed PL4UP algorithm always
outperforms all the other incremental algorithms by far. The RePL4UP algorithm
also outperforms all, including IncSpan up until when the percentage of incremental
database is higher than the unchanged database. This is because the sizes of both the
incremental db tree and the small items are bigger resulting in higher maintenance
overhead. Thus, when there are many small items and the incremental database is
bigger than the unchanged database, while the performance of the traditional PL4UP
remains better, that of the RePL4UP degrades.

123

PLWAP-based incremental web sequential mining

Table 10 Expt 8: Execution times on DB with more small items, 100 attrs

Algorithms % of U that is incremental db (Higher dbs)
(times in secs)

10% 20% 30% 40% 50% 60% 80%

FP’s 36 36 36 36 36 36 36

F1’s 31 31 31 31 31 31 31

S1’s 67 67 67 67 67 67 67

PLWAP 3.83 3.83 3.83 3.83 3.83 3.83 3.83

PL4UP 0.157 0.344 0.625 0.891 0.667 1.093 1.094

RePL4UP 0.297 0.672 1.266 1.469 2.735 3.515 5.828

IncSpan 1.578 2.139 1.672 1.655 1.782 1.672 1.735

GSP+ 52.047 113/906 151/375 196.140 240.953 300.312 402.546

MFS+ 45.875 73.406 106.063 143.719 157.156 177.485 215.697

4.2 Time complexities of RePL4UP and PL4UP algorithms

Let P be the total number of frequent patterns to be extracted from old DB tree, and
p the total frequent patterns extracted from incremental db tree. Also, F is the number
of frequent 1-items in original DB, while f is the number of frequent 1-items in incre-
mental db and number of frequent 1-items in updated database, U, is F ′. If N is the
number of sequences in DB and L is the length of the longest frequent sequence in
DB. Similarly, small n is the number of sequences in the small incremental database
db, while l is the length of the longest sequence in the incremental database. The
time complexities of the three algorithms PLWAP (Ezeife and Lu 2005) and the two
proposed algorithms RePL4UP and PL4UP are discussed in three parts to represent:
(1) Number of database scans done by each algorithm, (2) Construction and updating
of the tree and (3) Mining the tree.

1. Number of Database scans as the incremental database size increases: Although
all the algorithms scan the database twice, the two proposed algorithms do not
scan the old DB and thus their time growth is only affected by the size of the incre-
mental database and not by the size of the old database. PLWAP has O(N+n)(L+l)
while both RePL4UP and PL4UP have O(nl).

2. Construction or updating of the PLWAP tree: Since each frequent sequence in the
entire updated database consisting of DB + db, is used in constructing the tree,
time complexity is O(N+n)(L+l), while for RePL4UP (revising the old tree takes
O(Bl) for B number of branches of the tree) and PL4UP using only incremental
db needs O(nl).

3. Mining the updated tree: Since for each frequent 1-item, a continuous prefix fre-
quent pattern is mined during each iteration, with the PLWAP, it is O(F’T), for
RePL4UP, it is O(Ft) where t is the number of modified nodes of the tree, and for
PL4UP, it is O(ft) for t number of nodes in the incremental tree.

123

C. I. Ezeife, Y. Liu

Table 11 Overhead of RePL4UP and PL4UP algorithms at minsup 5%=0.05

Data set DBsize in
of events

PLWAP in
% of DB

Scode in
% of DB

RePL4UP
in % of DB

PL4UP in
% of DB

Build
time(s)
ReP+
Scode

Build
times(s)
PLWAP

Build
times(s)
PL4UP

1 K 5767 26% 2% 28% 28% 0 s 0 s 1 s

100 K 593214 5 1.2 6.2 5.8 4 4 4

200 K 1181353 3.1 1.2 4.3 4.3 7 6 7

400 K 2268304 2 1.2 3.2 3.3 13 13 14

600 K 3451710 1.6 1.2 2.8 2.8 22 20 21

800 K 4494023 1.2 1.2 2.4 2.5 28 26 30

1 M 5683824 1.1 1.1 2.2 2.3 38 33 37

4.3 Overhead of the proposed RePL4UP and PL4UP algorithms

In comparison with the non-incremental PLWAP algorithm, the incremental tech-
niques RePL4UP carries the overhead of computing and storing position codes of
small items in all database sequences in the form of small code profile as the PLWAP
tree is being built, while the PL4UP algorithm stores a bigger PLWAP tree that stores
some non-frequent events. The needed additional storages by the proposed algorithms
are still less than accessing the entire database as the small code profile data are
accessed directly to obtain the codes of a small item used to repair the RePL4UP tree
and not sequentially as a database is accessed. All three algorithms scan the original
database twice to build the compressed tree, which is now scanned once recursively to
mine the frequent patterns. Thus, we measure the size of storage needed by counting
the number of events or nodes each algorithm stores. The more the number of events
stored and accessed during mining, the higher the execution time of the algorithm as
well. On Unix Solaris system, we ran a number of experiments on datasets of sizes
1000 to 100,000 records and up to 1 million records at different minimum support
thresholds of 10, 5, 2 and 1%, where the datasets have number of attributes N = 100,
average length of sequences T = 10 and average number of items in longest frequent
patterns S = 5. To compare the overheads of the PLWAP, RePL4UP and PL4UP
algorithms, for each database size, we collected the sizes of the original database,
compressed PLWAP, RePL4UP, PL4UP trees, small code profile, time to build these
compressed database structures. We represent the size of these structures as the num-
ber of events or nodes stored by the structures. A summary of result of our runs at
minimum support of 5% = 0.5 is presented as Table 11.

It can be seen that in both the RePL4UP and the PL4UP algorithms, the size of the
compressed tree and small code is about 3% of the size of the original database and the
additional cost of building the structures in comparison to the cost of just building the
PLWAP tree is just about 4 s even for the 1 million records. At this minimum support
threshold, the small code database size is around 1% of the original DB, but it may
be larger than the tree itself depending on the minimum support and the nature of the

123

PLWAP-based incremental web sequential mining

sequences in the DB. With the same datasets, at a support of 1%, there are no small
codes because all 1-items are frequent.

5 Conclusions and future work

Two incremental web sequential mining algorithms, RePL4UP and the PL4UP, are
proposed in this paper. The RePL4UP algorithm revises an existing PLWAP tree by uti-
lizing the metadata of old database transactions as well as old mined frequent patterns
in order to incrementally update web log sequential patterns. One major contribution
of work is the technique for efficiently using position codes of small items in data-
base sequences to restore information about previous small items that were not stored
in the tree, when the database is updated and these items become frequent, without
re-scanning the entire old database. The second algorithm, the PL4UP adopts a lower
minimum tolerance support middle line approach of t%, determined with average rate
of change of data in the system. The goal of PL4UP is to predict items that are likely to
become frequent when the database is updated so that their information will be stored in
the tolerance PLWAP tree. Thus, frequent patterns can be updated without scanning the
entire old database. The proposed RePL4UP and PL4UP algorithms inherit the advan-
tages of PLWAP, and no huge candidate itemsets need to be generated. They also fully
utilize old existing information like the old patterns and tree for mining the updated
database. Experiments show that the proposed algorithms outperform three prominent
incremental mining algorithms, GSP+, MFS+ and IncSpan and in particular, when the
incremental database is less than 50% of the updated database. Even when there are
too many small items in the database, the proposed algorithms outperform the other
three when the incremental database is smaller than the unchanged database. While
there is no significant difference in execution times of the RePL4UP and PL4UP algo-
rithms, the RePL4UP is more sophisticated in its approach and would always find all
patterns while the competitiveness of the results by the PL4UP depends on how good
the predicted tolerance support t% is. The PL4UP has the advantage of conceptual
simplicity and has found complete patterns in our experiments. Most importantly, the
two proposed incremental web sequential algorithms always perform better than the
non-incremental PLWAP algorithm even for mining the entire database except when
there are too many small items (over 50% of candidate items being small). Note that the
non-incremental PLWAP algorithm had been shown in Ezeife and Lu (2005) to be more
efficient than other non-incremental algorithms like the WAP-tree and GSP algorithms.

Future work should investigate combining these two algorithms for limited mem-
ory data stream applications and encoding the entire tree using the position codes of
the items. A more efficient implementation of PLWAP’s position code management
scheme even for extremely long sequences would allow the incremental RePL4UP
and PL4UP algorithms handle all datasets including those with too many small items
more efficiently. As these techniques are efficient and work for only single element set
sequences like those for web log sequences, it might be possible to extend the approach
to general multi-element sequences to take advantage of its speed. These techniques
can apply well to distributed, object-oriented, and parallel mining that may involve
continuous time series data, and to web content and text mining.

123

C. I. Ezeife, Y. Liu

Acknowledgments This research was supported by the Natural Science and Engineering Research Coun-
cil (NSERC) of Canada under an operating grant (OGP-0194134) and a University of Windsor grant.

References

Agrawal R, Srikant R (1995) Mining sequential patterns. In: Proceedings of the 11th Int’l conference on
data engineering, Taipei, pp 3–14

Berendt B, Spiliopoulou M (2000) Analyzing navigation behavior in web sites integrating multiple infor-
mation systems. VLDB Journal, Special Issue on Databases and the Web 9(1):56–75

Cheung H, Yan X, Han J (2004) IncSpan: incremental mining of sequential patterns. In: Proceedings of the
ACM SIGKDD international conference on knowledge discovery and data mining, Seattle, pp 527–532

Cheung DW, Han J, Ng VT, Wong CY (1996) Maintenance of discovered association rules in large data-
base: an incremental updating technique. In: Proceedings of the 12th international conference on data
Engineering, New Orleans

Cheung D, Kao B, Lee J (1997) Discovering user access patterns on the world wide web. In: Proceedings
of the 1st Pacific-Asia conference on knowledge discovery and data mining (PAKDD’97)

El-Sayed M, Carolina R, Elke AR (2004) FS-miner: efficient and incremental mining of frequent sequence
patterns in web logs. In: Proceedings of the 6th ACM international workshop on web information and
data management, Washington DC, pp 128–135

Ezeife CI, Chen M (2004a) Mining web sequential patterns incrementally with revised PLWAP tree. In:
Proceedings of the fifth international conference on web-age information management (WAIM 2004)
Dalian, published in LNCS by Springer, pp 539–548

Ezeife CI, Chen M (2004b) Incremental mining of web sequential patterns using PLWAP tree on toler-
ance minsupport. In: Proceedings of the IEEE 8th international database engineering and applications
symposium (IDEAS04), Coimbra, pp 465–479

Ezeife CI, Lu Y (2005) Mining web log sequential patterns with position coded pre-order linked WAP-tree.
Int J Data Mining Knowl Discov, Kluwer Acad Publ 10:5–38

Ezeife CI, Lu Yi, Liu Yi (2005) PLWAP sequential mining: open source code proceedings of the open
source data mining workshop on frequent pattern mining implementations, in conjunction with ACM
SIGKDD, Chicago, August 21–24, pp 26–29

Han J, Kamber M (2001) Data mining: concepts and techniques Morgan Kaufmann
Han J, Pei J, Yin Y, Mao R (2004) Mining frequent patterns without candidate generation: a frequent-pattern

tree approach. Int J Data Mining Knowl Discov, Kluwer Acad Publ 8(1):53–87
Kao B, Zhang M, Yi C-L, Cheung DW (2005) Efficient algorithms for mining and incremental update of

maximal frequent sequences. Int J Data Mining Knowl Discov, Springer Sci Publ 10:87–116
Lee Y-S, Yen S-J (2008) Incremental and interactive mining of web traversal patterns. Inform Sci

178(2):287–306
Liu J-W, Yu S-J, Le J-J (2003) Online mining dynamic web news patterns using machine learn methods.

FSKD Conference, Springer Lecture Notes in AI 3614, pp 462–465
Lu Yi, Ezeife CI (2003) Position coded pre-order linked WAP-tree for web log sequential pattern mining.

In: Proceedings of the 7th Pacific-Asia conference on knowledge discovery and data mining (PAKDD
2003), Seoul, Korea

Masseglia F, Poncelet P, Cicchetti R (1999) An efficient algorithm for web usage mining. Netw Inform
Syst J 2(5–6):571–603

Masseglia F, Poncelet P, Teisseire M (2003) Incremental mining of sequential patterns in large databases.
Data Knowl Eng 46(1):97–121

Nanopoulos A, Manolopoulos Y (2000) Finding generalized path patterns for web log data mining. Data
Knowl Eng 37(3):243–266

Nanopoulos A, Manolopoulos Y (2001) Mining patterns from graph traversals. Data Knowl Eng 37(3):243–
266

Nguyen S, Sun X, Orlowska M (2005) Improvements of incSpan: incremental mining of sequential pat-
terns in large database. In: Proceedings 2000 Pacific-Asia conference on knowledge discovery and
data mining (PAKDD’05), pp 442–451

Ou J-C, Lee C-H, Chen M-S (2008) Incremental web log mining with dynamic threshold. VLDBJ 17:827–
847

123

PLWAP-based incremental web sequential mining

Parthasarathy S, Zaki MJ, Ogihara M, Dwarkadas S (1999) Incremental and interactive sequence min-
ing. In: Proceedings of the 8th international conference on information and knowledge management
(CIKM99), Kansas City, pp 251– 258

Pei J, Han J, Mortazavi-asl B, Zhu H (2000) Mining access patterns efficiently from web logs. In: proceed-
ings 2000 Pacific-Asia conference on knowledge discovery and data mining (PAKDD’00), Kyoto,
pp 396–407

Pei J, Han J, Mortazavi-Asl B, Pinto H (2001) PrefixSpan: mining sequential patterns efficiently by prefix-
projected pattern growth. In: The proceedings of the 2001 international conference on data engineering
(ICDE ’01), pp 215–224

Srikant R, Agrawal R (1995) Mining generalized association rules. In: Proceedings of the 21st int’l confer-
ence on very large databases (VLDB), Zurich

Spiliopoulou M (1999) The laborious way from data mining to web mining. J Comput Syst Sci Eng, Special
Issue Semant Web 14:113–126

Tang P, Turkia M (2007) Mining frequent web access patterns with partial enumerations. 45th ACM Annual
Southeast Regional Conference, 23–24 March 2007, Winston-Salem, N.Carolina, pp 226–231

Wang K (1997) Discovering patterns from large and dynamic sequential data. J Intell Inform Syst 9(1):33–
56

Wang K, Tan J (1996) Incremental discovery of sequential patterns. In: Proceedings of the ACM workshop
on research issues on data mining and knowledge discovery, Montreal

Yen S-J, Lee Y-S (2006) An incremental data mining algorithm for discovering web access patterns. Int J
Bus Intell Data Mining 1(3):288–303

Zake MJ (2000) SPADE: an efficient algorithm for mining frequent sequences. Mach Learn 42:31–60
Zhang M, Kao B, Cheung D, Yip C-L (2002) Efficient algorithms for incremental update of frequent

sequences. In: Proceedings of the sixth Pacific-Asia conference on knowledge discovery and data
mining (PAKDD), pp 186–197

Zhang M, Kao B, Yip C-L (2002) A comparison study on algorithms for incremental update of frequent
sequences. In: Proceedings of the IEEE international conference on data mining ICDM, pp 554–561

123

	Fast incremental mining of web sequential patterns with PLWAP tree
	Abstract
	1 Introduction
	1.1 Problem definition
	1.2 Background
	1.3 Related work
	1.4 Contributions
	1.5 Outline of the paper

	2 The first proposed incremental RePL4UP algorithm
	2.1 Definitions
	2.2 Mining incremental patterns with RePL4UP

	3 The second proposed incremental PL4UP algorithm
	3.1 Use of lower tolerance support t% for building PL4UP tree
	3.2 Incremental mining of FPs with PL4UP using tolerance support

	4 Performance analysis and experimental evaluation
	4.1 Experimental analysis
	4.2 Time complexities of RePL4UP and PL4UP algorithms
	4.3 Overhead of the proposed RePL4UP and PL4UP algorithms

	5 Conclusions and future work
	Acknowledgments

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

