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Abstract. An object-oriented database is represented by a set of classes
connected by their class inheritance hierarchy through superclass and
subclass relationships. An object-oriented database is suitable for cap-
turing more comprehensive and detailed complexity of real world data
such as capturing multiple related tables representing data schemas of
a retail store web site, or capturing multiple databases such as several
retail store web sites. Modeling web and other data as a number of object
database schemas would enable derived, historical, and comparative min-
ing of multiple databases and tables.

This paper proposes an object-oriented class model and database
schema, and a series of class methods including that for object-oriented
join (OOJoin) for mining multiple data sources through object oriented
model. The OOJoin procedure joins superclass and subclass tables by
matching their type and super type relationships. Mining Hierarchical
Frequent Patterns (MineHFPs) from multiple integrated databases is
done by applying an extended TidFP technique which specifies the object
class hierarchy by traversing the multiple database inheritance hierarchy.
This paper also extends map-gen join method used in TidFP algorithm
to oomap-gen join for generating k-itemset object candidate patterns.
The oomap-gen join reduces the number of candidate itemsets gener-
ated through indexing of the (k-1)-itemset candidate pattern with start
and end position codes for the inheritance hierarchy level. Experimental
results show that the proposed MineHFPs algorithm for mining hierar-
chical frequent patterns is effective and efficient for complex queries.

Keywords: Object-oriented database · Mining frequent patterns · Inher-
itance hierarchy · Multiple data sources · Hierarchical frequent patterns

1 Introduction

Real world data are complex and good to be presented or modeled as objects.
An object-oriented database is suitable for capturing more comprehensive and
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2 C.I. Ezeife and D. Zhang

detailed complexity of real world data, such as different products on a Business
to Customer (B2C) website, their histories, versions, price, images. Changes in
contents or structure of a website may cause changes in the schema of the data-
base that stores the web content. For example, a new product demonstrated on
a B2C website which has its own specifications will need a different class object
schema to store it [2,4,5,11]. Since the object-oriented database allows values of
its attributes to be of complex types such as another database object, tables hav-
ing attributes with type of new product do not need to change in structure, but
only the new product object schema is also created. The attribute “new product”
can be a set of new product classes whereby members of this set can take on any
newly created product class schema as their type. An example schema represen-
tation for such a B2C web site is B2C(Webid:string, Products:set of products,
NewProducts: set of products). With relational database system, values of all
attributes of a table are single-valued such that the same B2C database schema
above can be represented as B2C(Webid:string, product1:string, product2:string,
newproduct1:string). If the web site gets new products, the B2C schema together
with other schemas in the database need to be updated. The object oriented
model presents a data structure for more clearly establishing complex relation-
ships (e.g., superclass, subclass, part-of) between different data entities (e.g.,
classes and tables) so that mining of multiple tables, classes and databases on
historical, derived and other data can be accomplished. The object schemas of
the complex data types can be used to define version, histories, derived and
other features of the products and new products so that when there are changes,
only the relevant class structure needs to change in the object oriented data-
base. Therefore, there is a great advantage in using an object-oriented database
model to represent contents captured from web sites for comparative analysis
as it presents a clear conceptual model that enables diverse, scalable mining of
multiple databases which can still be implemented with the relational database
management system (DBMS). Some recent work that also used a more realistic
conceptual model such as the object oriented model being proposed in this paper
to implement analysis of XML data (not multiple databases) include [21]. In an
object-oriented database model, the same type of product (e.g., laptop) will
be classified in the same class which inherits the properties (attributes) from its
superclass (e.g., computer) and also has its own attributes. When a new product
joins, a new class (e.g., pad) will be created for this type of product. For example,
in a B2C website that sells computers and laptops, an object-oriented database
to store the contents of this website has two classes, Computer and Laptop.
The class “Computer” has the attributes “CPU”, “RAM”, “Hard drive” while
the class “Laptop” inherits the above three attributes of its superclass, “Com-
puter” and also has its own attributes “Screen size” and “Battery life”. If a new
product, Pad which is a subtype of laptop comes to the website, a new class
“Pad” will be created and it inherits the attributes of “Laptop” class and would
also have its own attributes “3G device” or “Touch screen”. An object-oriented
database is a database management system in which information is represented
in the form of encapsulated objects (possibly active) rather than static data
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Mining Multiple Related Data Sources Using Object-Oriented Model 3

values [8,18,22]. Due to the first normal form (1NF) requiring only single valued
attributes, relational databases do not allow complex values, such as sets, lists,
or other data structures. On the other hand, the attributes of an object-oriented
database model can be a complex collection of types, such as, sets, lists, or
some other data structure such as another class object. When implemented with
an object-oriented database management system, the object oriented database
model does not need additional tables to store the data represented in a collec-
tion type. In a relational database model, procedures (that is, transactions for
manipulating the static data) must be maintained outside of the relational data
model itself through mechanisms for querying and manipulating the data. How-
ever, in an object-oriented database model, these procedures can be considered
as behaviors of the objects and can be maintained as methods of the classes. AQ1

2 Object-Oriented Database Schema

An object-oriented database model is represented by a set of classes connected
by their class inheritance hierarchy through superclass and subclass relation-
ships [9,18]. An object-oriented database consists of a set of classes, Ci, with
a class inheritance hierarchy H which is used to depict superclass and subclass
relationships between classes in the object-oriented database and can be repre-
sented as a set of pairs of class and superclass in the form of (class, superclass).
A superclass (e.g., Computer) of a class (e.g., Laptop), is a generalization of the
class such that a class inherits all the attributes and methods of its superclass.
Each class is defined as an ordered relation Ci = (K,T, S,A,M,O), where K is
the class identifier (e.g., computer id), T is the class type (e.g., Computer), S is
the super type (superclass) of the class (e.g., Root), A is a set of attributes of the
class (e.g., CPU, RAM, Hard drive) [9]. M is a set of methods of the class (e.g.,
get Number of Computer, get Number ofSalesof Computer). O is a set of encap-
sulated instance objects (equivalent to tuples) of the class which have instances
of the class attributes and methods (e.g., computers with specific CPU, RAM,
Hard drive and have instances of class methods). For example, a computer retail
store object-oriented database consists of four classes (Root, computer, laptop,
desktop), which are related through class inheritance hierarchy, H. H is specified
in the format of all pairs of (class, superclass) relationships where H={(Root,
Computer), (Laptop, Computer), (Desktop, Computer)}. Root class is the spe-
cial class which exists in every database and is the only class with no superclass.
Database schema for this database is provided as:

C1 = (K1, Type, Super, {oid, CPU, RAM, Hard drive, computer name}, o1, o2,
. . ., on);
C2 = (K2, Type, Super, {oid, Screen size, Battery life}, o1, o2, . . ., on);
C3 = (K3, Type, Super, {oid, Graphic}, o1, o2, . . ., on);

Multiple object-oriented databases and classes can also be connected by their
class inheritance hierarchy through superclass and subclass relationships with
a multiple object-oriented database inheritance hierarchy MH which is used to
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4 C.I. Ezeife and D. Zhang

Fig. 1. The Multiple databases inheritance hierarchy Tree (MHTree) for 3 databases

depict superclass and subclass relationship between classes and object-oriented
databases, and can be represented as a set of pairs of class and superclass in the
form of (class, superclass). For example, the inheritance hierarchy in the multiple
databases, MH for three computer object databases for IBM, Dell, and HP com-
puters, has every database consisting of four classes (Root, computer, laptop,
desktop). Note that when more than one database is integrated in the object
schema, the Root class of each database becomes the name of the database.
For example, the Root for the IBM database is now IBM since the integrated
schema has only one global Root class. This MH is represented with the set of
(subclass, superclass) relationships as follows. MH={(IBM, Root), (Dell, Root),
(HP, Root), (Computer, IBM), (Computer, Dell ), (Computer, HP), (Laptop,
Computer), (Desktop, Computer)}.

Definition 2.01. Tree structure of a multiple database class inheritance hier-
archy (MHTree): is the tree structure representation of multiple databases inher-
itance hierarchy. For example, the MHTree for three object-oriented computer
databases for IBM, Dell, and HP is shown in Fig. 1. �

In a multiple database, inheritance hierarchy as shown in Fig. 1, there is a
Root class. The database schema of the Root class is defined as Root(K, T, S, A,
M, O). The Root class table is a transaction table which records the transactions
on the classes in the multiple database. For example, sales transactions from dif-
ferent object databases can be recorded in the Root table. K in this Root table
is the transaction id. T is the class type of the transaction (name of the database
where the transaction comes from). S is the super type of the transaction. A is
a set of attributes consisting of the set of super type attributes of Ci class in T
called superi (the number of superi depends on the levels of the hierarchy of Ci)
and all attributes A of Ci. M is the set of class methods which are behaviors of
the Root class, such as those for updating the Root table and mining patterns
in the Root table. O is the set of instance objects of the transactions (one object
stands for one transaction). For example, a sales transaction of a purchased lap-
top from IBM database recorded in the Root table (sales transaction table) has
object id as an instance of K for transaction id (an integer number), class type T
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Mining Multiple Related Data Sources Using Object-Oriented Model 5

which indicates the database or the most senior ancestor class of the path where
the transaction comes from (database is “IBM” in this case), super type S of the
T class of the transaction, which is “Root”, the attributes A of the transaction
class path (IBM/Computer/Laptop) includes two super types of the transaction
class (IBM/Computer/Laptop). The super type S of a transaction class consists
of class hierarchy from the Root to the class the transaction is on. Thus, super1

is Computer and super2 is Laptop. In the computer object database, there are
two levels of the hierarchy and thus, the number of possible superi’s in the
Root table corresponds to the length of the inheritance hierarchy. If a transac-
tion record of the Root table concerns a desktop computer, then, the class path
of this transaction is IBM/Computer/Desktop and in that case, the super1 (is
Computer) and super2 (is Desktop). The attributes of all classes in the hierarchy
make up the attributes of the Root class, A and in this case, they are: Ci, CPU,
RAM, Hard drive, Screen size, battery life and Graphic. In an object-oriented
database model, the instantiated objects (instances) are referenced (retrieved)
by following their object pointers. The relational model has the advantage of
availability for its database management system for implementation purposes.
Thus, we have chosen to have the current implementation of our object oriented
mining (OOMining) model with the readily available relational DBMS. The rela-
tional database model also provides a clear visual conceptual representation of
table schemas showing all attributes of a table (a relational table can be used
to represent an object oriented class), including the information on the class
inheritance hierarchy. However, converting the object-oriented database model
into a relational model poses some challenges with regards to extensions needed
for such operations as join operation between objects of different classes. In an
object-oriented database model, there is no specific join operation, because the
instantiated objects are referenced by the object pointers. We will provide the
solution to address the problem of the object join operation in Sect. 4.1. We can
also define the object-oriented database as a relational database represented with
a set of tables (relations) as classes connected through foreign key relationships
as inheritance hierarchy. The foreign keys in our object-oriented database model
of object database ODB = a set of classes Ci including the Root class, where each
Ci = (K, T, S, A, M, O) and Root(K, T, S, A, M, O) are realized through the
inheritance hierarchy using the subclass and superclass relationships as defined
in the class type T, supertype S attributes of each object class. For example, a
relational database schema that represents the computer world object database
and its Root class is shown below:

Computer (comp id: string, type: string, super type: string, cpu: string, ram:
string, hard drive: string);
Laptop (laptid: string, type: string, super type: string, screen size: string, bat-
tery life: string);
Desktop (deskid: string, type: string, super type: string, graphic: string);
Root (transactionid: integer, type: string, super type: string, super1: string,
super2: string, cpu: string, ram: string, hard drive: string, screen size: string,
battery life: string, graphic: string);
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6 C.I. Ezeife and D. Zhang

Table 1. Object table of computer class

Comp id Type Super type CPU RAM Hard drive

Comp1 Laptop Computer 2 GHz 2 GB 250 GB
Comp2 Laptop Computer 2 GHz 2 GB 320 GB
Comp3 Laptop Computer 3 GHz 4 GB 350 GB
Comp4 Desktop Computer 3 GHz 4 GB 500 GB
Comp5 Desktop Computer 3 GHz 4 GB 500 GB
Comp6 Desktop Computer 3 GHz 4 GB 500 GB

Table 2. Object table of laptop class

Lap id Type Super type Screen size Battery life

Lapt1 Ideapad laptop Laptop 15” 3 h
Lapt2 Ideapad laptop Laptop 15” 3 h
Lapt3 Thinkpad laptop Laptop 17” 3.5 h

In the above relational database schema, compid is the primary key of the com-
puter table, laptid is the primary key of laptop table, deskid is the primary key
of the desktop table, and transactionid is the primary key of Root table. All class
tables have the composite foreign keys consisting of the two attributes “type”
and “super type” in each table. A computer object database for the respective
classes of Computer, Laptop and Desktop is shown in Tables 1, 2, and 3.

Table 1 is the Computer class table that stores the specifications of comput-
ers and contains all instances of all computer types. Tables 2 and 3 store the
specifications of laptops and desktops which inherit from the computer class.
An example of the Root class table that records all computers purchased from
different databases, such as IBM, Dell, or HP is shown in Table 4. Table 4 is a
sales transactions table containing eight Root class instance objects where every
object indicates one transaction of computer purchased from database specified
in ‘Type’. In the schema of the Root(K, T, S, A, M, O),“Oid” is the object id for
each transaction. Of course, “oid” is an instance of K (transaction id), which is
represented by an integer number. “Type” is the class type T of the transaction
which indicates the database or the full inheritance path for the class involved
in the transaction. For example, in transaction 1 of the Root table, it can be
seen that the full class path for this transaction is “IBM/computer/laptop”.
Although in Type, the most senior ancestor class (IBM) in the path is recorded,
the attributes of super1 and super2 will record the other classes of “computer”
and “laptop” along this inheritance hierarchy of the transaction. Thus, “Types”
are recorded as “IBM”, “Dell”, or “HP”. The “Super type” is the Root class
in this case. The set of attributes (A) of the Root class, includes: (1) super1

(computer) and super2 (laptop or desktop) for the class of the transaction. In
this example, computer class has subclasses laptop and desktop. There are two
levels of the hierarchy and so there are 2 “super” attributes and for each superi

attribute (e.g., at Computer class level), the domain (number of possible values)
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Mining Multiple Related Data Sources Using Object-Oriented Model 7

Table 3. Object table of desktop class

Desk id Type Super type Graphic

Desk1 Work station Desktop 256M
Desk2 Work station Desktop 256M
Desk3 Desktop Desktop 512M

Table 4. An instance of the root class table

Oid Type Super Super1 Super2 CPU RAM Hard Screen Battery Graphic
type drive size life

1 IBM Root Computer Laptop 2 GHz 2 GB 250 GB 15” 3 h
2 IBM Root Computer Laptop 2 GHz 4 GB 320 GB 15” 3 h
3 Dell Root Computer Laptop 2 GHz 2 GB 350 GB 17” 3.5 h
4 HP Root Computer Desktop 3 GHz 4 GB 500 GB 256M
5 HP Root Computer Desktop 3 GHz 4 GB 500 GB 256M
6 Dell Root Computer Desktop 3 GHz 4 GB 500 GB 512M
7 IBM Root Computer Laptop 2 GHz 2 GB 320 GB 15” 3 h
8 HP Root Computer Laptop 3 GHz 4 GB 350 GB 17” 3.5 h

consists of its number of breadth-wise sibling classes itself included (e.g., it is
one for class computer), while for superi class at the laptop level, the number
of possible values is two consisting of the two sibling classes, laptop and desk-
top. Thus, with the example database, the Root class has two superi classes as
super1 (computer) and super2 (laptop or desktop). If there are n levels of hierar-
chy, there will be super1, . . ., supern. (2) CPU, RAM, Hard driver, Screen size,
Battery life, Graphic are all attributes of all the classes in the hierarchy consist-
ing of computer, laptop, and desktop classes.

2.1 Frequent Pattern Mining in Object-Oriented Model

Frequent patterns are itemsets that appear in a data set with frequency (also
called support) not less than a user-specified threshold (also called minimum
support). Frequent pattern mining is the task of discovering frequent patterns
from transactional databases. Frequent pattern mining is the essential step of
association rule mining. Association rule is an implication of the form X → Yi,
where X is a set of some items in the set of all items Y, and Yi is a single
item in Y that is not present in X. Frequent pattern mining in a single relational
database table is used to find the itemsets whose frequencies over all transactions
in the database table are no less than a user-specified threshold (also called
minimum support). Therefore, frequent patterns in traditional database system
consist of items or combination of items (itemsets). In an object database table,
every object can be considered as one row (tuple) of a relational database table.
The attributes of the object can be considered as object itemsets (patterns).
Mining frequent patterns in object table is used to discover object attributes
or combinations of object attributes that appear frequently in all objects of
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8 C.I. Ezeife and D. Zhang

the class (or table) [15,20]. In Table 1, a computer class table has attributes
“CPU”, “RAM”, “Hard drive”. The objects in Table 1 have attributes, such as
< 2GHz >, < 3GHz >, < 2GB >, < 4GB >, or < 500GB >. These attributes
can be considered as itemsets. Based on Table 1 (sample of computer objects
table), some frequent pattern mining queries that can be answered are:

Query 1: What are the most frequently used hardware components (CPU, RAM,
hard drive) in IBM computer model products with a minimum support of 50%?
Query 1 can be answered by applying one of the frequent pattern mining algo-
rithms, such as TidFP [12] on Table 1.
Query 2: What are the most frequently used hardware components (CPU, RAM,
Screen size) in IBM laptop model products with a minimum support of 50%?.
Query 2 cannot be answered by applying TidFP algorithm on only computer
class Table 1 or only on laptop class Table 1, because laptop IS-A-TYPE of
computer and the computer class does not contain the specialization features of
a laptop. Similarly, the laptop class alone does not contain the generalization
features of a computer. Thus, to answer Query 2, there is need to involve the two
tables, Tables 1 and 2. Tables 1 and 2 for classes computer and laptop need to
be joined first, then we need to apply frequent pattern mining algorithms on the
joined table. If we want to mine frequent patterns of the hardware specifications
of computers that have been sold, we need to mine sales transaction table (shown
in the Root Table 4). Assume that we want to answer the query such as:
Query 3: What are the most popular hardware component specifications (CPU,
RAM, Hard drive, screen size, battery life, and Graphics card) among the com-
puter systems that have been sold with a minimum support of 50%? If we apply
TidFP algorithm on Table 4, we can only obtain the patterns in a format of
transaction id list and itemset, <Tidlist, itemset >, <1,2,3,7, 2 GHz>, <4,5,6,8,
3 GHz>, <1,3,7, 2 GB>, <2,4,5,6,8, 4 GB>, <1,3,7, 2 GHz,2 GB>, and <4,5,6,8,
3 GHz,4 GB>. However, query 3 is not good enough to discover patterns in differ-
ent hierarchies in an integrated multiple database table such as the Root Table
4. This table integrates information of hierarchy from multiple class tables in
different databases using the object oriented data model. Therefore, we need the
queries that can not only mine the frequent patterns, but also specify at which
hierarchy level the pattern is frequent. For example, the queries such as:
Query 4: What are the most popular hardware component specifications (CPU,
RAM, Hard drive, screen size, battery life, and Graphics card) among the com-
puter systems that have been sold by a particular company like Dell with a
minimum support of 50%?
Query 5: What are the most popular hardware component specifications (CPU,
RAM, Hard drive, screen size, and battery life) among a computer system sub-
group such as laptops that are sold by a particular company like Dell with a min-
imum support of 50%? To answer queries labeled as query 4 and query 5 (queries
mining frequent patterns in transactional table), the algorithm is required to
mine the attributes of computer, laptop, or desktop classes (computer, laptop,
or desktop specifications) and also specify if the pattern is frequent at which
hierarchy level.
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Mining Multiple Related Data Sources Using Object-Oriented Model 9

Hierarchical Frequent Pattern. The TidFP algorithm [12] proposes a method
that mines frequent patterns with transaction IDs to enable mining frequent
patterns from more than one database table. With its technique, the resultant
frequent patterns from more than one table are found by performing appropri-
ate set operations of intersection, union and others on frequent patterns from
different tables aided by common transaction ids from those tables as the tables
were not pre-joined before mining. Thus, in TidFP, the frequent patterns are
combinations of itemsets and their transaction id sets in the format of <Tidlist;
itemsets>. Example queries such as Query 4 and Query 5 are looking for patterns
that are frequent in different class hierarchy levels, and need to specify which
hierarchy levels the pattern belongs to. Therefore, a new term, called hierarchical
frequent pattern is defined.

Definition 2.11. Frequent patterns specifying class hierarchy: Hierarchical Fre-
quent Pattern, HFP: is represented in the format of <Tidlist; itemset; classi >
and is used to indicate in which transactions and in which class hierarchy that
a frequent pattern (itemset) appears. For example, a pattern <1,3,4; 2GHz,2G;
laptop/computer/IBM> where 1,3,4 are transaction IDs(Tidlist), 2GHz, 2G are
itemsets, and laptop/computer/IBM is the class hierarchy of the class starting
from the class to the Root. �
Contributions and Outlines. The contributions of this paper are as follows.
1. In order to enable mining diverse data from more than one database and table
(e.g., representing different B2C product web sites like CompUSA and BestBuy),
we define an object-oriented class model where each database is represented by
a set of object classes, their class inheritance hierarchy and the Root transaction
class (Sect. 2). The inheritance hierarchy is specified as a set of type, supertype
pairs. The database schema is defined as a set of object classes Ci, where Ci =
(K, T, S, A, M, O) for K its class id, T its class type, S its set of superclass types,
A its set of attributes, M its set of methods and O its set of instance objects.
2. In Sect. 4, we define proposed techniques including: the method called Object-
Oriented Join (OOJoin) which joins superclass table Csuper and sub class table
Csub by selecting the tuples which have distinct object id, Csuper.K and Csub.K
from the result of Csuper �� Csub, that is, selected tuples with distinct object ids
occur where Csuper.T = Csub.T or Csuper.T = Csub.S.
3. We define the new term, hierarchical frequent pattern, HFP, formed as <Tidlist;
Itemset; Hierarchy>, where Tidlist is a set of object ids drawn from the set of
instances of K. Itemset is a set of class attributes drawn from the set A, and Hierar-
chy is a sequence of classes from Root to class, Ci (called in the pattern as classi).
Hierarchical frequent pattern specifies at which hierarchy level the pattern is fre-
quent and is an extension of the TidFP’s pattern <Tidlist; itemset>.
4. We propose an algorithm called MineHFPs that mines hierarchical frequent
patterns to answer frequent pattern mining queries and specify at which hierar-
chy level the pattern is frequent by traversing the multiple database hierarchy
tree (MHTree) with the 1-itemset candidate patterns and transaction IDs.
5. We extend the map-gen join used in TidFP algorithm to oomap-gen join
for generating k-itemsets candidate patterns during the process of MineHFPs
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10 C.I. Ezeife and D. Zhang

algorithm to reduce the number of k-itemsets candidate patterns and avoid
unnecessary intersecting of transaction ids by indexing the patterns using two
position codes according to inheritance hierarchy, start position and end position
and checking the position code before generating k-itemsets candidate
patterns.

Section 3 has other related work, Sect. 5 has comparative analysis while con-
clusions and future work are presented in Sect. 6.

3 Other Related Work

Frequent pattern mining algorithms, such as Apriori [1,3,23] and FP-tree [16],
can only mine frequent patterns from one single database table. They cannot
discover frequent patterns from multiple tables and multiple data sources. And
also they cannot discover patterns in different class hierarchies, as the inputs of
these algorithms are simple transactional database tables with no class inheri-
tance hierarchies. These frequent pattern mining algorithms such as Apriori and
FR-tree, and TidFP algorithm take one database table as input. The database
table contains a number of transactions (or tuples) to be mined. Each transac-
tion contains one transaction id and the patterns (or attributes involved in the
transaction such as tv, laptop, desktop). For example, in one transaction <1,a,
b, c, d>, “1” represents transaction id while the items purchased by the trans-
action id are represented as “a”, “b”, “c”, “d” represent patterns. The TidFP
algorithm [12] mines frequent patterns first, generating frequent patterns with
their transaction ids (called TidFp), then applying set operations on the TidFps
to answer frequent pattern related queries across multiple database tables. The
TidFp algorithm represents each frequent i-itemset as an m-attribute tuple of
the form < Fi1 ; T1i1 , T2i1, . . . , Tmi1 >, where Fi1 is the first frequent i-itemset,
and Tmi1 is the mth transaction id of the first frequent i-itemset. For example,
given the minimum support of 50% and a table with only 4 transactions with
transaction ids D1 . . . D4 where each transaction has a list of itemsets drawn
from the list 1, 2, 3, 4, 5. The TidFp algorithm would find the list of frequent
1-itemsets as F1 ={< 1, D1, D3 >, < 2, D2, D3, D4 >, < 3, D1, D2, D3 >,
< 5, D2, D3, D4 >}. This means that the 1-itemset 1 is frequent because it can
be found in 2 database transactions D1, and D3. To find the 2-candidate item-
sets, the algorithm would obtain the 2-itemset list by joining the same way the
Apriori-gen would obtain those, but would now obtain the resulting transaction
id list as the intersection of the transaction id list of the two joined patterns.
Thus, a mapgen-join of the two 1-itemset patterns < 1, D1, D3 > and < 2, D2,
D3, D4 > will yield the resulting 2-itemset pattern < 1, 2, D3 >. The TidFP
algorithm does not mine frequent patterns in integrated object-oriented multi-
ple databases with inheritance hierarchies, nor specify the hierarchy levels that
patterns belong to and carries the extra overhead of using set operations to
integrate discovered patterns from individual related tables. Existing work, such
as in Mining Multi-level Association Rule [14], mining in distributed databases
[6,7,13,17] replace the patterns by another pattern in higher or lower hierarchy
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Mining Multiple Related Data Sources Using Object-Oriented Model 11

Fig. 2. The itemset concept hierarchy Tree

level and discover frequent patterns in different concept hierarchy level. However,
these algorithms do not take object databases as inputs and do not consider the
objects or object attributes as patterns.

For example, “2 % Foremost milk” is encoded as “112”. Following the con-
cept hierarchy, the digit “1” represents milk at level one, the second digit “1”
represents 2 % milk at level 2, and the third digit “2” represents “Foremost” milk
product at level three. For example, the transaction 1 in the transaction table
is encoded as <1,111, 112, 211, 212>. In this transaction, the pattern “111”
represents 2% Dairyland milk, the pattern “112” represents 2 % Foremost milk,
the pattern “211” represents white OldMills bread, the pattern “212” represents
white Wonder bread. Although the concept hierarchy provides some encoding of
hierarchical semantic information about individual items (attributes), it is not
the same as an object schema for representing the entire set of tables (classes)
and the relationships between them. The OR-FP algorithm [19] takes object-
oriented database as input and mines objects and attributes of objects as fre-
quent patterns. However, it does not mine multiple object databases and does
not specify at which hierarchy level patterns are frequent. The data in their
object-oriented database is represented as: oi: class = {attribute1, attribute2,
. . ., attributen}. For example, parts of the sample data used by this system
are: o1: Person = {Smith, Canada, 16000}; o2: Actor = {John, Canada, 12000}
(Fig. 2). AQ2

4 Mining Multiple Object-Oriented Databases

In this section, we define the object-oriented class model and a set of class
methods in different classes. These class methods are able to integrate multiple
data sources (by updating the Root class table), join object tables, and answer
frequent pattern mining queries. The object-oriented database model consists of
(1) a Root transactional class, Root (2) a set of object classes, Ci . . . Cn, and
(3) the inheritance hierarchy that defines the superclass-subclass relationships
between the object classes, HTree. The structures of the three components are
given as Algorithm 4.01 for the object database model.
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12 C.I. Ezeife and D. Zhang

Algorithm 4.01 (The Object Database Model)

OOModel()
begin
Root{
a set of transaction attributes Ai

//including super type and all physical attributes of Ci

private void InsertTransactions;
private set MineRootFPs;
public set OOJoin;
}
Set of Classes Ci . . . Cn where for each Ci{
a set of physical attributes Ai

private set MineClassFPs;
}
Class Inheritance Hierarchy HTree in the form (subclass,superclass){
a set of (subclass,superclass) relationships
}
end

Class Ci has a set of physical attributes which are the properties of the
class Ci. In the example of computer object database, physical attributes are
“CPU”, “RAM”, and “Hard drive” of a “Computer” class, or “Screen size” and
“Battery life” of a “Laptop” class. Class Root has a set of transaction attributes.
The transaction’s attributes include a set of superi which consists of all the
hierarchical super types of the leaf class Ci and all physical attributes of classes
Ci of the database. Private method InsertTransactions of Root class is used to
insert transactions into the Root table and is only called in the class Root.

4.1 Object-Oriented Join (OOJoin)

To answer query 2 in Sect. 2.1, the computer class Table 1 and laptop class
Table 2 need to be joined first. In the object database schema we defined in
Algorithm 4.01, classes are connected by superclass and subclass relationships
in the object-oriented database. Object-Oriented Join (OOJoin) is defined as a
method which joins superclass and subclass tables on their type and super type
foreign keys. The main algorithm of OOJoin is shown as Algorithm 4.11.

Algorithm 4.11 (OOJoin Algorithm)

Algorithm OOJoin()
Input: Super class table Csuper, sub class table Csub,

superclass primary key K1, the superclass foreign keys T1 and S1,
subclass primary key K2, the subclass foreign keys T2 and S2.

Output: A set of tuples of objects on Table Td

Other Variables: Table Tc to hold result of cross product of
two class tables, initialized as empty
Table Tt for tuples of Csuper.T1 = Csub.T2 or
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Mining Multiple Related Data Sources Using Object-Oriented Model 13

Csuper.T1 = Csub.S2, initialized as empty
List1: set of IDs of super class table, initialized as empty.
List2: set of IDs of sub class table, initialized as empty.

Begin
1.0 Tc = Csuper × Csub. // cross product of tables
2.0 Tt = select from Tc where
(Csuper.T1 = Csub.T2 or Csuper.T1 = Csub.S2)
3.0 select a set of distinct tuples Td from Tt;
3.1 insert the first tuple t1 of Tt into Td;
3.2 insert object id of superclass part in t1 into List1;
3.3 insert object id of subclass part in t1 into List2;
3.4 For each tuple tx left in the Tt

3.4.1 If (K1 does not exist in List1 and K2 in t1 does not exist in List2)
3.4.1.1 Insert tx into Td;
3.4.1.2 Insert K1 in tx into List1;
3.4.1.2 Insert K2 in tx into List2;

end

Description of the OOJoin Algorithm
The objective of the OOJoin algorithm is to join a class (e.g., laptop) with its
superclass (e.g., computer) so that all inherited attributes of the class stored
with the superclass can be obtained for queries of the class involving the inher-
ited attributes as well. The OOJoin algorithm cascades from the class to the
most senior ancestor class. Step 1.0 of the OOJoin algorithm finds the cross
product of the super class and the sub class tables and stores the result in a
temporary table Tc. The resulting tuples from the cross product operation con-
tain all the attributes of the superclass (e.g., computer) and the subclass (e.g.,
laptop) including their primary and foreign keys. The subclass (laptop) keys
consist of its primary key (K2 such as laptid), its first foreign key which is the
type for the subclass (T2 such as laptop), and the second foreign key which is
the super type for the subclass (S2 such as computer). Similarly, the joining
superclass (computer) keys consist of computer class primary key (K1 such as
computer id), first foreign key type (T1 such as computer), and second foreign
key for super type (S1 such as Root) are also in the attributes of this table,
Tc. Step 2.0 of the OOJoin operation discards certain tuples from the result
of the cross product operation according to the following conditions. For each
tuple, the foreign key T1 is compared with foreign key T2. If T1 matches T2,
or T1 matches S2 then the tuple will be kept, else the tuple will be discarded.
Step 3.0 in the algorithm further prunes the list of tuples to keep only distinct
tuples. The first tuple is always kept. Two lists are created, each list is a list of
primary keys. The first list will be referred to as List1 and it is used to store
the K1 primary keys and the other list is referred to as List2 and it is used to
store the K2 primary keys. For each tuple, starting with the second tuple, we
first check if K1 of the current tuple is already in List1. If it is, then this tuple
will be discarded. Else, if K1 is not already in List1, then we check if K2 is
already in List2. If it is, then the tuple will be discarded, else the tuple is kept.
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14 C.I. Ezeife and D. Zhang

Table 5. Result of OOJoin of Computer (C) class with Laptop(L) class

ID Type Super CPU RAM Hard Comp ID Type Super Screen Battery
drive name size life

Comp1 L C 2 GHz 2G 250 G I. laptop Lapt1 Ideapad L 15” 3 h
Comp2 L C 2 GHz 2 G 320G I. laptop Lapt2 Ideapad L 15” 3 h
Comp3 L C 3 GHz 4 G 350 G T. laptop Lapt3 Thinkpad L 17” 3.5 h

For example, OOJoin operation of Tables 1 and 2 will result in Table 5. The three
tuples (comp1, comp2, comp3) of Table 5 join the computer class with laptop
class to select all laptop instances with their inherited attributes specified in
the join operation to select joined tuple from the cross product if class1.type
= class2.supertype or class1.supertype = class2.supertype. With this join, if
class1.type = class2.supertype or Table 2. supertype, then the two tuples of
Tables 1 and 2 are joined. For example, for tuple comp1, comp1.Type = Laptop
in Table 1 and lapt1.supertype = Laptop in Table 2 and these two tuples are
joined to obtain tuple comp1 of Table 5. Other results are obtained in similar
fashion.

4.2 Mining Frequent Patterns in One Class

The MineClassFPs algorithm is used to mine frequent patterns of any class.
This it does by using the OOJoin algorithm to obtain all inherited attributes
and methods of the class from its superclasses before it applies either the TidFp
algorithm for mining the frequent patterns at different hierarchy levels of the
inheritance hierarchy. As shown in the class model, every class Ci has a private
method MineClassFPs which mines frequent patterns in the class and outputs a
set of class attributes as frequent patterns. The algorithm for MineClassFPs is
provided as Algorithm 4.21.

Algorithm 4.21 (MineClassFPs Algorithm)

Algorithm MineClassFPs()
Input: class table C to be mined, super class tables (CSi) of class C

where CSk is superclass of CSk−1, minimum support s%
Other Variables: Joined class table T
Output: A set of frequent patterns FPs.
Begin
1.0 // Call JoinClasses (C, CSi) to join classes as in step 1.x below

1.1 T = C;
1.2 if (CSi �= NULL) // C has super classes.

1.2.1 For each superclass table CSi

1.2.1.1 T = OOJoin(CSi , T); // call OOJoin to join
//subclass and superclass

2.0 TidFP(T, s%); // Call TidFP on Joined table T
end
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Mining Multiple Related Data Sources Using Object-Oriented Model 15

Description of the MineClassFPs Method
Step 1.0 of the algorithm joins the class and all super classes using the OOJoin
algorithm. Step 2.0 applies TidFP algorithm which takes resulting table from
Step 1.0 and the minimum support to mine the frequent patterns. This private
method MineClassFPs can answer queries such as query 2 in Sect. 2.1.

4.3 Mining Hierarchical Frequent Patterns in the Root Class

As shown in the class model (Algorithm 4.01), the Root class has a private
method MineRootFPs (as given in the formal algorithm 4.51). This method
mines frequent patterns in the class and outputs a set of frequent patterns spec-
ifying the levels of the inheritance hierarchy. The hierarchical frequent patterns
are mined from a Root table of transactions on classes (tables) in the inheritance
hierarchy such as Table 4. The inheritance hierarchies exist in the transaction
in the Root table. The algorithm for mining hierarchical frequent patterns first
creates multiple database inheritance hierarchy tree (MHTree), such as Fig. 1.
Then, the transaction ids of the Root table are stored in the MHTree node
according to the inheritance hierarchy of each transaction in the Root table.
Then, the algorithm traverses the MHTree through the linkage table to access
every node and intersect the transaction ids in every node with transaction
ids of 1-itemset candidate patterns to obtain 1-itemset frequent patterns with
the hierarchy information. A modified version of map-gen join algorithm in the
TidFP algorithm is used to generate 2-itemset candidate pattern, and it then
traverses the MHTree to obtain 2-itemset frequent patterns. Finally, it obtains
the n-itemset frequent patterns. The process of mining the hierarchical FP from
the Root table is given in algorithm 4.51 which starts by obtaining the mul-
tiple inheritance tree (MHTree) and this calls the OOJoin algorithm to join
each such subclass (e.g., laptop) with its superclass (e.g., computer) so that all
inherited attributes of the class stored with the superclass can be obtained. The
MineClassFP algorithm 4.21 for mining frequent patterns of any class also uses
the OOjoin algorithm to obtain inherited attributes of all superclasses of this
class. To mine only class FP, the algorithm would use OOJoin to obtain the full
class information before applying the TidFP algorithm to obtain the class FPs
with Tids. To mine the Root FPs, the OOJoin is used to create the MHTree
before calling the MineHFPs with inheritance hierarchy information about each
transaction to generate hierarchical FPs where each iteration involves oomap
gen join of frequent Fk with itself.

4.4 Position Coding Method

In the PLWAPLong algorithm [10], two position codes, start position and end
position (two integer numbers) are assigned to every node of the tree to dis-
tinguish the position of the nodes in the tree. Position codes are assigned by
pre-order traversal of the tree (in the order visit node, left subtree and right
subtree) and starting with the root node of the tree having the start position
code of 0. The idea of position coding method can be used to represent the
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16 C.I. Ezeife and D. Zhang

Fig. 3. The position code assigned HTree

level of inheritance hierarchy. As shown in Fig. 1, multiple database inheritance
hierarchy can be represented in a tree structure called MHTree, inheritance hier-
archy in one database can also be represented in a tree structure called HTree.
Position coding method can be used to assign two position codes, start position
and end position to each node of the HTree/MHTree by pre-order traversal in
order to represent the levels of inheritance hierarchy. The position code assigned
HTree of the example computer database is shown in Fig. 3.

In Fig. 3, two position codes are assigned to every node of the HTree. The
start position of the Computer class (root parent class) is “0” which is less than
the start position of the laptop class (child class) and the desktop class (child
class). The end position of the computer class is “5” which is greater than the
start positions of the child classes. The laptop class and the desktop class are
the sibling classes. The start position and end position of one sibling class are
both smaller than those of the other sibling class or the start position and end
position of one sibling class are both greater than those of the other sibling class.

The oomap-gen Join Method
Like in the Apriori-gen join, the purpose of the oomap-gen is to obtain the
extended (i + 1)-itemsets from the frequent i-itemsets (Fi) by joining Fi with
itself oomap-gen fashion. The map-gen join method used in the TidFP algorithm
avoids multiple database scanning by intersecting transaction id lists of two
patterns being joined to get the resulting transaction id list. The resulting itemset
is obtained as the union of the two joined itemsets. However, map-gen join still
suffers from large candidate generation and intersecting transaction id lists of
every candidate patterns and unable to apply to object hierarchy. When the
number of transactions is large, intersecting transaction id lists is an expensive
process. Figure 4 provides an example application of the map-gen join of patterns
from the example sales transaction table (Root table) shown in Table 4. The
patterns in map-gen join are in the slightly reordered format (where Tidlist comes
before the itemset list) of <Tidlist; itemset>. In that Fig. 4, it can be seen that
the computer feature attribute 1-itemset of <15”>, <3 h>, and <256M> are all
1-frequent items where <15”>, and <3h>, are both frequent in the Root table
transactions with ids 1, 2 and 7. However, the 1-itemset <256M> is frequent in
Root table transaction ids 4 and 5. The goal of the map-gen join of these three
frequent 1-itemsets < (1, 2, 7); (15′′) >, < (1, 2, 7); (3 h) >, < (4, 5); (256M) >
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Mining Multiple Related Data Sources Using Object-Oriented Model 17

with themselves, is to obtain the frequent 2-itemsets of < (1, 2, 7); (15′′, 3h) >,
< (None); (15′′, 256M) >, < (None); (3h, 256M) >. The 1-itemsets in the map-
gen join above are 15′′, 3 h, 256M while <1,2,7> and <4,5> are the transaction
id lists. This step is similar to the ap-gen join used in Apriori algorithm. The
transaction id lists will be intersected to get the resulting transaction id list.

The oomap-gen join method applies a modification of the map-gen join
function. The oomap-gen method can join a set of frequent i-itemsets Fi with
itself, where itemsets are from an object oriented class inheritance hierarchy, to
obtain the candidate (i+1)-itemsets. Thus, the candidate (i+1)-itemsets Ci+1 is
obtained from the frequent i-itemsets for i ≥ 1, by joining frequent i-itemsets Fi

with itself oomapgen way such that Ci+1 = Fi �� Fi. To join oomapgen way, for
each pair of itemsets M and P ∈ Fi where each Fi itemset is in the format “<
transaction id list, itemset, (class start position code, class end position code)
>”, the following three conditions have to be satisfied: M joins with P to get
itemset M ∪ P if the following conditions are satisfied.
(a) itemset M comes before itemset P in Fi,
(b) the first i-1 items in M and P (excluding just the last item) are the same,
(c) the transaction id list of the new itemset M ∪ P represented as TidM∪P is
obtained as the intersection of the Tid lists of the two joined i-itemsets M and
P and thus, TidM∪P = TidM ∩ TidP .
(d) To speed up processing, ignore non-joinable patterns by applying the oomap
pattern joinable rule which states that only patterns belonging to the same class
or classes with ancestor-descendant relationships determined using the start and
end position codes of the patterns are joinable.

Definition 4.41. Ancestor-Descendant Nodes (a,b): Node a of a tree is an ances-
tor of node b of the tree iff the start position code of node a is less than the start
position code of node b, but the end position code of node a is greater than the end
position code of node b. For example, in the Htree of Fig. 3, the node Computer with
(start,end)codes of (0, 5) is an ancestor of the node Laptop with codes (1, 2). �

Definition 4.42. Sibling Nodes (a,b): Node a of a tree is a sibling of node b of
the tree iff both the start and end position codes of node a are either less than
or greater than the start and end codes of node b. For example, in the Htree of
Fig. 3, the node Laptop node with (start,end)codes of (1, 2) is a sibling of the
node Desktop with codes (3, 4). �

Definition 4.43. The oomap pattern Join Rule: If two patterns belong to the
same class or belong to two different classes but have an ascendant-descendant
relationship as can be determined with Ancestor-Descendant Node definition,
they can be joined. If two patterns belong to different classes which have a non
ascendant-descendant relationship, they cannot be joined. For example, using
this rule for < (1, 2, 7)(15′′) > (1, 2) oomap-gen join < (4, 5)(15′′) > (3, 4)
patterns will yield no join since from the ancestor-descendant rule the start and
end position codes of the first pattern are all less than those of the second pattern
showing that they are not from joinable classes. �
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18 C.I. Ezeife and D. Zhang

Fig. 4. The map-gen join

Fig. 5. The OOmap-gen join

From Fig. 4, it can be seen that applying map-gen join on three 1-itemset
patterns will result in three 2-itemset candidate patterns. The transaction id
lists of newly generated 2-itemset patterns <15”, 256M> and <3h, 256M> are
None, because the patterns <15”> and <3h> belong to the laptop class, but
the pattern <256M> belongs to the desktop class, they cannot appear in the
same transaction in the sales transaction table. Therefore, the position coding
method introduced in the previous section will be used to reduce the candidate
pattern generation. With the position codes involved, patterns will be checked
for their inheritance hierarchy relationships before generating the new candidate
patterns. The start position and end position can be used to distinguish the
ascendant-descendant or sibling relationships of classes. As given in the oomap-
gen pattern join rule, if two patterns belong to the same class or belong to
two different classes but have an ascendant-descendant relationship as can be
determined with Ancestor-Descendant Node definition, they can be joined. If
two patterns belong to different classes which have a non ascendant-descendant
relationship, they cannot be joined. Figure 5 shows the result of the oomap-gen
join where the start and end position codes may be used to more quickly identify
the non-joinable patterns such as < (None); (15′′, 256M > that appeared in the
result of the map-gen join of Fig. 4 and to exclude them in the result of the
oomap-gen join as shown in Fig. 5.

From Fig. 5, it can be seen that patterns are in the format of <Tidlist;
itemset>(start, end).
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4.5 The MineRootFPs Method

The main algorithm of MineRootFPs method is used for answering comparative
queries involving transactions of many classes in the object database which can
also include an integration of multiple databases such as computers from sev-
eral vendors like IBM, Dell, HP as shown in the multiple inheritance hierarchy
of Fig. 6. The formal algorithm for MineRootFPs(MH, s%, Root) is given as
Algorithm 4.51.

Algorithm 4.51 (MineRootFPs Algorithm)

Algorithm MineRootFPs()
Input: multiple database inheritance hierarchy MH,

Root table, minimum support s%
Other variables: multiple database inheritance hierarchy Tree MHTree,

TMHTree, //Transaction ids stored MHTree
LTMHTree //Linkage built TMHTree,
set of k-itemset frequent pattern Fk;
set of k-itemset candidate pattern Ck;

Output: hierarchical frequent patterns HFPs in the format of
<Tidlist; itemsets; classi >.

Begin
1.0 CreateMHTree(MH);
//create multiple database inheritance hierarchy tree, MHTree
2.0 StoreTidMHTree(MHTree, Root);
//store transaction ids into MHTree and Obtain TMHtree
3.0 GenOneCand(Root); //generate 1-itemset candidate patterns
4.0 BuildLinkage(TMHTree); //build linkage of TMHTree and obtain TMHTree
5.0 MineHFPs(LTMHTree, Ck, s%)
5.1 Ck = 1-itemset candidate patterns
5.2 Fk = CheckMinS(MHTree, Ck, s%);
5.3 if (Fk is not empty)

5.3.1 Ck+1 = oomap-gen-join(Fk);
5.3.2 k = k + 1
5.3.2 go to step 5.2

End

Description of MineRootFPs Algorithm of the Root Class
Step 1.0 is creates a multiple database inheritance hierarchy tree (MHTree) as
shown in Fig. 6. Step 2.0 scans the entire transaction Table 4 and stores the
transaction ids into the nodes (class) of the MHTree to create a MHTree with
transaction ids stored which is called TMHTree. For example, from Fig. 6, it
can be seen that transactions 1, 2, 7 of the Root transaction Table 4 are on
IBM laptop computers. Concurrently with steps 2.0, step 3.0, it generates the
1-itemset candidate patterns in the format of <Tidlist; itemset>(start, end).
This step is similar to the step of generating 1-itemset candidate patterns in the
TidFP algorithm. Step 4.0 is building the header linkage to TMHTree to create a
LTMHTree, so that nodes of the tree can be easily accessed. The header linkage
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20 C.I. Ezeife and D. Zhang

Fig. 6. The LTMHTree:linkage tree multiple inheritance tree

is built such that every unique class in a database (e.g., Computer, Laptop,
Desktop) has an entry and using the preorder traversal, all similar classes across
multiple databases are linked in a queue. In the computer object database, there
are three object tables, “Computer”, “Laptop”, and “Desktop”. Therefore, there
will be three entries in the link header table. It builds linkage queue for each
entry. Finally, it uses pre-order traversal (visit node, visit left subtree, visit right
subtree) to access every node of the tree and store the node into the appropriate
queue. An LTMHTree with transaction ids stored and linkage built is shown in
Fig. 6. Step 4.0 is for mining the hierarchical frequent patterns in the Root table
by calling the MineHFPs algorithm.

Algorithm 4.52 (MineHFPs Algorithm)

Algorithm MineHFPs()
Input: linkage built, transaction ids multiple database

inheritance hierarchy LTMHTree, minimum support s%,
a set of 1-itemset candidate pattern C1, in the format of <Tidlist, itemset>

Output: a set of hierarchical frequent patterns Fk

in the format of <Tidlist, itemsets, classi >
Other variable: a set of candidate patterns Ck

Begin
1.0 Ck = C1

2.0 Fk = CheckSupp(LTMHTree, Ck, s%);
3.0 if (Fk is not empty)
3.1 Ck+1 = oomap-gen-join(Fk);
3.2 k = k+1
3.3 go to step 2.0
end
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Description of the MineHFPs Algorithm
The MineHFPs algorithm takes as an input the LTMHTree (with transaction
IDs stored and linkage built), a set of 1-itemset candidate patterns with transac-
tion IDs, and a minimum support value s%. The algorithm MineHFPs calls the
algorithm CheckSupp which uses every 1-itemset candidate pattern to traverse
LTMHTree in order to check the support of each 1-itemset candidate pattern. If
the support is greater than or equal to the minimum support of s% at any level in
the hierarchy, then the 1-itemset candidate pattern counts as a 1-itemset frequent
pattern. If 1-itemset frequent pattern(s) already exists, it uses oomap-gen-join
algorithm to generate 2-itemset candidate patterns. The CheckSupp algorithm
is utilized to check the support level of the newly generated 2-itemset candidate
patterns and to generate 2-itemset frequent pattern(s) if the support level is suf-
ficient. If 2-itemset frequent patterns exist, it uses algorithm oomap-gen-join to
generate 3-itemset candidate patterns. By the same process, k-itemset frequent
patterns can be generated. The CheckSupp algorithm is given as Algorithm 4.53.

Algorithm 4.53 (CheckSupp Algorithm)

Algorithm CheckSupp()
Algorithm CheckSupp(LTMHTree, Ck, s%);
Input: MHTree, k-itemset candidate pattern with transaction IDs Ck,

in the format of <Tidlist, itemsets, classi >, k = 1; initially, minimum support s%.
Output: Frequent k-itemsets Fk, in the format of <Tidlist, itemsets, classi >.
Other variables: intersected transaction id list intersectTidlist, unioned Transaction

id list UTidlist, Pointer nodePtr, Frequent pattern f, Boolean Flag=false,
linkage queue of LTMHTree qi, Hierarchy of every node classi

Begin // Check supports of generated patterns
1.0 For each element cx in Ck do

1.1 Flag = false;
1.2 For each queue qi do

1.2.1 For each element eij in the queue qi do
1.2.1.1 intersectTidlist = cx.T idlist ∩ eij .T idlist;
1.2.1.2 if((number of IDs in intersectTidlist)/(number of
IDs in eij .T idlist) >= s%)

1.2.1.2.1 f = cx; 1.2.1.2.2 insert f into Fk;
1.2.1.2.3 f = f append eij .classi; 1.2.1.2.4 Flag = true;

1.2.1.3 UTidlist = UTidlist ∪eij .T idlist;
1.2.2 intersectTidlist = cx.T idlist∩ UTidlist;
1.2.3 if((number of IDs in intersectTidlist)/(number of IDs in UTidlist) >= s%)

1.2.3.1 insert f into Fk; 1.2.3.2 f = cx concatenate eij .classi;
1.2.3.3 Flag = true;

1.3 if(Flag = true) Insert cx into Fk;
end

Application of the CheckSupp Algorithm
To serve as an example, the MineHFPs algorithm uses the inputs LTMHTree
(Fig. 6), two 1-itemset candidate patterns: <1, 3, 7, 2 GHz> (0,5) and <1, 3,
7, 2 G> (0,5), and a minimum support value of 50%. Step 1.0 and 2.0 of the
MineHFPs algorithm use the transaction id list (Tidlist) of every 1-itemset can-
didate pattern to intersect the Tidlist of every node in every linkage queue of the
LTMHTree in order to discover the 1-itemset frequent patterns. The MineHFPs
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algorithm starts from the first 1-itemset candidate pattern <1, 3, 7, 2 GHz>. The
Tidlist of the candidate pattern <1, 3, 7, 2 GHz> is <1, 3, 7>. The first node
of linkage queue of “Computer <1, 2, 7>” is <1, 2, 7> (according to Fig. 3.13).
Intersecting <1, 3, 7, 2> and <1, 2, 7> obtains <1, 7>. There are two transac-
tion ids in <1, 7>. The number of ids in <1, 2, 7> is 3. The frequency is 2/3
which is greater than 50%. Hierarchy of node “Computer <1, 2, 7>” is node
“computer/IBM”. Therefore, we obtain the hierarchical frequent pattern <1, 7,
2GHz, computer/IBM>. We also insert the candidate pattern <1, 3, 7, 2 GHz>
into frequent pattern set F1. In the same way of processing the candidate pattern
<1, 3, 7, 2 GHz> and node “Computer <3,6,9>” is intersected, and pattern <1,
3, 7, 2 GHz> and node “Computer <4,5,8>” is intersected. We find out that pat-
tern <1, 3, 7, 2 GHz> is not frequent at node “Computer <3,6,9>” nor at node
“Computer <4,5,8>”. We also need to union the Tidlists of all three nodes in the
“Computer” linkage queue. Union of Tidlists <1,2,7>, <3,6,9>, and <4,5,8> is
<1, 2, 7, 3, 6, 9, 4, 5, 8>. Intersecting Tidlist of pattern <1, 3, 7, 2, 2 GHz>
and <1, 2, 7, 3, 6, 9, 4, 5, 8> is <1, 3, 7, 2>. The frequency is 4/9 which is less
than the minimum support of 50%. Therefore the pattern <1, 3, 7, 2, 2 GHz>
is not frequent at the hierarchy “Computer”. The Tidlist of candidate pattern
<1, 3, 7, 2, 2 GHz> will intersect Tidlist of nodes in “Laptop” linkage queue
and “Desktop” linkage queue. The 1-itemset candidate pattern <1, 3, 7, 2 G>
will be processed by the same procedure as above and will obtain patterns as:
<1, 7, 2 G, computer/IBM>, <1, 2, 2 G, laptop/computer/IBM>. Patterns <1,
3, 7, 2 GHz>(0,5) and <1, 3, 7, 2 G> (0,5) will use oomap-gen join to generate
2-itemset candidate pattern <1,3,7, 2 GHz, 2 G>(0,5). This 2-itemset pattern
will serve as inputs to the CheckSupp algorithm and 2-itemset frequent patterns
are generated. Then the 2-itemset frequent patterns will be used to generate
3-itemset candidate patterns by oomap-gen join. By the same process we obtain
all k-itemsets hierarchical frequent patterns, until there are no frequent patterns
generated.

5 Implementation and Experimentation

One of the most important contributions of the paper is proposing an object
oriented model for representing and mining data from multiple databases while
maintaining the class inheritance hierarchy for purposes of answering more com-
plex, historical, derived queries across such integrated multiple database data.
The experiments below serve to show both the effectiveness of the proposed
algorithms in performing such object oriented mining while remaining reason-
ably efficient in comparison with existing system such as the TidFP that cannot
handle all tasks that can be handled by the proposed approach. To test the
performance of our proposed method for mining hierarchical frequent patterns
in table Root (transaction table), we use the IBM quest synthetic data genera-
tor to generate three datasets for the three databases. There are three datasets
(class object table Ci) in every database, the first one represents the “Computer”
objects table, the second for the “Laptop” objects table, and the third for the
“Desktop” objects table.
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5.1 Generating the Class Table Ci

The IBM quest synthetic data generator generates integer numbers to represent
patterns (attributes of objects in the case of object-oriented databases). If we
specify the number of items, ‖N‖, as “15”, it means that the patterns will be rep-
resented by the integer numbers from “1” to “15”. When we use the IBM quest
synthetic data generator to generate the dataset which represents the Computer
class table, we specify ‖N‖ as “15”. This means that the integer numbers from
“1” to “15” will represent the patterns of the Computer class table. When we
generate the dataset for the Laptop class table, we specify ‖N‖ as “60”. How-
ever, the integer numbers from “1” to “15” have already been used to represent
the patterns for the Computer class table. We need to eliminate the numbers
“1” to “15” so that the dataset generated will only contain the integer numbers
from “16” to “60”. Therefore, the integer number from “16” to “60” will be used
to represent patterns for the Laptop class table. When we generate the dataset
for the Desktop class table, we specify ‖N‖ as “120”. Since the numbers from
“1” to “15” have already been used to represent the patterns for the Computer
class table and the integer numbers from “15” to “60” have already been used to
represent the patterns for the Laptop class table, we need to eliminate the num-
bers from “1” to “60” so that the dataset generated will only contain the integer
numbers from “60” to “120”. Therefore, the integer numbers from “60” to “120”
will be used to represent patterns for the Desktop class table. Each transaction
of the dataset represents one instantiated object. The transaction id of a trans-
action record will represent the object id of one instantiated object and a set
of items in a transaction record will represent a set of object attributes in one
instantiated object. We generate three datasets (Computer, Laptop, Desktop)
for each of the three databases (IBM, Dell, and HP). We use an integer number
to represent a particular database (the database name) and an integer number to
represent a particular class object table. For example, “1” represents the “IBM”
database, “2” represents the “Dell” database, “3” represents the “HP” data-
base, “4” represents the “Computer” class, “5” represents the “Laptop” class,
and “6” represents the “Desktop” class. The “Computer” class is inherited by
the “Laptop” and the “Desktop” class. As discussed in Sect. 1.2, the database
schema of Ci is Ci (K, T, S, A, M, O). T is the type and S is the super type.
The dataset that stands for the “Computer” class will be assigned a number “4”
as S (super type), and randomly assigned “5” or “6” as T (type). With regards
to the “Laptop” class, S(super type) will be assigned as “5”, and T (type) will
be randomly assigned as “5”,“7” or “8” (which represent different subclasses of
the “Laptop” class). With regards to the dataset that stands for the “Desktop”
class, S(super type) will be assigned as the number “6”, and T (type) will be
randomly assigned as “6”,“9” or “10” (which represent different subclasses of
the “Desktop” class).

5.2 Generate the Root Table

The Root table is a transaction table that has transaction id K as a primary key,
T and S as foreign keys (which represent type and super type of the transactions
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in Root table). K is the transaction id which is an integer number from 1 to
‖D‖ sequentially. ‖D‖ is the number of transactions in the Root table. Type,
T, is used to represent the name of the database where the transactions come
from. We randomly generate an integer number among “1”, “2”, “3” for type,
T, for every transaction to represent the name of a database (such as IBM, Dell,
and HP). Then we apply OOJoin algorithm to join all class tables Ci in every
database to obtain an object joined table. Finally, randomly select the objects
from object joined table in each database to fill in the attributes A in the Root
Table.

5.3 Performance Comparison

The proposed algorithm MineHFPs is compared with the TidFP algorithm with
respect to CPU execution time and memory usage because it is the algorithm
that is closest to being able to answer the types of mining queries involving mul-
tiple tables and databases which the proposed algorithm and model is designed
for. The most important contribution of work is providing a model that can
mine multiple database tables and answer such complex queries involving his-
tory and derived data. It should also be mentioned that while the proposed
approach mines frequent patterns in integrated or joined tables (classes), the
TidFP mines FPs from individual tables and integrates the FPs to answer the
query through relevant set operations. Thus, this could also be a reason for
slower execution time for the TidFP in comparison with the MineHFP in some
of the reported experiments.

MineHFP and TidFP are both implemented in C++ with the same data
structures and can run on both windows and UNIX platforms. In a UNIX
environment, the programs are compiled with “g++ filename” and executed
with “a.out”. The class object table Ci, inheritance hierarchy H, and multiple
database inheritance hierarchy MH are all stored in text files. If we separate
the integrated Root table by class hierarchy, the TidFP algorithm can also be
applied to each separated part to answer those queries. For example, using the
TidFP algorithm to answer “Query 4: What are the most popular hardware
component specifications (CPU, RAM, Hard drive, screen size, and battery life)
among a computer system subgroup such as laptops and sold by a particular
company like Dell (with a minimum support of 50%)?”. We will select trans-
actions having type as “3” (transaction comes from Dell database), and also
have super1 “4” and super2 “5” to represent “Computer” and “Laptop”, respec-
tively. In this section, we compare the performance of our proposed algorithm
MineHFPs and the TidFP algorithm. Both the CPU execution times and the
memory usages are measured for each algorithm. The MineHFPs algorithm per-
formance measures include the tasks of creating the MHTree, storing transaction
ids in the MHTree, generating 1-itemset candidate patterns, building linkage,
and executing the MineHFPs algorithm. We generate the Root tables of size
125K, 250 K, 500K, and 1M. The characteristics of the generated datasets are
described in Table 6. Table 7 describes the execution times for the MineHFPs
and the TidFP algorithm on 125K dataset with low minimum support (20%,
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Table 6. The characteristics of the generated dataset

Root Computer Laptop Desktop

Table Class Class Class
125K C7.S4.N20.D125K C15.S4.N60.D63K C25.S4.N120.D62K
250K C7.S54.N20.D250K C15.S4.N60.D125K C25.S4.N20.D125K
500K C7.S4.N20.D500K C15.S4.N60.D250K C25.S4.N20.D250K
1M C7.S4.N20.D1000K C15.S4.N60.D500K C25.S4.N20.D500K

Table 7. CPU execution time on 125K dataset with varying minimum support

Algorithms Execution times (secs) at varying minimum supports
(minimum Support) 20 % 10 % 9 % 8 % 7 %

MineHFPs 290 4186 6356 9606 17785
TidFP 279 12327 23083 40097 74046

Table 8. Memory usage on 100K dataset with varying minimum support

Algorithms Memory usage (in MB) at varying minimum supports
(minimum support) 20 % 10 % 9 % 8 % 7 %

MineHFPs 62 430 590 774 1070
TidFP 26 158 214 266 350

10%, 9%, 8%, and 7%). Table 8 describes the memory usage of the MineHFPs
and the TidFP algorithm on 125K dataset with low minimum support (20%,
10%, 9%, 8%, and 7%). Table 9 gives the execution time of the MineHFPs and
the TidFP algorithm on 250K dataset with low minimum support (20%, 10%,
9%, 8%, and 7%). Table 10 gives the memory usage of the MineHFPs and the
TidFP algorithm on 250K dataset with low minimum support (20%, 10%, 9%,
8%, and 7%). Table 11 is the execution time of the MineHFPs and the TidFP
algorithm on 500K dataset with low minimum support (20%, 10%, 9%, 8%,
and 7%). Table 12 is the memory usage of the MineHFPs and the TidFP algo-
rithm on 500K dataset with the low minimum support (20%, 10%, 9%, 8%,
and 7%).

From Tables 9, 10, 11, we can see that the MineHFPs algorithm outperforms
the TidFP at the low minimum support thresholds. The MineHFPs algorithm
is approximately 3.5 times faster than the TidFP algorithm for a 125K dataset,
3.9 times faster for a 250K dataset, and 4.4 times faster for a 500K dataset
when the minimum support is lower than 20%. As the size of the dataset is
increased, the performance margin between the MineHFPs and the TidFP algo-
rithm increases in favor of the MineHFPs algorithm. From these tables, we can
see that the MineHFPs algorithm has greater memory usage compared with the
TidFP algorithm. The memory usage of the MineHFPs algorithm is approxi-
mately 2.8 times, 2.5 times, and 2.6 times greater than the TidFp algorithm
for respective dataset sizes of 125K, 250K, and 500K (at the minimum supports

A
u

th
o

r 
P

ro
o

f



26 C.I. Ezeife and D. Zhang

Table 9. CPU execution time on 250K dataset with varying minimum support

Algorithms Runtime (in Seconds) at different supports)
(minimum support) 20 % 10 % 9 % 8 % 7 %

MineHFPs 584 8321 12382 19241 35281
TidFP 577 24008 43584 74432 Crashed

Table 10. Memory usage on 250K dataset with varying minimum support

Algorithms Memory usage (in MB) at varying minimum supports
(minimum support) 20 % 10 % 9 % 8 % 7 %

MineHFPs 114 814 1098 1145 2001
TidFP 46 282 422 490 Crashed

Table 11. CPU execution time on 500K dataset with varying minimum support

Algorithms Runtime (in Seconds) at different supports
(minimum support) 20 % 10 % 9 % 8 % 7 %

MineHFPs 1180 16233 24679 37514 68143
TidFP 1150 48077 85027 Crashed Crashed

Table 12. Memory usage on 500K dataset with varying minimum support

Algorithms Memory usage (in MB) at varying minimum supports
(minimum support) 20 % 10 % 9 % 8 % 7 %

MineHFPs 222 1150 2130 2770 3839
TidFP 78 530 722 crashed crashed

Table 13. CPU execution time at minimum support of 10 % on varying sizes of
dataset

Algorithms Runtime (in Seconds) at different dataset sizes
(dataset size) 125K 250K 500K 1M

MineHFPs 3311 8321 16233 34089
TidFP 10264 24008 48077 98858

of 20 %, 10%, 9%, 8%, and 7%). Table 13 describes the execution time of the
MineHFPs and the TidFP algorithm at the minimum support of 10% on dataset
sizes of 125K, 250K, 500K, and 1M.

6 Conclusions and Future Work

More comprehensive and detailed real world data, such as different products on
a Business to Customer (B2C) website, their histories, versions, price, images,
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or specifications are more suitable to be represented in an object-oriented data-
base model. This paper proposes an object-oriented class model and database
schema, and a series of class methods for mining multiple data sources. This
paper also provides mechanisms that allow the flexibility of implementing this
model with the popularly used relational DBMS. The methods can mine frequent
patterns on each local object database and also mine the Hierarchical Frequent
Pattern (MineHFPs) which specify at which hierarchy level the pattern is fre-
quent in a global integrated table by extending Apriori-based TidFP algorithm.
This paper also proposes object-oriented join (OOJoin) which joins superclass
and subclass tables by matching their type and super type relationships. Thus,
to implement the OO database model proposed using a relational DBMS, each
relational database table corresponds to an OO class, each relation DB tuple cor-
responds to an OO class instance object. Each relational foreign key attribute
is implemented with both the class type and supertype value of the class with
the defined OOJoin condition. To improve the performance of the MineHFPs
algorithm, this paper also extends map-gen join method used in TidFP algo-
rithm to oomap-gen join for generating k-itemset candidate pattern to reduce
the candidate generation and avoid unnecessary support counting by indexing
the (k-1)-itemset candidate pattern using two position codes, start position and
end position tied to inheritance hierarchy. The experimental results show that
the proposed MineHFPs algorithm for mining hierarchical frequent patterns is
approximately 3 to 4 times faster than the TidFP algorithm to mine the same
patterns but have the trade off of costing 2 to 3 times more memory usage.
However, the MineHFPs algorithm can discover the frequent pattern at differ-
ent hierarchy levels in the format of <Tidlist, itemsets, classi >. The TidFP
algorithm can only discover the patterns in the format of <Tidlist, itemsets>.
Our proposed object-oriented class model and database schema can be applied to
other application domains, such as a Student Information System. Every depart-
ment or faculty has its own database tables Ci. The Root table can be the class
enrolment table and it may store the class and students enrolment information.
The database tables Ci and Root do not include any historical attribute such
as a time stamp (which may include date, month and year). Future work may
include extending this model for representing and comparative analysis of non-
structured multiple data sources such as documents, their derived forms (e.g.,
summaries), historical data sources (data warehouses), derived data (e.g., data
warehouse materialized views). The historical attribute can display the history
of the products and the history of sales transactions. Although the proposed
object oriented data model representation of a database as presented in Sect. 2
currently focuses on a set of classes Ci connected by their class inheritance hier-
archy H that is used to depict the superclass and subclass relationships between
classes, this model is easily extendible to accommodate as well complex object
type or attribute hierarchy where attributes are of type of another existing class.
Current implementation and discussions assume all class attributes to be of sim-
ple type (e.g., string) and if attributes are of complex types (e.g., CPU is of
type computer), they can be accommodated by having those complex attributes
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(e.g. CPU) as nested list of attributes (having all attributes of its complex type
computer) and applying the process on all attributes including those inherited
from the complex type (e.g., computer). Future work should extend the Mine-
HFP algorithm to handle nested objects in the model definition such that as the
model definition of inheritance hierarchy is provided, that of complex attribute
hierarchy is also provided and an equivalent of OOJoin function for obtaining
all inherited attributes of a complex attribute defined and used during both
MineClassFP and MineRootFP methods.
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