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SensorWebIDS: A Web Mining Intrusion Detection System

Abstract

Purpose of this Paper: Paper proposes a web intrusion detection system, Sen-
sorWebIDS, which applies data mining, anomaly and misuse intrusion detection on
web environment.

Design Approach: SensorWebIDS has three main components: the Network
Sensor for extracting parameters from real-time network traffic, the Log Digger
for extracting parameters from web log files and the Audit Engine for analyzing
all web request parameters for intrusion detection. To combat web intrusions like
buffer-over-flow attack, SensorWebIDS utilizes an algorithm based on standard de-
viation (o) theory’s empirical rule of 99.7% of data lying within 30 of the mean,
to calculate the possible maximum value length of input parameters. Association
rule mining technique is employed for mining frequent parameter list and their se-
quential order to identify intrusions.

Findings: Experiments show that proposed system has higher detection rate for
web intrusions than SNORT and mod_Security for such classes of web intrusions
like cross site scripting, SQL-Injection, session hijacking, cookie poison, denial of
service, buffer overflow, and probes attacks.

Research Limitations: Future work may extend the system to detect intrusions
implanted with hacking tools and not through straight HTTP requests or intrusions
embedded in non-basic resources like multimedia files and others, track illegal web
users with their prior web access sequences, implement minimum and maximum
values for integer data, and automate the process of pre-processing training data
so that it is clean and free of intrusion for accurate detection results

Practical Implications: Web service security, as a branch of network security, is
becoming more important as more business and social activities are moved on-line
to the web.

Original Results in Paper: Existing network intrusion detection systems are
not directly applicable to web intrusion detection, because these intrusion detec-
tion systems are mostly sitting on the lower (network/transport) level of network
model while web services are running on the higher (application) level. Proposed
SensorWebIDS detects XSS and SQL-Injection attacks through signatures, while
other types of attacks are detected using association rule mining and statistics to
compute frequent parameter list order and their maximum value lengths.

keywords: Web Intrusion Detection, Network Intrusion Detection Systems, Association
Rules Mining, Sensor-based, Web Business, Crafted Web Intrusions
Paper Type: Research
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1 Introduction

Security of network systems is becoming increasingly important as more sensitive infor-
mation are being stored and manipulated online and more attacks are being launched
every second. The security of a computer system is compromised when an intrusion
occurs as it may cause data theft or hacker making the computer systems more vulnera-
ble. Many of the worms have used such vulnerable networks of computers to spread fast
through the internet. Consider the example of the sapphire worm [CAIDA, 2003], which
was the fastest spreading computer worm in history. This worm virus spread through
the Internet in 2003. The number of infected computer systems doubled in size every
8.5 seconds. In 10 minutes after release, it infected more than 90% of vulnerable hosts.
An intrusion detection system (IDS) is an increasingly important part of the security
system of a network. Two types of traditional IDSs [Bai & Kobayashi, 2003] exist: (1)
misuse IDS, which uses patterns of well-known attacks to identify intrusions (e.g., famous
Norton Antivirus software is a type of misuse IDS), and (2) anomaly IDS, which formu-
lates the normal usage patterns and determines whether deviations from these normal
patterns are intrusions, (e.g., common firewall products belong to this type of anomaly
IDS). These two types of traditional IDSs require a lot of human involvement. Security
experts have to analyze every known intrusion using their domain knowledge, and hand-
code signatures (patterns) for those intrusions, and this process is very time consuming
and expensive. In addition, these IDSs need frequent updates using new signatures when
new intrusions emerge. The speed of these updates is much slower than the rate at which
the new intrusions spread. Thus, many vulnerable computer systems with IDSs, which
have not yet been updated, may be compromised.

A web application is a type of network service. From the network’s perspec-
tive, a web service uses TCP communications just like any other network application.
Apart from traditional network attacks like Denial of Service (DoS), Buffer Overflow
attacks, which are also applicable to web applications, some new security problems
are found that are specifically targetted at web applications, e.g., Cross Site Script-
ing attack (XSS) ([Cgisecurity, 2002]), SQL-Injection [Spett, 2005]), session hijacking
([Impera, 2006]), and cookie poison attacks ([Wikepdia, 2002]).

1.1 Understanding Network Intrusion Types

Basically, there are four classes of traditional network intrusions [Bai & Kobayashi, 2003],
that may also affect web services, and four additional classes that are exclusively specific
to web intrusion:

(1) User to Root (e.g., Buffer overflow) Attack (U2R).

(2) Remote to User Attack (R2U).

(3) Denial of Service Attack (DoS).

(4) Probes Attack (Probes).

The security risk degrees of these four kinds from highest to lowest are: U2R > R2U >
DoS > Probes. That is, U2R attacks cause the most security concern. Unfortunately,
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current IDSs using data mining technologies are useful for capturing DoS and Probes
attacks, but perform very poorly on detecting U2R and R2U attacks.
Web-based intrusion is a branch of network intrusion, which has some new features
that make it unique and are:
. Cross Site Scripting attack ([Cgisecurity, 2002]),
6. SQL-Injection ([Spett, 2005]),
7. Session Hijacking ([Impera, 2006]),
8. Cookie Poison Attack ([Wikepdia, 2002]).

[

1. User to Root Attack: In this scenario, the attackers have normal user accounts
on victim hosts. They exploit some software vulnerabilities to gain root accesses on the
victim hosts, and do what they want after that, e.g., sending buffers that are longer
than the maximum buffer length, and hiding some malicious executable code in the ex-
tra spaces. Examples of U2R attack are Eject and Fbconfig. These are two commands
used in Sun Solaris and Unix system. Certain old versions of these two utilities contain
vulnerabilities. The Eject attack exploits a buffer overflow in the eject utility. Fbconfig
is the generic command line interface to query and configure frame buffer, which is vul-
nerable to buffer overflow attack.

2. Remote to User Attack: In this kind of attack, attackers usually do not have
accounts on victim hosts. They send network packets to victim hosts and exploit some
software vulnerabilities to gain normal user access. After that, they may use U2R at-
tacks to gain root access and cause more severe damages. Examples are Dictionary and
Ftp-write attacks. The Dictionary attack uses the fact that many users do not carefully
choose a secure password. So, the attackers use some hacking tools to generate some
common passwords and use them to guess the real password. Such an attack can be
detected by monitoring the failed login attempts in a period of time.

3. Denial of Service Attack: DoS attacks can be performed on most modern software
and operating systems. The attackers use tools to generate mass normal request for a
service (e.g., HTTP), and overwhelm the capacity of the service providers, make them
too busy or too full to handle legitimate requests. Examples are SYN flood and Ping of
Death attacks. The Ping of Death attack can be discovered by examining the size of all
ping packets and flagging those that are longer than 64000 bytes as anomalies.

4. Probes Attack: A hacker launches a probes attack by using hacking tools to scan
all reachable network computers, to gather information, and find known vulnerabilities.
Ipsweep and Mscan are examples of tools, which can be used to scan for vulnerabilities
of another system.

HTTP Protocol and Web Logs

HTTP [Fielding et al., 1999] is a client-server based protocol used between web browser
and web server. To get the resources from web server, the client sends HTTP request to
server through GET and POST commands. Every resource in the web server has a unique
resource identifier - URI. The resource could be a picture, e.g., “http://myweb/1.gif” or a
file “http://myweb/f.html” or a path, which will be translated by the web server to a de-
fault resource, e.g., “http://myweb” will be translated to “http://myweb/default.html”.
A web page can accept user supplied data as input, e.g., “http://myweb/login.asp” can
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accept two parameters - “username” and “password”. Once the user fills in these two
fields in the web browser, and clicks “submit” button, the two parameters and their
values are included in an HTTP packet and sent to the web server. Based on HTTP
RFC2612 ([Fielding et al., 1999]), there are three places in an HTTP packet that can
carry the parameter and value and these are URI, cookie and data section. Three ex-
ample HTTP packets in three different places carrying the same parameters “username”
and “password” for the URI “/login.asp” are given below:

1) Parameters kept in URI
GET /login.asp?username=neo&password=111 HTTP/1.1\r\n
Content-Length: 25\r\n
User-Agent: Mozilla/4.0\r\r

\r\n

2) Parameters kept in cookie
GET login.asp HTTP/1.1\r\n
Content-Length: 25\r\n
User-Agent: Mozilla/4.0\r\r
Cookie: username=neo&password=111\r\n

\r\n

3) Parameters kept in user data section
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POST login.asp HTTP/1.1\r\n
Content-Length: 25\r\n
User-Agent: Mozilla/4.0\r\r
username=neo&password=111

\r\n

Upon receiving an HTTP request, the web server processes it and responds with a return
code (200 for normal, 400 series for error and for information) indicating the result. Both
HTTP request and response are recorded into the web server’s log file. A sample line in
a typical log file looks like:

67.2.3.4 - - [10/Oct/2000:13:55:36 -0700] “GET

/exampleCGIL.php?id=20 HTTP/1.0” 200 2326

This means “client 67.2.3.4, at time [10/Oct/2000:13:55:36 -0700], used GET method
requesting the resource /exampleCGIlL.php with parameter id=20, web server returned
code 200 (normal), the total request packet was 2326 bytes in length”. It needs to be
emphasized that in the log file, web server only writes down parameters carried in URI
(unique resource identifier). The parameters in cookie and user data section (e.g., for
data like user password) are totally ignored by the log file due to security and performance
reasons. For example, the data in cookie and user data section could be too large to be
written into the web log and some parameters like passwords cannot be written into log
file to prevent their being leaked out to unauthorized persons. To see all the parameters,
a program can use a network sensor to capture the real-time network packets and extract
all the HTTP parameters from the HT'TP request, as our SensorWebIDS does.

Web Service Attacks

Most web service attacks occur through the user input area. Dynamic web service tech-
nology has three categories. The first is using server-side HT'ML embedded scripting
languages, like Active Server Pages (ASP), Java Server Pages (JSP), and PHP. The sec-
ond is using server-side add-on component, e.g., Common Object Model (COM), and
Java Servlet. The third is using server-side executable files or script, and re-directing
user input to executable files and outputting of the files to the users. Description of web
service attacks listed earlier on are given next.

5. Cross Site Scripting (XSS): Our inspection of over 100 web sites on the inter-
net, shows at least 20% of them have this kind of vulnerability. Cross site scripting
occurs when a web application gathers malicious data from a user through perhaps
cookie theft. For example, if I was logged in as “john” and read a message by “joe”
that contained malicious Java Script in it, then it may be possible for “joe” to hi-
jack my session just by reading his bulletin board post. At the time of writing this
document, these XSS vulnerabilities were found on the internet in strings of the form:
< seript > alert(document.cookie) < /script >.
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Assume an example site with XSS vulnerability is:

http : | Jwebd.university2.ca/units/cs/ LN Knowledge Base.nsf/

W HAll!SearchView&Query = YourQuestion&Seq = 1&SearchFuzzy = TRUFE

To inject HTML code to exploit these vulnerabilities on this URL, the user:

i) supplies a value as the query string for parameter “Query”. The query string will be
at the place of “YourQuestion”. A typical XSS attack could input a value “ < script >
alert(“Hello,world") < /script >" for that parameter. Now, the full URL will look like:
http : | Jwebd.university2.ca/units/cs/ LN Knowledge Base.nsf/

W H_AlllSearchView&Query =< script > alert(“Hello,world")

< /seript > &Seq = 1&SearchFuzzy = TRUE

ii) This request will be transferred to the web server. At the server side, this query string
looks like a normal string and is sent into database engine for querying.

iii) In most cases, this query string does not exist in the database and the web server will
return a message to the client, telling that the query string cannot be found. The origi-
nal query string will be copied into the returned HTML script. For example, a returned
HTML script looks like:

< html >

< head >

//someheadercodehere

< /head >

< body >

< DIVCLASS = “inbody”STY LE = “margin—left : 0.5cm; margin—top : 0.5em” ><
B > SearchResultsfor < script > alert(“Hello,world") < /script >< /B >
< pCLASS = inbodyALIGN = LEFT >

< /body >

< [html >

We can see the user provided query string is still there.

iv) When the explorer receives this response, it will treat the “ < script > ... <
/script >" as normal HTML script and execute it. Therefore, a message box will jump
out in this example.

v) For a dangerous usage, an attack could post a malicious URL with embedded HTML
code to some places (e.g., forum post), and allure a victim to click on this URL. After
that, this piece of malicious HTML code will be executed on the victim’s computer. The
malicious HTML code could redirect a user to some unpleasant web site, stealing user
cookie, and more.

vi) The solution for XSS attack is to filter user inputs, by prohibiting user from inputting
dangerous HTML tags like < script >.

6. SQL-Injection: is a technique for exploiting web applications that accept user data
in SQL queries without stripping potentially harmful characters first. For example, there
is a login web page that accepts user name and password. Inside the program, the user
name and password are sent to web server where these parameters are used in SQL
queries like “select * from users where userid= “ UserID” and passwd= “Password” 7.
In normal usage, the user name and password could be ‘tom’” and ‘111°. Then, the SQL
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statement will look like: “ select * from users where userid=‘tom’ and passwd=‘111" 7.
In attack mode, the intruder will inject SQL keywords into the user name or password
fields that makes the condition for the query always TRUE. Solution for SQL-Injection
attack is also filtering user inputs, by prohibiting user from inputting dangerous char-
acters like single-quotes or double-quotes. Another solution for Apache web server is to
enable “magic quote” option, which will automatically pad single-quote or double-quote
with a backslash. This will make these special characters lose their power in SQL queries.
7. Session Hijacking - File Disclosure & File Access

This kind of intrusion could make the attackers read confidential files (/etc/password),
write any files to override important system files and crash a system. This kind of attack
is caused by unfiltered user input. For example, if there is a CGI script that can view
specified TXT files in user directory, the filename is obtained from the user. A valid
user input should look like “my_file_txt”. However, if this script does not validate user
input, the attacker can use “.../ .../ ... /etc/password” to view the password files or
other confidential files. Solution for this kind of attack is to filter user input and disallow
characters like period and forward-slash.

8. Cookie Poison

Cookies are data key-pairs, which are stored in a file on the client’s hard drive. Each pair
consists of a name for the cookie, and then a value related to that name. For example,
cookie_for_xyx.com = background_red. The major issue is that you can visit a web site,
and they can store information about you on your computer. The cookie can store any
information it wants, but can store only information about you that you give it, such
as preferences, or last time you visited that page, or even your name. The information
stored at the client side can only be retrieved by the server that placed the cookie. Cook-
ies are helpful to improve your browsing, but are a common target for hackers, who can
edit the cookie in a way that allows them to gain access to the personal information of
other users on a web site. Using a crafted cookie to fool the server is called ‘Cookie
Poison’.

1.2 Motivations and Contributions

The paper proposes a web intrusion detection system, SensorWebIDS, which contributes
the following features:

1. SensorWebIDS, collects data from both real-time network data (using proposed net-
work sensor) and web log files to ensure all user data are being monitored.

2. To combat buffer-over-flow attack, SensorWebIDS defines a new algorithm using the
standard deviation theory to calculate the maximum lengths of parameter values.

3. SensorWebIDS considers the relationships amongst HTTP access records in a given
time window in order to capture some important information regarding frequency of spe-
cific attacks, hidden in the access sequence.

4. The system uses data mining technique to deduce frequent parameter order and pres-
ence for detecting new and old attacks.
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5. Our system abstracts common signatures and sensitive keyword signatures, and error
return codes to match known attacks.

1.3 Outline of the Paper

Section 2 examines existing network intrusion detection systems and web intrusion detec-
tion systems. Data mining concepts, association rules mining and common algorithms are
also introduced. Section 3 presents detailed techniques of the proposed SensorWebIDS
system. Section 4 presents the experimental results of our prototype system. Section 5
presents conclusions and future works.

2 Related Work on Network IDS

In the past 20 years, a lot of research (Swatch [Hansen & Atkins, 1993], STAT, WWWstat
[Fielding et al., 1999], Autobuse [Taylor, 1998], Logscanner [Tuininga, 1998], MADAM

ID [Lee, Stolfo & Mok, 2002], CyberCop[Network Associates, 1998], [Lee, Stolfo & Mok, 2002],
ADAM [Barbara et al., 1999], [Han et al., 2002]) has been done in the intrusion detec-

tion area, and many IDSs (intrusion detection systems) for general network intrusion
detection have been proposed. IDSs designed for general network intrusion detection are

not efficient or even useful in web intrusion detection. Since many web attacks focus

on applications that have no evidence on the underlying network or system activities,

they are seen as normal traffic to the general network IDSs and pass through the IDS
successfully.

Misuse Based Intrusion Detection Systems

Examples of these misuse systems are SNORT [Roesch, 1999, STAT, and most antivirus
software like Norton antivirus software. SNORT [Roesch, 1999] is an open source IDS.
There are many detection rules in SNORT. A sample rule to detect P2P software looks
like: alert tcp HOME_NETany <>

EXTERNAL_NET 8875 (msg: “P2P Napster Server Login”; flow:established; content:
“anon@napster.com”; classtype:policy-violation; sid:565; rev:6;). Here, the signature in
this rule is (content:anon@napster.com), which means any packet that contains this string
could be a P2P traffic.

Anomaly Based Intrusion Detection Systems

The usage patterns are manually established based on domain knowledge. So, they are
specific to such domains and cannot be applied to other domains directly. For example,
the firewall system for a University is an anomaly detection system. It may only allow
connections to well-known ports from outside, e.g., 80 (http), 22 (ssh), etc. Other kinds
of connections are not trusted and blocked. This will limit many normal usages such as
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ftp. And this also cannot prevent those kinds of attacks that embed themselves into http
protocols. Recent research is aimed at eliminating as much of manual processing while
building an intrusion detection system by applying data mining techniques.

Applying Data Mining to IDS

The goal of techniques applying data mining is to eliminate the need for manually ana-
lyzing and encoding intrusion patterns, as well as the guess work in selecting statistical
measures for normal usage profiles. The idea is to use association rules to guide audit
data gathering during data pre-processing stage, using frequent episodes to guide feature
selection, and building up a classification model based on training audit data to clas-
sify future audit data into classes of normal usages or intrusions. The first job for data
pre-processing is to locate packets in the network traffic, each of which is a bit stream
like “010001111”, recognize the protocol and store them as structured database table
records using network sniff tools like tcpdump. The typical output data of tcpdump
is a table with the schema (timestamp, src_ip:src_port, dest_ip:dest_port, flag), which
gives the timestamp, source IP address, source port, destination IP address, destination
IP port, and TCP flag. Association rules mining [Agrawal & Srikant, 1994] is used to
guide audit data gathering during data pre-processing stage, frequent episodes mining
is used to guide feature selection [Lee, Stolfo & Mok, 2002], and a classification model
based on training audit data is built, to classify future audit data into different classes
(i.e. normal usages or intrusions). To facilitate data mining process, packet records need
to be summarized into connection level, i.e., collapse the packets belonging to the same
connection. In [Paxson, 1998], Paxson provided a useful tool - Bro, which can reassemble
the network traffic into connection level, filter the traffic stream into a series of events
(e.g., connection being closed normally is an event), and execute scripts that contain
site-specific event handlers. This is the second pre-processing for the audit data.

Applying Association Rule Mining

Association rules are used to determine correlations in the connection records obtained
after pre-processing. Lee [Lee, Stolfo & Mok, 2002] proposed a novel method to deter-
mine when the training audit data is enough. The idea is to use the number of frequent
association rules as an indicator on whether the audit data is sufficient. This means that
when the audit data is gathered, they compute the association rules from each new audit
data set, and merge the new rules into the existing aggregate rule set. The added new
rules represent new variations of the normal behavior. When the frequent aggregate rule
set stabilizes because no new rules are discovered and added from new arriving audit
data, they stop the data gathering since they believe collected aggregate audit data set
has covered sufficient variations of normal behavior. This approach of merging rules is
based on the fact that the frequent behavior types are limited and even the same type
of behavior type will have slight differences across audit data sets. One approach for
combining similar patterns into more generalized one is: Two rules r; and r, are merged
into one more general rule r if their right and left sides are exactly the same or their right
hand side and left hand side can both be combined, and the support and confidence val-
ues are close. Lee [Lee, Stolfo & Mok, 2002] uses axis attributes (the essential attributes
in the record) to extend the Apriori algorithm [Agrawal & Srikant, 1994] to consider
domain knowledge when mining rules in order to generate the most relevant rules. For
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example, consider the Connection table with schema (Time, Duration, Service, Src_bytes,
Dst_bytes, Flag). The Apriori algorithm may generate a frequent rule like (src_bytes =
200 — flag = SF), which is useless because there is no intuition for the association be-
tween the number of bytes from source (src_bytes) and the normal status (flag = SF).
This problem of mining rules with non-relevant attribute associations, prevents frequent
episode mining from being effective too. Thus, Lee’s solution [Lee, Stolfo & Mok, 2002]
is to first define axis attributes (e.g., Service), then, mine the Connection table using
Apriori algorithm to find frequent item sets, e.g., (src_bytes = 200, flag = SF). Then, it
removes all such frequent itemsets with no axis attribute in its set, like the one above
(src_bytes = 200, flag = SF).

Level-wise Approximate Mining Algorithm

Lee [Lee, Stolfo & Mok, 2002] still used the level-wise approximate algorithm to find the
low frequent but important patterns. In daily network traffic, some services (connections)
like gopher, happen for low occurrences but their patterns are still needed to be merged
into the network traffic profile or these services will be misclassified as intrusions or
anomaly. Thus, the level-wise mining algorithm is used for low frequent but important
frequent episodes. The idea of the algorithm is to first find all the episodes with high
frequent axis attribute values, and then, iteratively, lower the support threshold to find
the low frequent episodes with axis values, but these axis values must be new axis value
which have not appeared before.

Applying Frequent Episode Mining Algorithm

Lee [Lee, Stolfo & Mok, 1998, Lee, Stolfo & Mok, 1999, Lee, Stolfo & Mok, 2002] pro-
posed using mined frequent episodes from network connection records as guidelines for
constructing temporal statistical features for building classification models. For example,
suppose they obtain a set of frequent episodes by mining the connection records and 1)
for a frequent episode, if the same value of an attribute is repeated several times, they
should include a corresponding count feature. Thus, given a frequent pattern like
(service = smtp, scr_bytes = 200), (service = smtp, scr_bytes = 200) — (service = smtp,
scr_bytes = 200), [0.81, 0.42, 140], which implies that in the past 140 seconds, three
smtp connections appear one after the other. This will lead to a feature that counts the
number of connections having the same service and src_bytes as the current connection
record in the past 140 seconds.

2) for a frequent episode, if an attribute with different values is repeated several times,
they add an average feature corresponding to the different values. For example, given
frequent pattern (service = smtp, duration = 2), (service = telnet, duration = 10) —
(service = http, duration = 1), [0.81, 0.42, 140]. This will lead to adding a feature
that represents average duration of all connections in the past 140 seconds. The optimal
window size to use for frequent episode mining is discovered from experimentally min-
ing frequent episodes using different window sizes until the number of frequent episodes
becomes stable.

Building Classification Models

After raw audit data pre-processing and feature selection, IDS applying data mining
[Lee, Stolfo & Mok, 1998, Lee, Stolfo & Mok, 2002] would use classification techniques
on these audit data in order to build classification models. They use RIPPER, a rule
learning program developed by Cohen [Cohen, 1995]. Other decision induction algo-
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rithms that could be used are C4.5 and ID3 although RIPPER is argued to be more
efficient than both. To build misuse and anomaly detection models, they start with a set
of connection records containing diverse attacks as training data to RIPPER program.
The input records have the class label of attack type and the schema of this input looks
like: Connection (label, service, flag, hot, failed-logins, compromised, root-shell, su, du-
ration). The output of the RIPPER program is the set of rules for building misuse or
anomaly (deviating from most normal connection rules) detection model. Example out-
put rules are: If number of failed logins is greater than 5, then this telnet connection is
“guess”, meaning a guessing password attack. During detection, the algorithm can now
use this set of rules on new records to classify the record as a kind of known attack or
normal traffic. When building misuse models, it starts with training data that capture
a wide variety of attacks so that it can match known attacks. When building anomaly
models, it starts with training data that capture a wide variety of normal connection
behavior so that it can identify deviations from these.

The most famous Network IDS projects using data mining techniques are MADAMID
([Lee, Stolfo & Mok, 2002]), ADAM ([Barbara et al., 1999]), and MINDS ([Ertoz et al., 2004],
[Chandola et al., 2006]).

Other Web Intrusion Detection Systems

There are a few papers and systems dedicated to web intrusion detection: Swatch
[Hansen & Atkins, 1993], WWWstat [Fielding et al., 1999], Autobuse [Taylor, 1998], Logscan-
ner [Tuininga, 1998], CyberCop [Network Associates, 1998], SNORT [Roesch, 1999], and
mod_Security [Ristic, 2003]. These systems try to find problems in the log files of the web
server. Limitations in some of these tools include their lack of support for the encoding
scheme of hexadecimal characters defined in HTTP. This permits an attacker to easily
avoid detection. The script languages used by some tools are not flexible enough as they
have their own syntax, e.g., SNORT has its own expression for representing signatures
of attacks. There are methods to filter out false alarms, such as canceling all events
from certain domains, but it would be useful to define filters based on other properties.
Autobuse [Taylor, 1998] allows the specification of a defined threshold per host, which
allows reports to be suppressed until a given host has performed several attacks, but there
is no distinction of the severity of received events. In [Ristic, 2003], Ivan developed an
open source web application firewall named modsecurity. It operates as an Apache web
server module or standalone. The purpose of modsecurity is to increase web application
security, protecting web applications from known and unknown attacks. The highlights
of this system is that it cannot only discover intrusions, but can prevent some basic
web intrusions like SQL-Injection and XSS attacks, by using filter to remove unpleasant
characters in user supplied data. If installed as an Apache module, it can monitor user-
supplied data from all the sources (in URI, cookie, user data section). The shortcomings
of this system includes:

1. it cannot detect sophisticated intrusions like buffer overflow because it does not know
how long the maximum value length should be.

2. It has difficulty detecting DoS attack because it does not consider the relationship
between subsequent events but evaluates intrusion possibility on each HTTP request in-
dividually.

3. In order to monitor user supplied data from all sources, it has to be installed as an
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Apache module on the same machine as the Apache and this will influence the efficiency
of the web server. Also, a hacker could find a bug in this IDS system itself and attack it
to shutdown the Apache server so as to lunch a DoS attack.

3 The Proposed SensorWebIDS

The architecture of the proposed SensorWebIDS is shown as Figure 1, while the audit
engine detection algorithm, that drives the system is shown as Figure 2. The web intru-
sion detection system (SensorWebIDS) consists of three main modules: network sensor
(section 3.3), log digger (section 3.2), and audit engine (section 3.1). The network sen-
sor is used to capture all HT'TP requests in real-time from network traffic and to send
them to the audit engine for intrusion analysis. The log digger is used to extract HT'TP
requests from web server’s log files and send them to audit engine for intrusion analysis.
The audit engine is the brain and the decision-maker of SensorWebIDS. The Sensor-
WebIDS runs in two modes: learning and detecting modes. In the learning mode, the
network sensor or log digger sends extracted data to the audit engine as training data.
When in detecting mode, HT'TP requests, captured by the network sensors, or log files
are transported into the audit engine for anomaly analysis. The terminal could be a
screen device or a text file. The SensorWebIDS uses a combination of anomaly based
detection technique (with network sensor and frequent parameter presence computations
using association rule mining) and misuse based detection technique features based on
well defined signatures for web intrusions.

Signatures in SensorWebIDS

SensorWebIDS abstracts the common nature of existing web attacks into several high
level signatures instead of finding pattern for each known web attack. These common
signatures can be categorized into two classes (a) those based on web server return codes
and (b) those deduced from forbidden keywords used in web intrusions. By tracking web
server return codes generated by the same users within a short period of time, we can
identify hacking activities if web server return error codes pass acceptable thresholds.
Four most important rules used for signature class return codes are: 1) a client cannot
access too many non-existing URIs in a short time, 2) a client cannot produce too many
unauthorized error in a short time, 3) a client cannot produce too many forbidden errors
in a short time, and 4) requests that cause internal errors are suspicious. For the second
class of signatures (those for forbidden keywords), SensorWebIDS monitors parameters
in user data to identify script attacks. For the cross site reference (XSS) attacks, the
most dangerous keywords are < /script >, < script >, < img >, HTML tags in the
format < T'ag >. The forbidden keywords for SQL-Injection attack are single and double
quotes in SQL-Injection and < %% >, < /script >, < script >, < img > in XSS attack.
These are obtained from monitoring web attacks and are updated manually when new
attacks appear. A future work may also include automating the process of updating the
signatures. The audit engine module can easily be connected to a database to store each
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received record so that other data mining tools can be used to analyze the database.
Signatures Based on Web Server Return Code

The web server always makes a response to an HTTP request, which is recorded in the
server web log file. The HTTP specification defines a set of HI'TP return codes for web
server. The web server returns an error code because a malicious request is received or
a defective web page is accessed. Receiving continuous bad requests from the same user
is especially suspicious as a hack activity. Thus, by tracking web server return codes, we
can find hack activities. The four common rules useful for detecting some web attacks
are:

1. A client cannot access too many non-existing URIs in a short time. This type of error
is 404 ‘URI does not exist error’. The anomaly score we assign for this type of error is 1.
2. A client cannot produce too many unauthorized error in a short time. This is error
return code 401 for authentication failure and we assign an anomaly score of 2 for this
error.

3. A client cannot produce too many forbidden errors in a short time by trying to access
such things as confidential files. The web server return error code is 403 for forbidden
message and our anomaly score assignment is 2.

4. Requests that cause internal errors are suspicious and if at most times, an HTTP
request causes the web server return code of 500 (for unexpected condition), we assign
an anomaly score of 5.

Signatures Based on Forbidden Keywords

5. For XSS attack, the most dangerous keywords are </scrip>, <scrip>, and <img>.
Other general HTML tags are less dangerous but should also be paid attention to. HTML
tags are in the format of <Tag>. The audit engine detects HT'ML tags by searching for
< and > in the parameter values of an HTTP record and for each pair of < and > found,
an anomaly score of 10 is added to the anomaly score of that record.

6. For SQL-Injection attack, the dangerous character are single quote (‘ ’) and double
quotes (“ 7). The audit engine adds 10 to the anomlay score of the record for each
of this these two keywords found. All these forbidden keywords are stored as array
forbidden_keyword_list in the Algorithm 2.

3.1 Audit Engine

When the audit engine is launched, it first runs in its training mode using training HT'TP
parameters from sensor and log digger, to calculate parameter presence and order as well
as the maximum value lengths of the parameters. Later, it continuously runs in detection
mode using the algorithm shown in Figure 2 and Algorithm 2. The algorithm for the
audit engine training mode is presented as Algorithm 1. In training or learning mode, it
calls Algorithm 3 to calculate frequent parameter presence and order, and an algorithm
(discussed below) to calculate maximum value length.

Algorithm 1 (AuditEngine-Learn)
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Algorithm AuditEngine-Learn()
Input: record_set - containing URIs with parameters
Output: 1)URIS_FP - an array storing URIs with frequent
parameter list, URIs MAX_LEN -array storing
maximum allowed value length for URI,
num-records (total number of database records);
Begin
/* find frequent parameter presence and orders (Algorithm 3).*/
1. Call FindFrequentParameter AndOrder(record_set, confidence, axis_item);
/* find maximum value length (algorithm described below) */
2. Call CalcMaxValueLen(record_set);
End

Algorithm 2 (AuditEngine-Detect)

Algorithm AuditEngine_Detect()
Input: record_set - containing URIs in HTTP,
parameter_list in the form [parametername, parametervalue],
receiving_time, client_ip_address, server_returned_code,
maximum_allowed_anomaly_score
Output: TRUE if this HT'TP request is an intrusion,
FALSE otherwise
Other Variables:
forbidden_keyword_list (an array), /* for XSS and SQL_Injection attacks™/
ANOMALY_SCOREs (an array), /* for each check point */
URIs_FP (an array) /* for frequent parameter lists */
ERR-CODE (an array) /* for storing HTTP error codes */
history_queue /* for HTTP requests */
accumulated_anomaly_score /* for repeated requests */
Begin
/* Check for XSS and SQL_Injection attacks */
1. For each keyword k in forbidden_keyword_list
if (k is found in parameter_list)
score = score + ANOMALY_SCORET;
/* Check for Buffer overflow attacks */
2. For each parameter_name p in the parameter_list
if (the current parameter_value length > maximum_length)
score = score + ANOMALY_SCORE2;
/* Check for parameter presence and order to discover faked
HTTP requests generated with hack tools */
3. For each parameter_name p in the parameter_list
if (parameter_name is not in the URIs_FP[uri|.frequent_parameter_list)
score = score + ANOMALY_SCORES3;
/* Check server return code to count in server reaction to request™/
4. if (return_code is in the ERR_.CODE_list)
score = score + ANOMALY_SCOREA4;
/* Check relationship among multiple records for detecting probe attacks*/
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5. For each record r in history_queue
if (receive_time of new record minus receive_time of r) < N)
Begin
if (return_code in r is an error code)
accumulated_score = accumulated_score + anomaly for error code
End
else break;
push this record into history_queue
if (receive_time in new request minus receive_time of tail
record of the queue > N)

delete tail record from the queue

score = score + accumulated_anomaly_score

6. if (score > Max_Allowed_Score)
return TRUE /* means report as an anomaly */
else
return FALSE /* means report as normal request */

End

Finding Frequent Parameter List and Order

The algorithm for finding frequent parameter list and their order, takes a set of URIs
with parameter lists, and finds the frequent URI’s parameter list. It does this by applying
the Apriori algorithm on the parameter list to find the frequent rules having confidence
greater than cfd (the given value or the desired confidence for frequent rules), and then
storing these rules in array x. Next, each rule in array x is post-processed to delete
rules not having the axis items (given parameters) as their antecedents or left hand
attribute. The formal summary of the algorithm FindFrequentParameter AndOrder is
given in Algorithm 3.

Algorithm 3 (FindFrequentParameterAndOrder)

Algorithm FindFrequentParameter AndOrder()
Input: param_list - URIs and their parameter lists,
cfd - desired confidence for the frequent rules,
axis_item - all frequent rules start from this
item(the URI name).
Output: frequent URI’s parameter_list.
Begin
1. Apply Apriori algorithm on the param_list to
find frequent rules having confidence greater than
cfd, and store as array x;
2. For each rule r in array x do
Begin
if ( r is not started by rlaxis_item_idx] )
delete r from x;
End
3. return x;
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Table 1: Example Parameter List Computation

Record | Parameter List

1 /login.asp, username, password
2 /login.asp, username, password
3 /login.asp, username, password
4 /login.asp, username

End

For example, assume the system receives input record set shown in Table 1 with mini-
mum confidence of 75% and axis item “/login.asp” as index. The algorithm for finding
Frequent Parameter List would proceed to generate the following rules after applying the
Apriori algorithm:

“/login.asp” — “username”, “password”, confidence=75%

“/login.asp” — “username”, confidence=100%

“/login.asp” — “password”, confidence=75%

“username” — “password”, confidence=75%

“/login.asp”, confidence=100%

“username”, confidence=100%

“password”, confidence=100%

Next, it eliminates those rules that are not started with “login.asp”. So finally, we get
frequent parameter lists as the rules on lines 1, 2, 3 and 5 of the list above. During detec-
tion stage, requests with parameter “username” only or “password” only or “password,
username” will be assigned anomaly scores.

Calculating Maximum Allowed Parameter Value Length

Since all user input values are of string type, there should be a maximum parameter
input length at the server side. We can use this maximum allowed value length to detect
buffer overflow attacks. However, this maximum length exists in the source code on the
server side and is unknown to the IDS. There is no way for the IDS to learn this length
automatically. A simple implementation may use the maximum length observed in the
history data in the web logs as the maximum length allowed in the source code. But
this information is obviously not accurate and will inevitably lead to false alarms. For
example, if the maximum allowed ‘username’ is 64 in the source code, and the observed
maximum length in the web log is only 32, if a new request comes with length 40, the
IDS will take this as an attack. To solve this problem, we compute the maximum length
of each parameter using the statistics and probability theory’s “empirical rule” of “68-
95-99.7” for summarizing the relationship between the standard deviation, the mean and
the data values in a data set [Wikepdia, 2002]. This means that, in practice, for an
approximately normally distributed population, about 68.27% of the values lie within 1
times the standard deviation of the mean of the population, about 95.46% of the values
lie within 2 times the standard deviation of the mean and about 99.73% lie within 3 times
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the standard deviations (or 30) of the mean. Thus, to dynamically predict the maximum
length of a parameter, our algorithm determines the number of elements (users) for each
parameter (like username and password and location). Then, the algorithm computes
the maximum length for each parameter X which has values x, z9, ..., x,, and a mean
T as their standard deviation 3 *x o + T, where:

N

i=1
This method accommodates each URI having more than one parameter, e.g., URI “/lo-
gin.asp” has two parameters - “username”, “password”. Also, each parameter has a series
of values from different HT'TP requests. For example, for ‘username’ parameter, user A
inputs “mary” and user B inputs “Joe”, and if these are the only values for this param-
eter, 4 and 3 will be used to determine the maximum length for parameter “username”.
It also accommodates web servers having several URIs. The system should repeat the
same computations for each URI.
Updating Learned Frequent Parameter Presence and Maximum Value Lengths
Currently, all frequent parameter presence and order and maximum value lengths are
learnt during training period. In the detection period, these rules and values are used to
match normal usage pattern. They are not updated after training period. New parame-
ter rules and maximum value lengths may need to be updated after the training period
under the following scenarios:
1. The administrator may install some new web applications on the web server. So
there may be new URIs not present in our learned rules. For example, at the time when
the system collected the training data, there were 2 web pages on the web server: “/lo-
gin.asp” and “/search.asp”. Then, the system learned all rules related to these two web
pages. Later after that, the server administrator installed a new web page “/add.asp”.
Now, this new web page does not appear in the learned knowledge base, and intrusions
related to this web page cannot be found by the old rules.
2. The administrator may update some old web applications in the web servers by
adding, deleting or changing some parameters. For example, the web page “login.asp”
used “username” and “password” in the first version in the training period. After that,
the administrator updated this web page and added a new parameter “location”. Then,
this parameter is not included in the rules. New HTTP request including this new pa-
rameter will be marked as anomaly incorrectly. The technique for updating the rules is
left for future work. For taking into account new data, updating process may require
periodic re-training to replace old rules, and developing some incremental methods for
updating learned rules, which may be running in another background process.

Audit Engine Detection Process

When the audit engine is running in detection mode, for each new incoming HTTP record,
the system calculates its anomaly score by going through five checkpoints, and adding
anomaly score for all checkpoints together as the total anomaly score for the record as
shown in Algorithm 2. If the total anomaly score is greater than the maximum allowed
value, this HI'TP record is marked as anomaly. This maximum allowed value is an ad-
justable value based on experimental results and can be changed to balance between high
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detection rate (with lower threshold value) and low false alarm (with higher threshold
value to reduce false alarms). The five checkpoints are for detecting various classes of
intrusions introduced earlier. Thus, in the extracted parameter values, it checks for:

1. forbidden keywords to find XSS and SQL-Injection attacks using known attack signa-
tures.

2. parameter value lengths to see if they are longer than the maximum allowed value
lengths for that same URI and parameter name in order to detect buffer-over-flow at-
tacks.

3. parameter list, comparing its parameter presence and order with frequent parameter
lists for the same URI. If that was not found, an anomaly score is added to the total
score. This is useful for discovering faked HTTP requests that are generated with hacking
tools. The frequent parameter lists are learned in the training period.

4. if web server returns an error code for a request, an anomaly value is added to total
anomaly score.

5. relationship among multiple records to take into consideration historical damage
caused by the same user. This is useful for detecting probes attacks.

The assigned anomaly score (of between 10 and 1) is based on the severity of the in-
trusions captured by the rules. For example, the maximum length rule has higher score
than the forbidden keywords rule, etc.

3.2 Network Sensor

One contribution of this system is online web intrusion detection with a newly developed
software network sensor. Sensors used by existing systems like snort get information
from IP/TCP header, that are not specific to web intrusions. Our own network sensor is
totally independent of the audit engine and can be put any where in the network to get
the best picture of web intrusions. To capture intrusions embedded in HT'TP parameters
not recorded in web server’s log files, we use a network sensor to capture raw network
packets from real-time network traffic.

This network sensor program captures all the HTTP packets to/from the web server
enabling monitoring and extraction of all user data in HTTP packets, which it sends to
audit engine. Monitored data are in URI, cookie and user data sections and extracted
data are URI, user IP, time of receiving, web server return code, parameter list. The
sensor extracts:

1. parameters embedded in GET URI or HT'TP GET request like
“/login.asp?username = abc&password = 123HTTP/1.1/r/n”, where the parameters
are: “username” and “password”, values are “abc” and “123”.

2. parameters in content fields through POST request. POST method does not show
parameters in URI as GET method does, but it puts the parameters in HT'TP content
instead.

3. cookie data stored at client side and from web server.

WinPcap [Risso & Degioanni, 1995] and LIBPcap [McCanne & Jacobson] are two free
programming libraries that can be used by programmers to develop network sensor ap-
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plication. While LIBPcap is the library for UNIX platform, WinPcap is the library for
win3d2 platform, which has the same interface as LIBPcap. The libraries allow network
card to be set into promiscuous mode so that all network packets can be received. To
capture all packets on the network, the SensorWebIDS uses WinPcap - a free link-layer
network access library ([Risso & Degioanni, 1995]). With this library, the network sensor
sets the network card into promiscuous mode, which allows the network card to receive
all network packets regardless of the destination of the packets. The algorithm for the
Network sensor is given as Algorithm 4.

Algorithm 4 (Networksensor)

Algorithm Networksensor()

Input: Network packet

Output: 1) formatted HTTP request including URI,
user IP, time of receiving, web server
return code, parameter list

Begin
While( TRUE )
Begin
(1) Using WinPCap, Receive a network packet p
from network card;
(2) If (pis NOT HTTP packet )
(2.1) Continue loop;
(3) Extract URI, user IP, time of receiving,
web server return code, parameter list out of
HTTP packet, and format them in a desired style;
(4)Send the formatted data to audit engine;
End
End

3.3 Log Digger

Log digger is the part of the SensorWebIDS system that extracts parameters for HTTP
requests in web server’s log file. An example record in the log file looks like: 127.0.0.1
- frank [10/0ct/2000:13:55:36 -0700] “GET /exampleCGI.php?id=20 HTTP/1.0” 200
2326. Thus, the log digger accepts the web log as its input. The log digger then, parses
each record in the log file and extracts useful information that it sends to audit engine
for training. Output data returned by the log digger as its result are extracted formatted
HTTP request including: (1) URI (e.g., /exampleCGI.php?id=20 HTTP/1.0), (2) user
IP address or remote host that made the request to the server (e.g., - or hyphen in the
above example indicating that his information is not available), (3) time of receiving the
request (e.g., 10/Oct/2000:13:55:36 -0700), (4) web server return code (e.g., 200), (5)
parameter list (e.g., size of file 2326 bytes). Note that the server return code beginning
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with 2 indicates a successful response from server, a code beginning with 3 indicates a
re-direction, a code beginning with 4 indicates an error caused by the client and a code
beginning with 5 indicates an error caused in the server. The algorithm for the log digger
is given as Algorithm 5.

Algorithm 5 (LogDigger)

Algorithm LogDigger()
Input: web log file name
Output: 1) formatted HTTP request including URI,
user IP, time of receiving, web server
return code, parameter list
Begin
(1) Open web log file
(2) While (not end of web log file)
Begin
(2.1) Extract URI, user IP, time of receiving,
web server return code, parameter list out of HT'TP
packet, and format them in a desired style
(3) Send the formatted information to the audit engine
End
End

4 Experimental Evaluation

We developed a prototype system, SensorWebIDS, that implements the algorithms de-
scribed in Section 3. The system consists of three main programs: audit engine (section
3.1), network sensor (section 3.2), and log digger (section 3.3). The goal of this experi-
ment is to prove that our SensorWebIDS system can detect more types of web intrusions
than other systems at the same or lower cost. We compared the SensorWebIDS with two
other systems - SNORT [Roesch, 1999] and mod_Security [Ristic, 2003], both of which
detect some web intrusions.

Implementation and Testing Environment

Our prototype system has been developed in C language under windows platform. How-
ever, with minor changes, it can be migrated to UNIX platform. These changes include
replacing system dependent APIs (e.g., process manipulation APIs), creating make files
for the system, and compiling the whole system under UNIX with C compiler. The ex-
periment is divided into three parts. In the first part, we test our SensorWebIDS along
with two other systems (snort and mod-security) using crafted web intrusions, to see
how many intrusions each system can find. In the second part, the efficiency of the three
systems are tested using continuous crafted web intrusions and comparing the CPU usage
on the computer, that is hosting the IDS system. In the third part, the SensorWebIDS
is tested using log files from real web servers to see how it performs in the real world.
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Although all components of SensorWebIDS can be placed on the same machine, however,
to simulate more complex setting demonstrating independence of the components, our
testing environment consists of 4 computers (S1, S2, S3 and C1): SI is running the web
server (Apache 2.2 + Tomcat 5.5) and mod_Security [Ristic, 2003] (this system must be
installed as a component to the web server). S2 is running SensorWebIDS (audit engine
only) and SNORT [Roesch, 1999]. S3 is running network sensor and log digger parts
for SensorWebIDS. C1 is the terminal, which is running windows XP SP2 with Internet
Explorer 6.0 (both are trademarks of Microsoft Corporation), to simulate user input.
They are all connected to a shared HUB device communicating through TCP connec-
tions, which ensures the traffic to the web server can be fully seen by our system. The
sensor and log digger need to know the IP address for the audit engine at startup, to set
up connection with it. The audit engine listens on a particular TCP port that sensor
or log digger will send requests to. The hardware configurations for all the machines
are the same - CPU AMD 2400+, 512M RAM. On the web server S1, we installed a
simple web application named “login.jsp”. To train the SensorWebIDS, we used the web
browser in C1 to access the “login.jsp” page on S1, and repeatedly inputted legal user-
name/password on that page for 9 times (each username/password for 3 times). Then,
we took out the web server’s log file from S1, and sent it to the log digger that is run-
ning on S3. The log digger formatted the HTTP requests and sent them to audit engine
running on S2 for training. After that, the audit engine learned and stored the frequent
parameter presence and order as [“login.jsp” — “username”, “password”], and the pos-
sible maximum lengths for “username” as 9.83 and “password” as 8.89. We used a total
of 60 test intrusions from six types of web intrusions, 10 intrusions from each class for
test cases. The six types of web intrusions tested are: (1) Cross Site Scripting, (2) SQL
Injection, (3) Denial of Service, (4) Buffer Overflow, (5) Cookie Poison, (6) Simulation of
using hacking tool. The descriptions of the crafted intrusions from the 6 classes of web
intrusions are provided in 2.

The result of detection is reported in Table 3. The few type 4 undetected are when
user value length falls between our predicted and actual maximum lengths. Our system
detects XSS and SQL-injection attacks through signatures, but other types of attacks
including type 4, are detected through data mining based anomaly detection techniques
using association rule mining and statistics to compute frequent parameter list order and
their maximum value lengths.

On detection speed, the three algorithms have about the same detection speed
although the SensorWebIDS detects more intrusions than the other two. The Sensor We-
bIDS was also used to analyze real web logs of a small radio station web site (logl) (with
25184 records), a small-size company web site (log2) with 49755 records) and a University
Computer Science web site (log3) (with 878521 records). The purpose of this experiment
is to demonstrate the effectiveness of the system in real application domains. We used
20% of the log data for training, inspecting manually to ensure that the training data
is free of intrusion. Then, we used 80% of the log data to test for intrusion detection.
The result of the three logs analyzed with SensorWebIDS and the intrusions detected are
shown in Table 4.
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Table 2: Crafted Intrusions for Experiment

Group# | Attack Example Input Description
1 Cross Site | Use URL “http://S1/ XSS embedded HTML
Scripting login.jsp?username tags in user’s input.
= <script>alert(1)</script> Our system captured
&password-123" the keyword <script>
in the C1’s web browser as the proof of the attack.
2 SQL In the ‘login.jsp” web page, SQL-Injection attack
Injection type username = Joe, and uses “ or ‘ to fool
password = “ or “1"=1 SQL server. Our system
captured the keyword “ as
the proof of the attack.
3 Denial of Use packet generating tool The tool caused the web
Service to send request with wrong server return error code
usernamed&password 400 at a speed of 200
time /sec.
4 Buffer over | In the ‘login.jsp’ page, The maximum allowed
flow use ‘username’ from length 1 to 10 | value for ‘username’ is 8
) Cookie In C1, change the stored cookie The maximum allowed
poison ‘SESSIONID’ to the value of 32 ‘b’s | value for cookie
‘SESSIONID’ is 16
6 Simulation | Use ‘http://S1/login.jsp? Hack tools do not use
of using password=111&username=Mary” the same parameter order and
hack tool in the C1’s web browser presence as that of official
web page. The correct
parameter order and presence
[username, password]
Table 3: Detection Rates with Well-known Attacks
IDS Attacks | Detect | Not Detect
-ed Detected Rate
SWebIDS | 60 59 one type 4 attack 98.3%
when the ‘username’
length of 9, (i.e., > maximum)
SNORT | 60 20 all attacks in 33.3%
type 3,4,5,6
Mod_Sec | 60 20 all attacks in 33.3%
type 3,4,5,6
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Table 4: SensorWebIDS on Real Web Logs

Log File | Records | Det_ | Not Det_ | Attack
ected | ected Type
Logl 25174 2 0 2 probes
Log?2 49755 16 0 5 DoS, 4 probe,
3 bulffer,
4 false alarms
Log3 878521 |5 0 5 false alarms

5 Conclusions

This paper proposes a novel web intrusion detection system, SensorWebIDS, which com-
bines the power of anomaly and misuse detection. It applies association rules mining
to find frequent parameter presences and orders for anomaly detection. Based on our
research on well-known web intrusions, we abstract some common and sensitive keyword
signatures to match known attacks for misuse detection. Our system develops a software
sensor to monitor real-time traffic. Being different from existing web intrusion systems,
which get HT'TP requests only from web log files that contain only part of user inputs,
our system collects data from both real-time network data and web log files to ensure
that all user data are being monitored. In HTTP request processing, existing web in-
trusion detection systems audit each record separately, while our system considers the
relationships amongst records in a time window. This is based on the premise that it is
suspicious when the same user issues requests that cause lots of errors in a short period
of time.

Experiments show that SensorWebIDS has higher detection rate for web intrusions
than SNORT [Roesch, 1999] and mod_Security [Ristic, 2003] at a faster or similar detec-
tion speed. It has improved the accuracy and efficiency for detecting web intrusions with
high flexibility and scalability.

Future work may extend the system to detect intrusions implanted with hacking
tools and not through straight HT'TP requests or intrusions embedded in non-basic re-
sources like multimedia files and others, track illegal web users with their prior web access
sequences, implement minimum and maximum values for integer data, and automate the
process of pre-processing training data so that it is clean and free of intrusion for accurate
detection results.
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