
Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

International Journal of Data Warehousing & Mining, 1(2), 1-22, April-June 2005 1

Use of Smart Tokens in Cleaning
Integrated Warehouse Data

Christie I. Ezeife, University of Windsor, Canada

Timothy E. Ohanekwu, University of Windsor, Canada

ABSTRACT

Identifying integrated records that represent the same real-world object in numerous ways is
just one form of data disparity (dirt) to be resolved in a data warehouse. Data cleaning is a
complex process, which uses multidisciplinary techniques to resolve conflicts in data drawn
from different data sources. There is a need for initial cleaning at the time a data warehouse is
built, and incremental cleaning whenever new records are brought into the data warehouse
during refreshing. Existing work on data cleaning have used pre-specified record match
thresholds and multiple scanning of records to determine matching records in integrated data.
Little attention has been paid to incremental matching of records. Determining optimal record
match score threshold in a domain is hard. Also, direct long record string comparison is highly
inefficient and intolerant to typing errors. Thus, this article proposes two algorithms, the first
of which uses smart tokens defined from integrated records to match and identify duplicate
records during initial warehouse cleaning. The second algorithm uses these tokens for fast,
incremental cleaning during warehouse refreshing. Every attribute value forms either a special
token like birth date or an ordinary token, which can be alphabetic, numeric, or alphanumeric.
Rules are applied for forming tokens belonging to each of these four classes. These tokens are
sorted and used for record match. The tokens also form very good warehouse identifiers for
future faster incremental warehouse cleaning. This approach eliminates the need for match
threshold and multiple passes at data. Experiments show that using tokens for record comparison
produces a far better result than using the entire or greater part of a record.

Keywords: data dirt; data disparity; data warehouse; token-based data cleaning

INTRODUCTION

Several independent data sources are
integrated into a huge data repository called
a data warehouse for complex analytical
and querying purposes (Calvanese,
Giacomo, Lenzerini, Nardi, & Rosati, 2000;
Inmon, 1996). A data warehouse, therefore,

is a database made up of integrated, sub-
ject-oriented, time-variant, and nonvolatile
data designed for use in decision support
querying (Inmon, 1996). Traditional data-
bases are different from data warehouses
because traditional databases: (1) are de-
signed around enterprise functions (e.g.,
savings account database for maintaining

2 International Journal of Data Warehousing & Mining, 1(2), 1-22, April-June 2005

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

current savings account balance of each
customer), and not organized around at-
tribute subjects (like customers, account
type, transaction type); (2) store only cur-
rent transaction data (e.g., has current ac-
count balance for each customer, but does
not remember the account balance before
last deposit) because it is not historical and
does not remember account balance an
hour or a week ago; (3) undergo frequent
updates (e.g., new deposit into savings ac-
count will change the current balance),
meaning that their data are volatile; and (4)
are usually stand-alone repository (e.g., has
only savings account balance and not
checking or other accounts), implying that
they are not integrated.

Data sources integrated into the
warehouse may be deployed on different
hardware and software platforms (Ezeife,
2001), as well as different data models. For
example, a financial institution in a given
city may have separate databases for its
different units. Its checking accounts unit
may have a data source maintained as an
XML file (as shown in Figure 1) deployed
on an IBM PC, while its savings accounts
department may have a relational database
(shown as Figure 2) mounted on an Apple
Macintosh computer. Yet, the credit card
unit may store its client data in a flat file
deployed on a UNIX-controlled mini com-
puter. Figures 1 and 2 are examples of func-
tion-oriented data sources, which are good
for answering simple and one-dimensional
queries such as:

What is the balance of each customer in
their savings account now?

How many customers now have balance
greater than $1,500.00?

In order to answer queries like “Get
account balance of all customers in both

checking and savings account” or “Get the
total balance maintained by each customer
in all accounts every week for one year,” it
is necessary to visit both databases for the
first query. For the second query, it is nec-
essary to have stored a history of account
balances as they change over time and bet-
ter, in an integrated data source. To gain
competitive advantage, the financial insti-
tution in our example may want to pose
queries for finding information like: (1)
when in a given year customers deposit
huge amounts of money in their accounts,
(2) the pattern/trend in the customers’
needs/behaviors, (3) season-by-season
analysis of transactions carried out in the
bank, and (4) when in a given year the credit
card unit makes its greatest profit. A data
warehouse—being historical, integrated,
subject-oriented, nonvolatile, and summa-
rized data—provides the necessary plat-
form for answering such business and man-
agement decision support queries.

The data taken from two or more
sources are “dirty” in nature due to het-
erogeneity in representations. Therefore,
data heading to the data warehouse needs
to be cleaned for the warehouse to be reli-
able. This article presents two efficient to-
ken-based data cleaning algorithms for ini-
tial data warehouse cleaning and incremen-
tal data warehouse cleaning during ware-
house refreshing.

DATA CLEANING
OVERVIEW

Data cleaning is a technique for de-
tecting missing and incorrect values and
correcting them, as well as matching dupli-
cate records (Simoudis, Livezey, & Kerber,
1995) in an integrated data warehouse or
database table. It focuses on eliminating
variations in data contents and reducing data

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

International Journal of Data Warehousing & Mining, 1(2), 1-22, April-June 2005 3

redundancy, and is aimed at improving the
overall data quality and consistency
(Delvin, 1997). Data cleaning determines
first whether two or more records repre-
sented differently are referring to the same
real-world entity, and secondly it performs
any one (or combination) of the following
actions (if the records represent the same
object): (1) combining them to get a con-
solidated complete record, (2) unifying them
with a single entity identifier, and (3) re-
taining only one copy of them. Data clean-
ing involves decomposing and re-assem-
bling data (Kimball, 1996), and sometimes,
“semantic enrichment,” e.g., acquiring ad-
ditional information from external source(s)

to resolve conflicts (Parent & Spaccapietra,
1998).

Two main causes of “Dirt” or con-
flicts in data are synonyms and homonyms,
though there are many others such as: “in-
complete, missing, or null values”; “spell-
ing, phonetic, or typing errors”; “mis-field-
ing” (e.g., a country’s name in a state/prov-
ince field); “noise or contradicting entry,”
such as values outside the accepted range
(e.g., 31/9/99); “scanning errors” (e.g., al-
phabetic “I” instead of numeric “1” and
vice versa); “type mismatch”; and so on.
While all other causes of data dirt may be
as a result of “oversight” or “human er-
rors,” synonyms and homonyms are not.

Figure 1. Instance of an XML data source

Figure 2. Instance of a relational data source

cno

cname

cbirth

caddress

cphone

csex

occupation

cbalance

S002

T. Emenike Ohane

04-06-75

#995 Roundup, Windsor, n9b 2t7

2566416

M

IT Specialist

500.50

4 International Journal of Data Warehousing & Mining, 1(2), 1-22, April-June 2005

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

For example, a document collection center
in a unit of an organization may use entity
acronyms/abbreviations (e.g., “ACM”),
while another center may write it in full
(e.g., “Association of Computing Machin-
ery”). There may also be a situation where
two different scales are used to express
the same level of performance, for example,
“A+” versus “99%.” Homonymous dirt
arises when the same “term” or “expres-
sion” refers to more than one entity, for
example, many occurrences of “John
Smith” in a data source may refer to dif-
ferent persons.

The main differences between data
cleaning in a data warehouse and data
cleaning in a single file is that for database
systems, which integrate multiple data
sources (like data warehouses, federated
databases, and global Web-based informa-
tion systems), data quality work to be done
includes: all the single source data cleaning
problems, as well as increased synonym
(different names for same entity) and hom-
onym (same name for different entities)
problems. Also, while some duplicates need
to be eliminated, others need to be retained
after proper object identifier merging. Gen-
erally, no identified duplicates are elimi-
nated from the warehouse fact table, but
warehouse identification unification is re-
quired for all duplicates in the fact table.
Integrated sources also have increased re-
dundancy in data.

Omitting the data cleaning process in
a data warehouse system will result in spu-
rious results. For example, a warehouse
built from the two data sources in Figures
1 and 2, but without the cleaning process,
is unable to correctly answer queries like:
“Get the total balance maintained in all ac-
counts (checking and savings) by each cus-
tomer.” This is because in the checking
database this customer is represented as
Timothy Ohanekwu, but in the savings da-

tabase he is represented as T. Emenike
Ohane. There are other discrepancies in
other fields as well. Thus, the two records
for the same person (Timothy Ohanekwu)
from the two data sources are treated as
though they belong to different entities with-
out data cleaning. This simple example dem-
onstrates the importance of cleaning inte-
grated data.

RELATED WORK

Bitton and Dewitt (1983) propose
sorting records on some designated fields
to bring potentially identical records together
in a large data file. However, the draw-
back of this work is that the fields upon
which sorting is based are “dirty,” and thus
may fail to bring matching records together.
Secondly, the time complexity for the record
comparison phase is quadratic in nature,
requiring N2 – N*1/2 comparisons (where
N is the number of records in the data set).
The sorted neighborhood method (SNM)
in Hernandez and Stolfo (1995, 1998) solves
the merge/purge problem in a large data-
base by: (1) forming token keys from some
selected fields of the database table, (2)
sorting the entire data set on these keys,
(3) clustering the sorted records to have
records with same token keys in the same
clusters, and (4) using a sliding window of
a fixed size to compare records in each
cluster and merge records if they are
equivalent. Thus, given an integrated list of
N records as demonstrated with four
records shown in Figure 3.

The keys are formed from these
records by concatenating the first three con-
sonants of the record’s last name with the
first three letters of the first name, followed
by the address number and all of the con-
sonants of the street name, followed by the
first three digits of the SSN. This will re-

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

International Journal of Data Warehousing & Mining, 1(2), 1-22, April-June 2005 5

sult in the following token keys for the four
records (see Figure 4).

This means that each record has an
extra field (Tokenkey). The records are
sorted with these keys so that likely dupli-
cate records are brought together. Com-
parison of records for equivalence is a com-
plex inferential process, which takes into
consideration more information from the
records than the keys used to bring them
together. The equational theory is used to
define the logic (semantic) of domain
equivalence with rules to determine if
records close together are the same. The
multi-pass version of this algorithm changes
the sort key header field for each indepen-
dent run through the dataset. For example,
one run may use the student’s contact ad-
dress as the head of the key, and the next
run may be based on key with the original
record SSN as the head. The notion of sort-
ing records on token keys is an attractive
contribution by this work, but comparison
based on the original records reduces its
optimality since the records are dirty. The
equational theory used in the multi-pass
version of the work is also a time-consum-
ing process.

The basic field matching algorithm
(Monge & Elkan, 1996) first extracts and
sorts atomic strings (words) of each field
of each record, and second finds the num-
ber of strings from each of the two records
that match by computing the matching score
for pairs of strings. The string match scores
are later combined to obtain the field match
scores. The record match score is in turn
computed from the field match scores, and
the value of the record match score in com-
parison to a pre-selected threshold is used
to decide if the two records being com-
pared are the same. For example, after
removing stop words like “of”, the pro-
cess of checking if two strings, A and B,
are duplicates proceeds as discussed in
Figure 5.

There are six strings, k {Comput, Sci,
San, Diego, Univ, Calif} in A that match
some strings in B. The overall match score
is computed with the following formula:

(k/(|A| + |B|))/2 = (6(8 + 7))/2 = 6 * 2/15 = 0.8

If the pre-defined match threshold is
0.75, then A and B are duplicates since their
match score of 0.8 is greater than the
threshold.

Figure 3.

Figure 4.

RecNum FirstName LastName Address SSN
1 Pat Stalpe 415 Busy Street 123456789
2 Pat Stiles 415 Bus Street 123458689
3 Pat Stalfe 415 Busy Street 123456789
4 Pat Stally 415 Busy Street 123456789

RecNum Tokenkey
1 STLPAT415BS123
2 STLPAT415BS123
3 STLPAT415BS123
4 STLPAT415BS123

6 International Journal of Data Warehousing & Mining, 1(2), 1-22, April-June 2005

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The work described in Lee, Hongjun,
Tok, and Yee (1999) is an enhancement on
the SNM by Hernandez and Stolfo (1998),
which introduces the idea of field pre-pro-
cessing prior to sorting, tokenization, and
comparison phases. Pre-processing the
fields with an external data source, such
as birth registry, before other data cleaning
phases solves a lot of cleaning problems,
but using an external data source to achieve
that is simply infeasible because: (1) the
external source may not be accessible; and
(2) if it is accessible, it may most likely be
through a network, which may take a lot
of time. A brief version of one of the pro-
posed token-based warehouse cleaning
algorithms for initial data warehouse
cleaning is presented in Ohanekwu and
Ezeife (2003).

CONTRIBUTIONS

Existing techniques that have used
tokens for bringing likely duplicate records
together were presented by Hernandez and
Stolfo (1995, 1998) and Lee et al. (1999).
Work that used pre-determined match
score thresholds to decide on a match be-
tween two input strings includes that by Lee
et al. (1999) and Monge and Elkan (1996).
Work that depends on external or interac-
tive input during duplicate detection in-

cludes that by Galharda, Florescu, Shasha,
Simon, and Saita (2001), Lee et al. (1999)
and Raman and Hellerstein (2001). Achiev-
ing a high recall (cleaning accuracy) in a
reasonable time, which is less dependent
on match score thresholds and external in-
tervention, are data cleaning research goals
this article contributes to. Thus, this article
first proposes a method for defining smart
tokens composed from most important
fields of records, which are effectively used
for identifying duplicate records in data
warehouses and other records. The smart
token-based technique achieves a better
result than the record-based techniques of
comparable algorithms. By using short to-
kens for record comparisons, a high recall/
precision is achieved. The technique also
drastically lowers the dependency of data
cleaning on match score “threshold” choice.
This article also proposes a second algo-
rithm for using already defined smart to-
kens to perform incremental cleaning of
subsequent integrated data warehouse
records during refreshing.

OUTLINE OF THE
ARTICLE

The rest of this article is organized as
follows. An example of a dirty data ware-
house with its data sources is given next.

Figure 5.

A = “Comput Sci. Eng. Dept. University of California, San Diego”

B = “Department Computer Science, Univ. Calif., San Diego”

After sorting words, the strings A and B become:

A = “California Comput Dept Diego Eng San Sci Univeristy”

B = “Calif Computer Department Diego San Science Univ”

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

International Journal of Data Warehousing & Mining, 1(2), 1-22, April-June 2005 7

We then formally describe the token-based
data cleaning algorithms, followed by a pre-
sentation of a number of experimental
cases for performance comparisons. We
end with conclusions and future work.

AN EXAMPLE

Before presentation of the dirt to be
cleaned, an example data warehouse
schema is presented in the two types of
tables in the data warehouse—integrated
fact table and dimension tables.

Data Warehouse Schema

The example given is that of a data
warehouse built from two data sources, the
savings account (SA), and the checking
account (CA) of a bank. The warehouse
fact table keeps track of the amount of
money involved in different kinds of trans-
actions (not account balance) executed by
bank customers over a period of time. The
data warehouse fact table (FT) shown in
Table 3 and the customer dimension table
(CDT) given as Table 4 are yet to be
cleaned. Tables 1 (TA transactions) and 2
(CA transactions) are used to record trans-
actions executed on the two bank accounts,
SA and CA, by customers for a short pe-
riod of time. The “dirt” to be cleaned in
Table 4 (dirty CDT) and Table 3 (dirty FT)
are described in the first part of this sec-

tion, while the tasks accomplished by the
proposed algorithm are outlined in the sec-
ond part. The data warehouse schema,
which represents an integration of the sav-
ings account and checking account data
sources, is shown in Figure 6.

This data warehouse consists of the
main fact table, Table 3 (dirty FT), and four
dimension tables, only one of which (Table
4, dirty CDT) will be cleaned in the ex-
ample to demonstrate the proposed tech-
nique. Generally, smart tokens are first cre-
ated on the main entity dimension table, and
the warehouse identifier generated from
these tokens is applied to both this table
and the fact table for duplicate record han-
dling. The rest of the dimension tables have
limited single-source data quality problems
that can be handled using token keys from
the fields or any other approach.

Dirt in the Customer Dimension
and Fact Tables

Two levels of dirt exist in Table 4,
namely, field- or attribute-level dirt and
record-level dirt. The field-level dirt occurs
in each field in a record. For example, the
“WID” field of Table 4 has “type-mis-
match” dirt, since different data types are
used to represent the same customer.
There are also format differences in both
“phone” and “birth” fields. For example,
the phone number “2566416” in row 2 is

Figure 6.

 FT (WID, Trans-code, Account-code, Trans-time, Amount)
 CDT (WID, Name, Sex, Phone, DBirth, Address)
 Transactions (Trans-code, Trans-name)
 Accounts (Account-code, Account-name)
 Times (Trans-time, Day, Month, Year)

8 International Journal of Data Warehousing & Mining, 1(2), 1-22, April-June 2005

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

written as “5192566416” in row 9, while
the date of birth of the customer in row 2
written as “01-Jan-1975” has a different
format (1-1-75) in row 9. Other field-level
dirt apparent in Table 4 include: (1) typo-
graphic errors, and (2) different address-
ing conventions (in address field). The im-
plication of field-level dirt is that no par-
ticular field is clean enough to determine
record match. Record-level dirt is the com-
bination of all the fields’ dirt in a given row.
For example, row 1 of Table 4 is a record
with the following content (excluding the
Row and WID fields), “John Smith O, M,
(519) 111-1234, 25-Dec-70, Sunset #
995 N9B3P4.”

This appears to be the same person
as row 6, with the following content (ex-
cluding the Row and WID fields), “S. John,
M, 1111234, 25-12-1970, 995 Sunset Ave,
N9B 3P4.” An obvious implication of
record-level dirt is “that duplicates are not

easily determined.” The fact table (Table
3, dirty FT) contains only field-level dirt in
the “WID” field as it is, using different
WID to represent the same customer, and
that makes it difficult to determine all the
transactions conducted by the same cus-
tomers.

The Cleaning Tasks

Two cleaning tasks to be carried out
on the customer dimension table (Table 4,
dirty CDT) are: (1) duplicate detection, and
(2) duplicate elimination. Duplicate detec-
tion requires a combination of (pieces of)
information from two or more fields to find
if two or more records are the same. Du-
plicate elimination task ensures that only
one copy of records found to be duplicates
is retained.

The only way to establish a link be-
tween the fact table (Table 3, dirty FT) and

Table 1. Transaction history for SA customers (SA transactions)

Table 2. Transaction history for CA customers (CA transactions)

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

International Journal of Data Warehousing & Mining, 1(2), 1-22, April-June 2005 9

the customer dimension table (Table 4, dirty
CDT) is to unify the entity identifier, such
that it is possible to determine the transac-
tions conducted by a given entity. This is
not yet the case, because different identi-
ties (e.g., S001 from the savings account,

and 1001 from the checking account) are
used to represent the same entity (John
Smith O and S. John). The effect of this is
that it is impossible to obtain the correct
total amount deposited in all accounts by
“John Smith O.” This is also the case with

Table 3. The yet-to-be-cleaned fact table (dirty FT)

 Table 4. The yet-to-be-cleaned customer dimension table (dirty CDT)

10 International Journal of Data Warehousing & Mining, 1(2), 1-22, April-June 2005

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

“Tim E. Ohanekwu,” “Ambrose A. Diana,”
and so forth. The solution to this problem is
to use the same identifier value for the
same real-world entity. For example,
“122570JOS” will be used for all occur-
rences of “S001” and “1001” in the fact
table to reflect the fact that “John Smith O”
and “S. John” represent the same person.
The same is done for records “S002” and
“1004,” and “S004” and “1003.”

The next section discusses the pro-
cess of producing the desired fact table
(Table 5, clean FT) and customer dimen-
sion table (Table 6, clean CDT) after clean-
ing Tables 3 (dirty FT) and 4 (dirty CDT)
respectively, using the proposed TB cleaner
algorithm.

PROPOSED
TOKEN-BASED
DATA CLEANING
ALGORITHMS

Two data cleaning algorithms are pre-
sented in this section. The first algorithm,
suitable for cleaning data when a data ware-

house is being built, is presented in the first
subsection, while the second algorithm de-
signed for subsequent/incremental clean-
ing of an existing data warehouse is de-
scribed in the second subsection.

Initial Warehouse
TB Cleaner Algorithm

The proposed warehouse token-
based (initial TB cleaner) data cleaning al-
gorithm accepts “dirty” source tables, such
as Table 1 (recent SA transactions), Table
2 (recent CA transactions), Table 3 (dirty
FT), and Table 4 (dirty CDT) and returns
“cleaned” data warehouse tables, such as
Tables 5 (clean FT) and 6 (clean CDT).
Basically, a user selects two or three most
important fields and ranks them based on
their power to uniquely identify records.
The elements in the selected fields are
tokenized, resulting in a table of tokens
(shown as Table 7). The two most uniquely
identifying fields of the table are used as
two different main sort keys on the table
of “tokens” to produce two sorted token
tables, which are shown as Tables 8 (to-

Table 5. The target fact table after cleaning (clean FT)

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

International Journal of Data Warehousing & Mining, 1(2), 1-22, April-June 2005 11

kens sorted on birth day—BD tokens) and
9 (tokens sorted on name—NM tokens).
Token records in close neighborhoods are
compared for a match, and warehouse ID
(WID) is generated for each record. The
four main steps (in sequence) in the algo-
rithm are described in detail below, while
the formal TB cleaner algorithm is pre-
sented as Figure 7 (TB-cleaner algorithm).

Step 1: Selection and
Ranking of Fields

The user selects and ranks two or
three fields that could be combined to most
uniquely identify records. The condition for
“fields selection and ranking” is that the
user is very familiar with the problem do-
main, and can select and rank fields ac-
cording to their unique identifying power.
We assume that the user in our banking
domain selected the following fields from
Table 4 (dirty CDT)—”Birth,” “Name,”

and “Address”—and ranked them in the
order given.

Step 2: Extraction and
Formation of Tokens

Essentially, in this step, a given at-
tribute value is transformed into a smart
token. A smart token is obtained by:

1. Decomposing an attribute value into spe-
cial tokens (like date and acronyms) and
ordinary tokens consisting of ordinary
words, numbers, alphanumeric terms,
punctuations, articles, salutations, and
special characters.

2. Eliminating all unimportant tokens con-
sisting of punctuations, special charac-
ters (like ‘/’, ‘(‘), articles (like ‘a’, ‘the’),
salutations (like ‘Dr’, ‘Mr’), and labels
(like ‘street’, ‘apt’, ‘blvd’).

3. Further decomposing any special tokens
to primitive terms (e.g., month day year)

Table 6. A target customer dimension table after cleaning (clean CDT)

12 International Journal of Data Warehousing & Mining, 1(2), 1-22, April-June 2005

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

and applying any necessary type con-
versions (e.g., January as 01) and vice
versa.

4. Defining smart tokens from any of the
three possible types of numeric, alpha-
betic, and alphanumeric tokens in the
field (e.g., given the alphanumeric ad-
dress “600 XYZ blvd apt 585 N7C4K4,”
rules for alphanumeric tokens will be
applied to this field to create its smart
token 585600744NCK). The three types
of tokens in the field are formed as:

a. Numeric Tokens: Each string of
number tokens representing a real-
life term (like phone number, social
security number, street number, apart-
ment number, etc.) is kept together
as one numeric token in the order they
appear originally, after removing un-
important characters. For example,
tokens for dates 25-Dec-70 and 25/
12/1970 are the same as 122570, ob-
tained after converting month to nu-
meric, and removing unimportant to-
kens and terms. With dates, the cen-
tury part “19” if present in any date

Table 7. The table of tokens

Table 8. Tokens sorted in ascending order of
birth tokens (BD tokens)

Table 9. Tokens sorted in ascending order of
name tokens (NM tokens)

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

International Journal of Data Warehousing & Mining, 1(2), 1-22, April-June 2005 13

is eliminated as an unimportant term.
With phone numbers, international
code and area codes are removed as
unimportant terms.

b. Alphabetic Tokens: Each important
alphabetic string of word tokens in
the field representing a real-life term
(like name, book title, etc.) is used to
define an alphabetic token by select-
ing the first letter in each word in the
field, sorting these letters in a spe-
cific order, and stringing them to-
gether to obtain the alphabetic token
(e.g., the token from the name
Ohanekwu Tim Emenike is EOT).

c. Alphanumeric Tokens: These are
obtained from fields that are alpha-

numeric, such as address (e.g., 600
XYZ blvd apt 585 N7C4K4), by us-
ing only the numeric and alphanu-
meric tokens from the field (600 585
N7C4K4). Any more alphanumeric
token is further decomposed into its
numeric and alphabetic components
(e.g., N7C4K4 is decomposed into
744 and NCK). Finally, the tokens in
the field are sorted in order to obtain,
for example, 585600744NCK. Apply-
ing the token extraction procedure on
the “name,” “birth,” and “address”
fields of Table 4 (dirty CDT) pro-
duces Table 7 (table of tokens).

Figure 7. Token-based data cleaning algorithm for data warehouse (TB-cleaner)

14 International Journal of Data Warehousing & Mining, 1(2), 1-22, April-June 2005

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Step 3: Sorting of Tokens

The table of tokens (Table 7) is sorted
separately on the two most uniquely identi-
fying fields according to ranking by the user.
Therefore, sorting respectively on the
“birth” and “name” token fields produces
Tables 8 (record tokens sorted on birth to-
kens—BD tokens) and 9 (record tokens
sorted on name tokens—NM tokens) re-
spectively. Records “1003” and “S004”
highlighted in Table 8 (BD tokens) are not
in the immediate neighborhood of each
other due to a “number difference” in the
birth token. The same is the case with
records “S001” and “1001” in Table 9 (NM
tokens) due to “token inequality.” It can
also be said that records “1003” and
“S004,” which are spread apart in Table 8
(BD tokens), are close neighbors in Table
9 (NM tokens). Conversely, records “S001”
and “1001,” which are not close neighbors
in Table 9 (NM tokens), are brought to close
neighborhood in Table 8 (BD tokens). The
purpose of sorting on two tokens is to catch
possible duplicate records that are not
brought together by one field token sort-
key, and by so doing, the algorithm avoids
the need to engage in numerous multi-
passes at huge tables. The duplicate de-
tection results from both token tables are
eventually combined to give the final opti-
mal result as explained later.

Step 4: Duplicate Detection,
Elimination, and Generation of

Warehouse Identification

The main cleaning tasks are accom-
plished in this step. The three sub-steps in-
volved in cleaning are: detection of record
duplicates, elimination of duplicates, and
generation and applying of warehouse iden-
tification (WID).

Detection of Duplicates

The “token-based” record match is
based on the following valid argument:

If tokens are sufficiently adequate to
bring potential duplicate records to-
gether, then they can equally be used to
determine record match.

The above argument is formalized as
proposition 1:

Proposition 1: Two or more records from
different sources within the same appli-
cation domain would most likely have
the same or nearly the same tokens if
such tokens were extracted from the
most uniquely identifying attributes of the
records.

The following sequence is followed
when two records are being matched.
Given two records, R

1
 and R

2
, having m

pairs of token fields, R
1
t
1
, R

1
t
2
,…, R

1
t
m
;

R
2
t
1
,R

2
t
2
,…,R

2
t
m
. First, the similarity match

count (SMC) is determined. SMC is the
number n of corresponding token fields that
match, divided by the total number m of
token fields and ranges from 0.00 to 1.00.
The value of SMC of a match is used to
determine whether records R

1
 and R

2
are:

(1) a perfect match (if SMC is 1.0), (2) a
near perfect match (if SMC is between
0.67 and 0.99), (3) maybe a match (if SMC
is between 0.33 and 0.66), and (4) no match
at all (if SMC is less than 0.33). When the
SMC results in a “maybe match,” a func-
tion further computes the “similarity match
ratio” (SMR) of each of the pairs of to-
kens that did not match exactly. SMR is a
character-level comparison that is used to
determine whether the field token pair
match or not. Given two tokens t

1
 and t

2,

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

International Journal of Data Warehousing & Mining, 1(2), 1-22, April-June 2005 15

with m and n characters respectively, and
also given that the number of characters
common in t

1
 and t

2
 is c, SMR is defined

as
mn

c

+
2

. Tokens t
1
 and t

2
 are considered a

match if and only if SMR ≥ 0.67. Once the
SMRs of the tokens are used to determine
the number of tokens that match, the SMC
of the records is now computed in order to
declare the records a match or not. The
outcome of applying the above duplicate
detection procedures to tokens sorted on
birth attribute in Table 8 (BD tokens) are
the following pairs of duplicate records:
(S001,1001), (S002,1004), (S003,1002).
Similarly, applying the same procedures to
the second token table, Table 9 (NM to-
kens), which is sorted on the name attribute,
results in the following duplicates being
identified: (S002, 1004), (S003, 1002),
(S004, 1003). The use of two token sort
keys serves to identify all possible dupli-
cates. It can be seen that each of the to-
ken tables missed one duplicate that is iden-
tified by the other. Finally the duplicate re-
sults identified by each of the token tables
are integrated to obtain the list of record
duplicates as: (S001, 1001), (S002, 1004),
(S003, 1002), and (S004, 1003).

Elimination of Duplicates and
Generation of WID

The WID is formed from the first
record in the duplicate set of Table 10 (du-
plicate record list table) by concatenating
the two most important tokens used in the
sorting of the table of tokens shown in this
table. Only the first record in the duplicate
set is retained in the customer dimension
table, while the rest are deleted. The old
WID of the corresponding record is over-
written with the newly generated WID.
The old WID of the records in the fact table
corresponding to the record(s) in the dupli-
cate set are overwritten with the new WID.
The final result is a duplicate-free and
cleaned customer dimension table (Table
6, clean CDT) and an entity-unified fact
table (Table 5, clean FT). In addition, a log
table (Table 11) is generated and stored for
subsequent cleaning tasks.

Second Proposed Algorithm
for Cleaning an Existing Data

Warehouse: Refresh TB Cleaner

This section presents a token-based
algorithm (refresh TB cleaner) for clean-
ing an existing data warehouse. Assuming

Table 10. Duplicate record lists for WID generation (duplicate list)

16 International Journal of Data Warehousing & Mining, 1(2), 1-22, April-June 2005

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

(as an example) that data to either refresh
or expand the warehouse with are fetched
from Tables 12 (refresh FT) and 13 (re-
fresh CDT). Table 12 contains transactions
carried out by persons in Table 13 (refresh
CDT). This algorithm proceeds step-wise
as follows.

Step 1: Token Composition

This algorithm (refresh TB cleaner),
like the initial version (initial TB cleaner),
starts token formation with a main dimen-
sion table, which in this case is Table 13
(refresh CDT). The first step is to com-
pose tokens from the two most uniquely
identifying fields, namely, “birth” and
“name” for a given record in Table 13 in a
similar manner as described earlier. For
example, the tokens t

1
and t

2
 formed from

those two fields for the first record in Table
13 (refresh CDT) are “122570” and “JOS.”

Step 2: Log Duplicate
Cluster Formation

A cluster is formed from the log table
(Table 11) using t

1
and t

2
 to determine

whether each of the new records in Table
13 (refresh CDT) is: (1) new to the ware-
house (when cluster is empty), (2) has only
one existing record match in the log table
(when cluster has one record), or (3) has
more than one existing record match in the
log table (when cluster has more than one
record). The cluster is defined as follows:

Select into cluster, c all records from
Log Table 11 where Birth-Token = t

1
 and

Name-Token = t
2
;

Step 3: Examine Cluster,
Define WID and Refresh

Examine the cluster c returned by the
query in step 2. The refresh action to take
depends on the contents of c as follows.
When c is empty, it indicates a new cus-
tomer and thus, the two tokens t

1
and t

2
 for

the new transaction are simply concat-
enated and used as this customer’s ware-
house identifier, and applied to the dimen-
sion, fact, and log tables. When c has one
existing record in the log table, the WID of
this record is used as the WID of the new
record for refreshing. When c has more
than one existing record in the log table,

Table 11. The log table for subsequent data warehouse cleaning (LOG table)

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

International Journal of Data Warehousing & Mining, 1(2), 1-22, April-June 2005 17

similarity match count of the new record
and each record in the cluster is used to
determine which record in the cluster the
new record matches before using the
matching record’s WID to refresh the
warehouse tables. The operation per-
formed in this step is expressed formally
as:

If c is empty, then generate WID from t
1

and t
2
 for a new customer and refresh;

Else if c has only one element, then use
WID of this existing customer to refresh
new transaction;

Else if c contains more than one element,
then perform additional task to deter-
mine the actual record and then perform
action for an existing customer;

Applying this algorithm on Tables 12
(refresh transactions) and 13 (refresh CDT)
discovers that customers “S001,” “1001,”
and “CC001” already exist in the ware-
house, while “1006” and “CC002” are new
entrants into the warehouse. Our incremen-
tal warehouse cleaning algorithm records
100% subsequent cleaning efficiency.

PERFORMANCE
ANALYSIS

This section presents some results of
experiments conducted to measure the per-
formance of the proposed token-based al-
gorithms (TB cleaner) in comparison with
two other algorithms, namely, the basic field
matching algorithm (Basic alg—Monge &
Elkan, 1996) and the algorithm described
in Lee et al. (Lee’s alg—1999). All the
experiments were performed on a 733
MHZ Intel Pentium III PC with 128 MB
main memory running Windows 2000 Pro-
fessional Edition. All the programs were
coded in Java, and the input and output
tables were kept in a database managed
by Oracle 8i database management sys-
tem, personal edition. The input data were
real data taken from the telephone direc-
tory containing names of clients of Bell
Canada. Some missing fields (e.g., date of
birth) in the input data were added in order
to arrive at the desired schema. We also
carefully introduced a variety of “dirt” into
the data, such as: (i) misspellings, (ii) trans-
position errors, (iii) inconsistent use of ini-
tials in names, (iv) different addressing
schemes, (v) synonyms, (vi) homonyms,
(vii) record duplications, and (viii) data for-
mat differences.

Performance Parameters Used

The performance of each algorithm
was measured against four parameters,
namely: (1) recall (RC), (2) false-positive
error (FPE), (3) reverse false-positive er-
ror (RFP), and (4) threshold. Recall is the
ratio indicating the number of duplicates
correctly identified by a given algorithm.
For example, if “x” number of duplicates
were identified out of “y” number of dupli-

Table 12. Transactions to refresh or expand
warehouse with (refresh FT)

18 International Journal of Data Warehousing & Mining, 1(2), 1-22, April-June 2005

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

cates, then the recall is y

x
, which when

expressed in percentage is y

x
×100. False-

positive error is a ratio of wrongly identi-
fied duplicates. Formally, false-positive er-
rors:

FPE =

number of wrongly identified duplicates

 100
total number of identified duplicates

× .

We introduce reverse false-positive
error (RFP) in this article as a performance
measure; it indicates the number of dupli-
cates that a given algorithm could not iden-
tify. Formally:

RFP =
number of duplicates that escaped identification

 100
total number of duplicates

× .

We want to see how a given algo-
rithm fluctuates with varied thresholds when
all other factors are constant. We arbitrarily
chose three thresholds—0.25, 0.44, and
0.80. We maintain in this article that a good
data cleaning algorithm should have: (1) a
high recall; (2) a very low (better if zero)

FPE, hence high precision; and (3) a very
low (better if zero) RFP. It should also main-
tain a steady behavior as threshold varies.

Four Case Experiments

The results of four case studies are
given in this section. We used a small-sized
input data to enable us to evaluate the out-
put of the experiments. For each experi-
ment, we varied the threshold three times,
starting from a low threshold of 0.25, to a
medium-sized threshold of 0.44, and finally
to a high threshold of 0.80. Our proposed
algorithm (TB cleaner), the basic field
matching algorithm (Basic alg—Monge &
Elkan, 1996), and the algorithm described
in Lee et al. (Lee’s alg—1999) are com-
pared, and the results for the four case stud-
ies are given as CASE 1 to CASE 4 in
Table 14. Each of these experiments is
described next.

Experiment 1: 20 rows of records, 4 pairs
of duplicates, trivial data dirt—results in
Table 14, CASE 1.

Experiment 2: 40 rows of records, 7 pairs
of duplicates, slightly less trivial data
dirt— results in Table 14, CASE 2.

Table 13. The personal information of customers (refresh CDT)

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

International Journal of Data Warehousing & Mining, 1(2), 1-22, April-June 2005 19

Experiment 3: 80 rows of records, 10 pairs
of duplicates, advance data dirt—results
in Table 14, CASE 3.

Experiment 4: 120 rows of records, 14
pairs of duplicates, advance data dirt—
results in Table 14, CASE 4.

It is evident from the experimental
results that our algorithm (TB cleaner)
achieves an optimal cleaning correctness
in all cases when the threshold is 0.80.
Looking at the Recall column of Table 14,
at a threshold of 0.44, four pairs of dupli-
cates exist in the experimental data in
CASE 1, and TBcleaner found all four pairs
of duplicates, while the other two algorithms

found three pairs. TBcleaner also found all
seven pairs and 10 pairs of duplicates in
data CASES 2 and 3 respectively. While
TBcleaner found 13 of the 14 pairs of du-
plicates in data CASE 4, the other two al-
gorithms found only eight pairs. Results also
show that the token-based algorithm main-
tained a steady behavior over a spectrum
of thresholds because threshold is only
needed at one point (i.e., “maybe match”)
in the course of cleaning. This is not so
with Basic alg and Lee’s alg, which de-
pend on threshold at all cleaning points.
Running the techniques on much larger
datasets for different problem domains is a
future work worth exploring to better ex-

Table 14. Experiments: Recall (RC), false positive error (FPE), and reverse false positive (RFP)
error at varied thresholds produced by three algorithms

20 International Journal of Data Warehousing & Mining, 1(2), 1-22, April-June 2005

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

plore any limitations of the technique and
also to test its adequacy for refreshing data
warehouses.

CONCLUSIONS AND
FUTURE WORK

Two token-based data warehouse
cleaning algorithms were proposed in this
article. The first algorithm is suitable for
cleaning when a data warehouse is being
built, while the second algorithm is designed
for subsequent or incremental cleaning of
an existing data warehouse. The idea be-
hind the techniques is to define smart to-
kens from two most important fields by
applying simple rules for defining numeric,
alphabetic, and alphanumeric tokens. Da-
tabase records now consist of smart token
records, composed from field tokens of the
records. These smart token records are
sorted using two separate most important
field tokens. The result of this process is
two sorted token tables, which are used to
compare neighboring records for a match.
Duplicates are easily detected from these
tables, and warehouse identifiers are gen-
erated for each set of duplicates using the
concatenation of its first record’s tokens.
These warehouse identifiers are later used
for quick incremental record identification
and refreshing.

The notion of “token records” was
introduced for recording comparison. Ex-
isting algorithms only use token keys ex-
tracted from records for either sorting or
clustering (or both). Results from experi-
ments show that our token-based algorithm
outperforms the other two comparable al-
gorithms. It has a recall close to 100%, as
well as negligible false-positive errors. We
succeeded in reducing the number of to-
ken tables to a constant of 2, irrespective

of the number of fields selected by the user.
This is a great improvement over the algo-
rithms described in Hernandez and Stolfo
(1995, 1998), where the number of token
key tables increases proportionally to the
number of fields in use.

In addition, the smart tokens are more
likely applicable to domain-independent
data cleaning, and could be used as ware-
house identifiers to enhance the process of
incremental cleaning and refreshing of in-
tegrated data.

Future work should consider apply-
ing this token-based cleaning technique on
unstructured (like complete text files) and
semi-structured (like XML file) data. This
approach can also be applied to stream and
sensor network data cleaning, where im-
mediate answers are needed. Applying to
network dataset will also contribute to re-
cent network intrusion issues like spams
and viruses.

ACKNOWLEDGEMENTS

This research was supported by the
Natural Science and Engineering Research
Council (NSERC) of Canada under an op-
erating grant (OGP-0194134) and a Uni-
versity of Windsor grant.

REFERENCES

Bitton, D. & Dewitt, D.J. (1983). Dupli-
cate record elimination in large data files.
ACM Transactions on Database Sys-
tems, 8(2), 255-265.

Calvanese, D., De Giacomo, G., Lenzerini,
M., Nardi, D., & Rosati, R. (2000). Data
integration in data warehousing. Inter-
national Journal of Cooperative In-
formation Systems.

Delvin, B. (1997). Data warehouse from

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

International Journal of Data Warehousing & Mining, 1(2), 1-22, April-June 2005 21

architecture to implementation.
Addison-Wesley.

Ezeife, C.I.. (2001). Selecting and materi-
alizing horizontally partitioned ware-
house views. Elsevier Journal of Data
and Knowledge Engineering, 36(2),
185-210.

Galharda, H., Florescu, D., Shasha, D.,
Simon, E., & Saita, C. (2001). Declara-
tive data cleaning: Language, model and
algorithms. Proceedings of the 27th
VLDB Conference, Rome, Italy.

Hernandez, M.A. & Stolfo, S.J. (1995).
The merge/purge problem for large da-
tabases. Proceedings of the ACM
SIGMOD International Conference
on Management of Data (pp. 127-138).

Hernandez, M.A & Stolfo, S.J. (1998).
Real-world data is dirty: Data cleansing
and the merge/purge problem. Data
Mining and Knowledge Discovery, 2,
9-37.

Inmon, W.H. (1996). Building the data
warehouse (2nd edition). New York:
John Wiley & Sons.

Kimball, R. (1996). Dealing with dirty data.
DBMS Online, 9(10).

Lee, M.L., Hongjun, L., Tok, W.L., & Yee,
T.K (1999). Cleansing data for mining
and warehousing. Proceedings of the

10th International Conference on Da-
tabase and Expert Systems Applica-
tions (DEXA 99), Florence, Italy.

Monge, A.E. & Elkan, C.P. (1996). The
field matching problems: Algorithms and
applications. Proceedings of the 2nd
International Conference on Knowl-
edge and Data Mining (pp. 267-270).

Ohanekwu, T.E. & Ezeife, C.I. (2003, Janu-
ary). A token-based data cleaning tech-
nique for data warehouse systems. Pro-
ceedings of the International Work-
shop on Data Quality in Cooperative
Information Systems (pp. 21-26), held
in conjunction with the 9th International
Conference on Database Theory
(ICDT 2003), Siena, Italy.

Parent, C. & Spaccapietra, S. (1998). Is-
sues and approaches of database inte-
gration. Communications of the ACM,
41(5), 166-178.

Raman, V. & Hellerstein, J.M. (2001).
Potters wheel: An interactive frame-
work for data cleaning and transforma-
tion. Proceedings of the 27th VLDB
Conference, Rome, Italy.

Simoudis, E., Livezey, B., & Kerber, R.
(1995). Using recon for data cleaning.
Proceedings of KDD (pp. 282-287).

Christie I. Ezeife received her MSc in computer science from Simon Fraser University, Canada
(1988), and a PhD in computer science from the University of Manitoba, Canada (1995). She
has held academic positions at a number of universities, and has been an associate professor of
computer science at the University of Windsor, Canada, since 1999. She has authored several
technical publications, including three journal articles in the International Journal of Distributed
and Parallel Databases and the Journal of Data Mining and Knowledge Discovery (Kluwer
Academic Publishers). She has authored two books on problem solving and programs with C
(Thomson Learning Publishers, Canada).

Timothy Ohanekwu obtained his BSc (Honors) in computer science from the University of
Ibadan, Nigeria (1997). He also received his Master of Information Science (MINFSC) from

22 International Journal of Data Warehousing & Mining, 1(2), 1-22, April-June 2005

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

the same university in 1998. Timothy later received an MSc in computer science from the
Univeristy of Windsor (2002). While currently pursuing a Master in Education, he is interested
in pursuing a PhD program in the future in the areas of computer information systems and
automated learning.

