
Mining Web Sequential Patterns Incrementally

with Revised PLWAP Tree

C.I. Ezeife?

School of Computer Science, University of Windsor,
Windsor, Ontario, Canada N9B 3P4

cezeife@uwindsor.ca

Min Chen
School of Computer Science, University of Windsor

No Institute Given

Abstract. Since point and click at web pages generate continuous data
stream, which flow into web log data, old patterns may be stale and
need to be updated. Algorithms for mining web sequential patterns
from scratch include WAP, PLWAP and apriori-based GSP. An incre-
mental technique for updating already mined patterns when database
changes, which is based on an efficient sequential mining technique like
the PLWAP is needed.
This paper proposes an algorithm, Re-PL4UP, which uses the PLWAP
tree structure to incrementally update web sequential patterns. Re-PL4UP
scans only the new changes to the database, revises the old PLWAP tree
to accommodate previous small items that have become large and previ-
ous large items that have become small in the updated database without
the need to scan the old database. The approach leads to improved per-
formance.

Keywords: Incremental Mining, sequential mining, frequent pat-

terns, PLWAP tree, Scalability

1 Introduction

When data are inserted or deleted from a database (like access patterns in web
access log), previous patterns may no longer be interesting and new interesting
rules could appear in the updated database. Incremental mining of sequential
patterns is the process of generating new patterns in the updated database (old
+ new data) by using only the updated part (new data) and previously generated
old patterns.

Sequential mining, unlike general association rule mining pays attention to
the order the items occur as well [2]. For example, given a small web access log

? This research was supported by the Natural Science and Engineering Research Coun-
cil (NSERC) of Canada under an Operating grant (OGP-0194134) and a University
of Windsor grant.

that recorded user accesses to 8 sites represented as sites {a, b, c, d, e, f, g, h}
as shown in Table 1. Each transaction consists of items (or attributes, e.g., web

Table 1. The Example Database Transaction Table with Frequent Sequences

TID Web access Seq. Frequent subseq
with s = 50%

100 abdac abac

200 aebcace abcac

300 baba baba

400 afbacfc abacc

500 abegfh ab

sites visited), the association rule rule a → b asserts that if site a is visited, then,
site b is visited. Each of these 8 sites represents an item in the database. An
itemset X is called an i-itemset if it contains i items. The support of a rule is
defined as the percentage of transactions (records) that contain the sets X and Y,
while its confidence is the percentage of all database transactions containing “X”,
that also contain “Y”. All items with support higher than a specified minimum
support are called large or frequent itemsets. While minimum support is used
to mine frequent patterns, only rules with confidence higher than the minimum
confidence are retained. An example of a sequential pattern from the database of
Table 1 is “if site a is accessed in a record, it is often followed by an access to site
b”. While the order is important in sequential pattern, items in a sequence do not
necessarily need to be consecutive and an item can be repeated in one sequence.
A sequence also has subsequences, e.g., abacc, afb are some subsequences of the
sequence afbacfc. Frequent sequences are those with support equal or higher
than minimum support (minsupport).

When data are inserted or deleted from a database, previous patterns may
no longer be interesting and new interesting rules could appear in the updated
database. Incremental mining of sequential patterns is the process of generating
new patterns in the updated database (old + new data) using only the updated
part (new data) and previously generated patterns.

1.1 Related Work

Few existing algorithms [1, 4, 6] for incremental sequential patterns mining are
apriori-based rather than tree-based. They are composed of iteratively: (1) gen-
erating all large itemsets in the database and (2) generating sequential patterns
in the database according to the large itemsets generated in the first step. ISE
algorithm is proposed by [4] for incremental sequential patterns mining and
scans the database several times. ISM [6] is also an apriori-like algorithm. It still
needs to rescan the entire updated database many times if previous small items

1

become large after database update. When the 1-sequence becomes large, the
updated data becomes explosive. WAP tree algorithm [5] scans the database only
twice to build the WAP tree without generating candidate sets. It then, mines
the WAP tree to extract sequential patterns. PLWAP algorithm uses a preorder
linked version of WAP tree and an algorithm to eliminate the need to recur-
sively re-construct intermediate WAP trees during mining as done by WAP tree
technique. Neither WAP nor PLWAP algorithm is used for incremental mining.

1.2 Contributions

This paper proposes an algorithm named Re-PL4UP (Revised PLWAP FOR
UPdated sequential mining). This algorithm applies the PLWAP-tree [3] to the
incremental sequential mining problem. The Re-PL4UP algorithm eliminates the
need to re-scan the old database when new changes arrive, in order to update old
patterns. The Re-PL4UP algorithm uses the information from original PLWAP
tree, without the need to re-scan the entire database (old + new data) in order
to update old patterns. The approach is to initially build a PLWAP tree that is
based on minimum support, s and which remembers the position codes of small
items. Revising the PLWAP tree will entail traversing the tree to insert new
nodes, delete nodes that are no longer frequent, changing links and re-building
the prefix linkages used during mining. A mirror copy of all modified and newly
inserted branches of the tree is mined and the patterns from this mirror copy are
used to update the previously mined patterns. This yields better performance
and allows for application scalability.

Section 2 first presents the proposed incremental sequential mining algo-
rithm, Re-PL4UP. Section 3 discusses an example mining of a database and its
update using the proposed Re-PL4UP algorithm, section 4 presents performance
analysis of the algorithm, and finally, section 5 presents conclusions and future
work.

2 The Proposed Incremental Re-PL4UP Algorithm

The algorithm, Re-PL4UP being proposed for mining frequent sequential pat-
terns incrementally uses PLWAP tree structure. Section 2.1 discusses the algo-
rithm Re-PL4UP. Let F and S represent previous large (frequent) items and
previous small items in original database respectively; F ′ and S′ represent up-
dated large (frequent) items and updated small items in the updated database U,
each event (item) in updated database U, belongs to one of these six categories
of items: (1). Frequent in old database, DB and are still frequent in updated
database (old + new data), U, (F → F ′); (2). Frequent in old DB but small
in updated database, (F → S ′); (3). Small in old DB but frequent in updated
database, (S → F ′); (4). Small in old DB and still small in updated database,
(S → S′); (5). New and frequent in updated database (∅ → F ′); (6). New and
small in updated database (∅ → S ′).

2

2.1 Mining Incremental Patterns with Re-PL4UP

This algorithm scans only the changes to the database (db). Next, it uses frequent
items in the changes to the database to update the old PLWAP tree of the original
database before mining. The most important update made to the old PLWAP
tree are for two classes of items namely: items in category 2, which are, F → S ′,
that now need to be deleted from the old tree; and the items in category 3, which
are S → F ′ that need to be inserted into the tree. The Re-PL4UP approach is
to take advantage of the position codes property of the PLWAP tree and during
initial construction of the PLWAP tree, store the list of position codes of all
small items. During update, these unique position codes are used to re-insert
the previous small items in proper positions in the tree without re-scanning the
old database. The updated patterns are now the union of the old patterns, the
patterns from modified branches of old Re-PL4UP tree and the patterns from
the new incremental database tree.

2.2 Mining Initial Frequent Patterns with PL4UP

This section presents the sequence of steps for mining initial frequent patterns
using the proposed Re-PL4UP algorithm, as well as how to mine it incrementally,
while an example application of the algorithm is given in section 3. Given a web
access sequence database (WASD) or its equivalent, a minimum support, s, the
proposed Re-PL4UP algorithm will take the following steps in mining initial
frequent patterns.
1. Construct initial PLWAP tree using minimum support, s obtaining frequent
1-items (with support geq s), F1, the frequent 1-items, the Small 1-items (with
support < s), S1. Then, during construction of the PLWAP tree, we shall define
a small item code profile for every small 1-item in the S1 list by including a list
of position codes of the PLWAP tree indicating the position that this small item
would have been on, in the tree if it were frequent.
2. We construct a PLWAP tree [3] using the seqs from first step above and the
frequent F1 items for header link connections and define the small item code
profile for small items S − codeDB . This is called Re− PL4UP DB tree.
3. We now mine the Re−PL4UP DB tree for frequent patterns (called FP DB),
by extracting all patterns with support greater than or equal to s.

2.3 Steps in Incremental Mining of Frequent Patterns with

Re-PL4UP

When new transactions are inserted into or deleted from the database, the steps
for updating old patterns are given below. The input data for this process are:
(1) the changed database, db, (2) the old database DB tree, Re−PL4UP DB, (3)
the candidate 1-items, CDB

1
, (4) minimum supports, s, (5) the frequent 1-items,

F1, (6) the small 1-items, S1, (7) the frequent patterns, FP DB . The steps in
incrementally mining the database using mostly changed db and old available
patterns are presented in Figure 1 while and example mining with this algorithm
is presented in section 3.

3

Algorithm 21 (Re-PL4UP-Mines Web Log Sequences Incrementally)

Algorithm Re-PL4UP()
Input: original database, DB, Incremental database, db, minimum

support λ (0 < λ ≤ 1) original DB tree Re − PL4UP DB, old frequent
pattern, FP, old candidate lists (C1, F1, S1), small code profile S − codeDB.

Output: updated frequent patterns for database, U (FP’), Re − PL4UP DB tree.
updated candidate lists (C ′

1, F ′

1, S′

1). updated small code profile S − codeU .

Intermediate data:incremental db candidate lists (Cdb

1 , F db

1 , Sdb

1))
begin

(1)Update all candidate lists as follows:

C′

1 = C1 ∪ Cdb

1 ; s’ = λ of |DB| + |db|.
F ′

1 = elements in C′

1 with support geq s’
S′

1 = elements in C′

1 with support < s’.

F db

1 = Cdb

1 ∩ F ′

1; Sdb

1 = Cdb

1 ∩ S′

1.
(2)Classify items in the updated data, U into one of 6 classes as:

F1 ∩ F ′

1 are in class F → F ′; F1 ∩ S′

1 are in class F → S′.
S1 ∩ F ′

1 are in class S → F ′; S1 ∩ S′

1 are in class S → S′.
F ′

1 − F1 are in class ∅ → F ′; S′

1 − S1 are in class ∅ → S′.
(3) Modify the old Re − P l4UP DB tree such that all F → S′ items are deleted
from the tree, and all S → F ′ are inserted into tree using the S − codeDB.
(4) Mine modified branches of Re − PL4UP DB to get frequent patterns Re − FP DB.

(5) Construct and mine small Re − PL4UP db to get frequent patterns Re − PL4UP db

(6) Combine the three frequent patterns to obtain FP’ as:

FP ′ = FP DB ∪ Re − FP DB ∪ FP db

(7) Insert the frequent sequence transactions from the incremental database into the
original Re − PL4UP DB tree to update it; update the links and small code profiles.

end // of Re-PL4UP //

Fig. 1. The Re-PL4UP Algorithm

3 Mining an Example Database with Re-PL4UP

Algorithm

Suppose we have a database DB with set of items, I= {a, b, c, d, e, f, g, h} and
minimum support = 50% of DB transactions. A simple database transaction
table for illustrating the idea is given in the first two columns of Table 1. The
first process is to build the initial Re − PL4UP DB tree [3] using sequences in
Table 1 with support greater than or equal to the tolerance support s of 50%
(equivalent to 3 transactions in Table 1). The Re − P l4UP DB tree is built the
same way the PLWAP tree is built. To build, first scan the database sequence
(column 2 of the Table) once to obtain the candidate 1-items, 1-frequent and
1-small lists with their supports as: C1 = {a:5, b:5, c:3, d:1, e:2, f:2:, g:1, h:1}.
F1 = {a, b, c}. S1 = {e, f, d, g, h}. Then, scan the web access database (column 2
of Table), a second time to create a frequent sequence from each transaction, the
frequent sequence (seqs) that includes all items with support greater or equal

4

to support, s (seqs is shown on column 3 of Table 1). insert each of the seqs

transactions in the tree with their count and position code to obtain the PLWAP
tree in (Figure 2). Each node is described as (a:1:1) standing for (label of the
node:count of the node:position code of the node). In defining the position code
of a node, the PLWAP algorithm applies the rule that the root of the tree has a
null position code, but every other node has a position code that is equivalent
to appending ‘1’ to the code for this node’s parent if this node is the leftmost
child of its parent, otherwise, its position code is obtained by appending ‘0’ to
the position code of its nearest left sibling. While inserting the frequent items
in the sequence, the algorithm checks the original transaction to mark location
of small items in the transaction. For example, small item d in the original first
transaction abdac would have had the position code (d:1:111) in the created
branch if this d were frequent. It will write this position code in the small item
code profile for item d as S − coded = {111}. The position code of a node does
not change unless the node moves. The complete small item code profiles for all

Root

a:4:1 b:1:10

b:4:11

a:2:111

a:1:101

b:1:1011

a

b

c

c:1:1110

a:1:10111
c:2:1111

c:1:11111

a:1:11101

c:1:111011

Fig. 2. The Re-PL4UP tree with Support s for the Example Database

small items after inserting all frequent sequences in the tree are:
S − coded = {11} or {3}, S − codee = {110, 11011111, 1110} or {6, 223, 14},
S − codef = {1100, 11001111, 111011} or {12, 207, 59}, S − codeg = {11101} or
{29}, S − codeh = {1110111} or {119}. Note that these position codes can also
be recorded in their decimal number equivalents as shown above. After building
the tree, a pre-order traversal mechanism (visit root, visit left subtree, visit right
subtree) is used to add a pre-order linkage on the tree for all frequent 1-items,
F1 = {a, b, c}. The broken lines on Figure 2 starting with each frequent F1 item
is used to show the pre-order linkage between nodes of this type. In step 3, the

5

Re−PL4UP DB begins the mining process. It starts following the header linkage
of the first frequent item, “a”, and obtains the support of this prefix subsequence
“a” as the sum of the counts of all first “a” nodes in the current a:suffix root
set, which are the tree branches rooted at (a:4:1 and a:1:101). If the sum of
the counts of these first a nodes on different branches of the tree at the level
of the tree under consideration is greater or equal to support of 3, we include
this sequence in the FP DB frequent pattern list. The “a” is frequent because
this suffix root set has a total count of 5. Next, we shall continue to check down
the suffix trees under use to see if the sequences (aa, ab, ac) are also frequent.
The a-header link serves the purpose of tracking and constructing these root sets
during mining. Process continues in a similar fashion recursively checking for all
patterns beginning with “a”, “b” and “c”. After checking all patterns, the list
of FP DB mined based on the support of 3 is: FP DB = {a:5, aa:4, aac: 3, ab:4,
ac:3, aba:4, abac:3, abc:3, b:5. ba:4, bac:3, bc:3, c:3}.

3.1 Mining Updated Database with Re-PL4UP Tree Algorithm

Assume that the original database, DB of Table 1 is updated with the records
in the changes to database table shown as Table 2, the objective of the Re −
PL4UP DB algorithm is to use old rules, FP DB from the previous section, with
the new changes to database and other intermediate information from the pre-
vious section like candidate 1-items, frequent 1-items, and small 1-items, small
item code profiles S−codeDB, to compute the new frequent patterns in the entire
updated database, using the same support, s, of 50%. Thus, the Re−PL4UP DB

Table 2. The Changes to Database Transaction Table

TID Web access Seq. Frequent subseq Frequent subseq
with s = 50% with t = 0.6s

700 bahefg bahefg bahefg

800 aegfh aegfh aegfh

algorithm mines the updated database incrementally as:
1. Update all intermediate candidate lists and patterns as follows: C ′

1
= C1∪Cdb

1
.

C1 = {a:5, b:5, c:3, d:1, e:2, f:2:, g:1, h:1}. Cdb
1

= {a:2, b:1, e:2, f:2, g:2, h:2}, thus,
C ′

1
= {a : 7, b : 6, c : 3, d : 1, e : 4, f : 4, g : 3, h : 3}. F ′

1
= {a : 7, b : 6, e : 4, f : 4}

and F db
1

= Cdb
1

∩ F ′

1
, = {a:2, b:1, e:2, f:2}. S ′

1
= {c : 3, d : 1, g : 3, h : 3}.

Sdb
1

= Cdb
1

∩ S′

1
= {g:2}.

2. Classify items in the updated database U, into one of the defined six categories
as:(i) F1 ∩ F ′

1
= {a, b}, (ii) F1 ∩ S′

1
= {c} (iii) S1 ∩ F ′

1
= {e, f}, (iv) S1 ∩ S′

1
=

{d, g, h}, (v) F ′

1
− F1= ∅, and (vi) S′

1
− S1 = ∅.

3. Modify the old Re−PL4UP DB tree to delete from items in category F → S ′,
constituting {c}, to insert all items in the category S → F ′ = {e, f} using their

6

small code profile. Every small item code profile has a unique position in the cur-
rent tree, determined by any matching prefix of its binary position code. Thus, if
the position profile code is 111011 and we can find a node position in the current
tree for the prefix 1110, then, we insert the small-to-large item there. The new
code profile of the item is the physical code in the tree. The small code profile
list is updated such that the updated codes for the small-to-large items {e, f}
after tree modification are: S − codee’= {110, 1101, 1110} and S − codef ’ =
{1110, 11001, 11101}. Finally, the frequent header linkages of the frequent items
in the modified tree are re-constructed. The revised tree is shown as Figure 3.
4. Mine only the modified branches of the revised tree, Re−PL4UP DB (which

Root

a:4:1

b:1:10

b:4:11

a:3:111

a:1:101

b:1:1011

a

b

e

f

e:1:1110

a:1:10111
f:1:11101

e:1:110

e:1:1101

f:1:1100

f:1:11001

Fig. 3. The Revised PL4UP tree After Deletion and Insertion of Items with Changed
Status

is the left branch of Root in Figure 3) to obtain the frequent sequences called
Re − FP DB as {aee:1, abef:1, aff:1, ae:2, af:2, be:1, bf:1, bef:1, ef:1, ee:1, ff:1,
e:2, f:2}.
5. Construct the small Re − PL4UP db tree using only the changes to the data-
base, db. Mine this Re − PL4UP db to obtain the FP db patterns. The tree for
small db is based on F db

1
= Cdb

1
∩ F ′

1
={a, b, e, f}. Following this process, the

useful mined FP db = {b:1, a:2, h:2, e:2, f:2, g:2, ba:1, be:1, bf:1,aef:2, bef:1, ae:2,
af:2, ef:2, bf:1}.
6. Combine the frequent patterns from (1) old database, DB, and (2) modified
branches of old DB and (3) changes to the database, db, keeping only those
patterns that have support ≥ s′ (which is 4) in updated database. FP ′ are pat-
terns in FP DB ∪ Re − FBDB ∪ FP db with support greater or equal to s′ (of 4
transactions). Thus, FP ′ = {a:7, aa:4, ab:5, aba:4, b:6, ba:5, ae:4, af:4, e:4, f:4}.
7. Finally, the frequent sequences in the incremental database, db, which are
(baef, aef) are inserted into the main revised Re− PL4UP DB to keep it up-to-
date, while the small code profile of the new small items in the new changes as

7

well as the small code profiles of all deleted nodes from the tree are recorded in
the small code profiles.

4 Experimental and Performance Analysis

A performance comparison of Re-PL4UP, PLWAP and ISE algorithms was con-
ducted. All these three algorithms were implemented and run on the same
datasets generated using the resource code for generating synthetic datasets
downloaded from http://www.almaden.ibm.com/cs/quest/syndata.html. The ex-
periments were conducted on a Pentium 4 PC machine with 256 megabytes of
main memory running Windows operating system. The programs were written
in C++ under visual C++ environment. The number of transactions (D) in
this dataset is sixty thousand records, that is |D| = 60,000 records, the average
size of transactions (length of sequences) (T) is 10, |T | = 10, average length
of maximal pattern (that is, average number of items in the longest frequent
sequence) (S) is 6, or |S| = 6, number of items or events (N) (the total number
of attributes) is one thousand, N=2000. Assume the size of updated (inserted)
dataset is 20,000 records, and the support thresholds are varied between 1% and
20%. An experimental result is shown in Table 3. Experiment 2: Execution

Table 3. Execution Times for Dataset at Different Supports

Algorithms CPU Time (in secs) at Supports of
1 2 3 4 5

ISE 4000 1405 515 188 101

PLWAP 212 112 80 66 60

Re-PL4UP 164 69 40 27 14

Time for Databases with Different Sizes

We use different database sizes that vary from 20k to 100k to compare the three
algorithms. The minimum support 20% is used for Re-PL4UP, ISE and PLWAP
and the result of the experiment is shown in Table 4. The five datasets used for
the experiment are T10.S5.N2000.D20K, T10.S5.N2000.D40K, T10.S5.N2000.D60K,
T10.S5.N2000.D80K, and T10.S5.N2000.D100K.

5 Conclusions and Future Work

Re-PL4UP algorithm proposed in this paper, modifies an existing PLWAP tree
by utilizing the metadata of old database transactions as well as old mined fre-
quent patterns in order to incrementally update web log sequential patterns.
One major contribution of work is the technique for efficiently using position

8

Table 4. Execution Times at Different Transaction Sizes on Support 16%

Algorithms Different Changed Transaction Size
(times in secs) 20K 40K 60K 80K 100K

ISE 100 189 285 378 470

PLWAP 29 51 81 98 128

Re-PL4UP 19 33 54 83 105

codes of small items in database sequences to restore information about previ-
ous small items that were not stored in the tree, when the database is updated
and these items become frequent, without re-scanning old database. Experiments
show that Re-PL4UP performs better than existing incremental sequential min-
ing algorithms and no huge candidate itemsets need to be generated. like the old
patterns and tree for mining the updated database. Future work should inves-
tigate applying technique to distributed and parallel mining that may involve
continuous time series data, and to web content and text mining.

References

1. Agrawal, R. and Srikant, R.: Mining Sequential Patterns, Proceedings of the 11th
Int’l Conference on Data Engineering, Taipei, Taiwan, March 1995, pp. 3-14.

2. Han, J., Kamber, M.: Data Mining: Concepts and Techniques Morgan Kaufmann,
2001.

3. Lu, Yi., Ezeife, C.I.: Position Coded Pre-Order Linked WAP-Tree for Web Log
Sequential Pattern Mining, Proceedings of The 7th Pacific- Asia Conference on
Knowledge Discovery and Data Mining (PAKDD 2003), Seoul, Korea, Apr. 30-May
2 2003, , pp. 337-349.

4. Masseglia, F., Poncelet, P., Teisseire, M.: Web Usage Mining: How to Efficiently
Manage New transactions and New Customers. Rapport de Recherche LIRMM, 18
pages, Fevrier 2000. Version courte dans Proceedings of the 4th European Confer-
ence on Principles of Data Mining and Knowledge Discovery (PKDD’00), Lyon,
France, September 2000, pp.530-535.

5. Pei, Jian., Han,Jiawei., Mortazavi-asl, Behzad., Zhu, Hua.: Mining Access Patterns
Efficiently from Web Logs. Proceedings 2000 Pacific-Asia Conf. On Knowledge Dis-
covery and Data Mining (PAKDD’00), Kyoto, Japan, April 2000.

6. Parthasarathy, S., Zaki, M.J., Ogihara, M., Dwarkadas, S. Incremental and Inter-
active Sequence Mining, In Proc.(1999) of the 8th International Conference on In-
formation and Knowledge Management (CIKM99), 251- 258, Kansas City, MO,
November 1999, pp.530-535.

9

