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Abstract

The challenges in mining frequent sequential patterns on data stream ap-
plications include contending with limited memory for unlimited data,
inability of mining algorithms to perform multiple scans ofinfinitely
flowing original stream data set, to deliver current and accurate result
on demand. Recent work on mining data streams exist for classification
of stream data, clustering data streams, mining non-sequential frequent
patterns over data streams, time series analysis on data stream. How-
ever, only very limited attention has been paid to the problem of stream
sequential mining in the literature. This paper proposes SSM-Algorithm
(Sequential Stream Mining-algorithm) based on the efficient PLWAP se-
quential mining algorithm, which uses three types of data structures (D-
List, PLWAP tree and FSP-tree) to handle the complexities ofmining
frequent sequential patterns in data streams. It continuously summa-
rizes frequency counts of items with the D-List, builds PLWAP tree and
mines frequent sequential patterns of batches of stream records, main-
tains mined frequent sequential patterns incrementally with FSP tree.
Capabilities to handle varying time range querying, transaction fading
mining, sliding window model are also added to the SSM-algorithm.

Keywords: Web Sequential Mining, Stream Mining, Customer Access
Sequence, Frequent Sequential Patterns, Buffer, Click Stream Data.

1 Introduction

When a user visits a web site, the web server usually keeps some important
information about the user in the web log file, such as, the client’s IP address,



the URL requested by the client, and the date and time for thatrequest [18].
The three types of log files available on a web server are server-logs, error-
logs, and cookie-logs. Analyzing data on the web server-logs is called “click
stream analysis”. E-commerce or e-business can benefit fromthis click stream
analysis. Click stream analysis provides important information to understand
better the marketing and merchandising efforts, for example, how customers
find the store, what products they search for, and what products they purchase.
Some uses of such stream applications like web log click stream analysis in-
clude: improving the web site by better understanding the users’ interests,
typical user navigational paths, and the correlation between customer behavior
and the products. Yang et al. [24] suggest an interesting method to reduce net-
work latency by applying web mining techniques. The method finds frequent
access patterns from web logs by analyzing click stream data. Once frequent
access pattern is found, it can be used in web caching and pre-fetching system
in order to improve the hit rate and reduce unnecessary network traffic.

A data stream is a continuous, unbounded, and high-speed flowof data
items. Applications generating large amounts of data streams, include web
logs and web click streams, computer network monitors, traffic monitors, ATM
transaction records in banks, sensor network monitors, andtransactions in re-
tail chains. Mining data in such applications is stream mining. Stream sequen-
tial mining adds many complexities to traditional mining requirements, which
are: 1) the volume of continuously arriving data is massive and cannot all be
stored and scanned for mining, 2) there is insufficient memory, 3) the mining
algorithm does not have the opportunity to scan the entire original data set
more than once, as the whole data set is not stored, 4) a methodfor delivering
considerably accurate result on demand is needed. 5) in order to mine sequen-
tial patterns in streams like click stream data for customerbuying interest in an
E-commerce site, there is need to keep Customer Access Sequences (CAS) in
the order they arrive. CAS is the sequential buying or product viewing order
by a customer, e.g., (TV, radio, jean pants, TV, shirt, TV). Keeping CAS order
intact for each transaction and mining frequent sequentialpatterns from them
presents additional complexities.

Data stream can be either offline streams, characterized by regular bulk
arrivals or online streams characterized by real-time updated data [13, 7]. The
four main stream data processing models are:

1. The landmark model, which mines all frequent itemsets over the entire
history of the stream from a specific beginning time point called the
landmark to the present.

2. The damped model (also called the time-fading model), which has a
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weight attached to each transaction, where the transactionweight de-
creases as the entry time of the transaction into the stream gets older.
For example, while a record that joins the stream at time 00:00 may
have a decreasing weight of 0.2, a record that has just joinedthe stream
at the processing time of 16:00 may have a higher weight of 1. This
means that older transactions contribute less weight toward itemset fre-
quencies. This is suitable for applications where old data has a fading
effect on frequency as time goes on and may be effective for gabbage
collection of records.

3. The sliding windows model, which finds and maintains frequent itemsets
in sliding windows and only the new data streams within the current
sliding window are processed. For example, assume a window size of 4
records and a stream of twelve recordsS1, . . . , S12, in sliding window
S W1, contains recordsS1, . . . ,S4, sliding windowS W2 contains records
S2, . . . ,S5, while windowS W3 has recordsS S3, . . . ,S6 and so on.

4. Batch Window model, which finds and maintains frequent itemsets in
batch window. All records in the batch window are removed once the
window is out of range. Batch window is a special case of sliding win-
dow model where there is no overlap in transactions in consecutive win-
dows. For example, assume a window size of 4 records and a stream of
twelve recordsS1, . . . ,S12, in batch windowBW1, there are recordsS1,
. . . , S4, batch windowBW2 contains recordsS5, . . . , S8, while batch
window BW3, has recordsS9, . . . ,S12 and so on

Three classifications of web mining are:

1. Web content mining for extracting meaningful information from con-
tents of web pages presented in HTML or XML file formats.

2. Web Structure Mining for discovering interesting patterns from hyper-
links structures from mining in-going and outgoing links from web pages.

3. Web Usage Mining for discovering interesting patterns inlarge access-
log files recording information about web users and their navigation
sites.

All users’ behaviors on each web server can be extracted fromthe web log.
The web log records are generally pre-processed and cleanedto transform its
records in the form of a transactional database with schema (Transaction id,
access sequences) before mining to generate frequent patterns. The format
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Table 1. Sample Web Access Sequence Database

TID Web access Sequences
100 abdac
200 abcac
300 babfae
400 afbacfcg

and example of a line of data in a web log before pre-processing is: host/ip
user [date:time] “request url” status bytes
137.207.76.120 - [30/Aug/2001:12:03:24 -0500] “GET /jdk1.3/docs/relnotes/
deprecatedlist.html HTTP/1.0” 200 2781 where the host ip address of the com-
puter accessing the web page (137.207.76.120), the user identification number
(-)(this dash stands for anonymous), the time of access is (12:03:24 p.m. on
Aug 30, 2001 at a location 5 hours behind Greenwich Mean Time (GMT)),
request is (GET /jdk1.3/docs/relnotes/deprecatedlist.html) (other types of re-
quest are POST and HEAD for http header information), the unified reference
locator (url) of the web page being accessed is (HTTP/1.0), status of the re-
quest (which can be either 200 series for success, 300 seriesfor re-direct, 400
series for failure and 500 series for server error), the number of bytes of data
being requested (2781). Since some data may not be availablein web log, to
obtain complete web usage data source, some extra techniques, such as packet
sniffer and cookies may be needed. The stream sequential mining operations
being proposed in this paper starts with a transaction data set form of the web
log obtained after pre-processing web log. A busy website generates a huge
amount of click stream data everyday. Each click stream dataseries reflects a
customer’s buying interest. For an E-commerce company, detecting future cus-
tomers based on their sequential mouse movements on the content page would
help significantly to generate more revenue. An example processed web log
data representing only four sequences of access to product sites labeled “a, b,
c, d, e, f, g” is given in Table 1.

1.1 Problem Definition

Given the set of events or items E={e1,e2, . . . ,en}, standing for retail store
items like bread, butter, cheese, egg, milk, sugar or web pages, a stream se-
quential database, SSDB, is an infinitely flowing sequence ofbatches (B1,B2,
. . .) of sequential records (each record is a sequence of eventse1e2 . . .em) in

4



the schema (transaction id, record sequence). The problem of stream sequen-
tial mining requires finding all frequent sequential patterns, FP, having support
greater than or equal to a user given minimum support (s%) from beginning
of a stream batch (Bi) to current batch (Bc) time, given one pass of stream se-
quential database SSDB as a continuous stream of batched recordsB1,B2, . . .
and a tolerance error support (ε) much lower than the minimum supports%
for allowing potentially frequent items to have their counts maintained in the
D-List structure.

When the initial batch for mining is the very first batch of thestream
database, the mining model is the landmark model. When a number of record
overlap is allowed between consecutive batches, the model is sliding window
model. When aging of records of older batches is considered in the frequency
count, it is the damped model and when the initial or final batch is any batch,
the algorithm would compute frequent patterns for sequences between any ar-
bitrary range of batches of the stream. batch. This paper would present a so-
lution for the batched landmark model first and presents extensions to support
sliding window, damped model and varying batch frequent pattern requests.

A batch Bi of stream sequential records consists ofq sequential records
S1, S2, . . . ,Sq. For example, Table 1 represents a batch with four sequential
records. The length of a sequence,|S| is the number of events in the sequence
and a sequence with lengthj is called a j-sequence. For example, while babfae
is a 6-sequence record, abdac is a 5-sequence record. In access sequenceS =
e1e2 . . .ekek+1 . . . em, if subsequenceSsu f f ix = ek+1 . . . em is a super sequence
of patternP = e′1e′2 . . . e

′
l , whereek+1 = e′1, then,Spre f ix = e1e2 . . . ek, is called

the prefix of S with respect to pattern P, whileSsu f f ix is the suffix sequence
of Spre f ix. For example, in sequence babfae, ba is a prefix subsequence of
bfae, while bfae is a suffix of ba. A frequent pattern in a database or a set ofq
sequential records is a sequence that has occurrence count (called the pattern’s
support) in the number of records, which is greater than or equal to the given
minimum support, s. Thus, the support of a sequence is the number of records
it appears in as a subsequence divided by the number of records in the stream
up to the time of measure. For example, if the sequential database of Table 1 is
batchB1 and we want to compute frequent patterns when the minimum support
threshold is 75% or 3 out of 4 records, then, it can be seen thatfrequent 1-
sequences with their support counts include{a:4, b:4, c:3} and some frequent
2-sequences and 3-sequences patterns are{ab:4, aa:4, ac:3, ba:4, aba:4, bac:3,
. . .}.
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1.2 Related Work

Han et al. in [12] proposed the FP-tree algorithm to generatefrequent
pattern itemsets. Frequent sequential pattern mining algorithms include the
GSP [22], which is Apriori-like, PrefixSpan [20], a pattern-growth method, the
WAP [19], which is based on the FP-tree but used for mining sequences, the
PLWAP [4, 5], which is the position-coded, pre-order linkedversion of WAP
that eliminates the need for repetitive re-construction ofintermediate trees dur-
ing mining. PLWAP tree algorithm first builds each frequent sequential pattern
from database transactions from “Root” to leaf nodes assigning unique binary
position code to each tree node and performing the header node linkages pre-
order fashion (root, left, right). Both the pre-order linkage and binary position
codes enable the PLWAP to directly mine the sequential patterns from the one
initial WAP tree starting with prefix sequence, without re-constructing the in-
termediate WAP trees. To assign position codes to a PLWAP node, the root
has null code, and the leftmost child of any parent node has a code that ap-
pends ‘1’ to the position code of its parent, while the position code of any
other node has ‘0’ appended to the position code of its nearest left sibling.
The PLWAP technique presents a much better performance thanthat achieved
by the WAP-tree technique, making it a good candidate for stream sequential
mining. An example mining of a batach with the PLWAP tree is presented as
EXAMPLE 2. This structure is chosen for stream sequential mining, in order
to take advantage of its compact structure and speed, in stream environment.
Data stream algorithms include the Lossy counting algorithm [17], which is
used for frequency counting in data streams. Previously, landmark model [17]
was introduced that mines frequent patterns in data stream by assuming that
patterns are measured from the start of the stream up to current moment.

The Lossy counting algorithm finds frequent items in non-sequential data
streams with a maximum support s and maximum errorε ≪ s. The algo-
rithm suggests anε = 10% of s. The Lossy counting algorithm works with
a full fixed sized buffer ofn stream records, which are placed in a numberm
of buckets. Each bucket contains 1/ε records. Then, the Lossy counting al-
gorithm runs on buckets one after the other to find frequent items. It stores
the ε-frequent items (having frequency more thanε) in a D data structure in
the form of (element, frequency, maximum error count of element). Whenever
a new element arrives, it increments its frequency in the D structure by 1 if
the element is already in the D structure, but inserts a new record (element, 1,
current bucket id - 1) if element is not found. At the boundaryof the bucket or
window, it performs two types of pruning (1) it decrements all elements in D
by ε’s value, and (2) it deletes items from the D structure if their frequency +
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maximum error count≤ current bucket-id. If a trimmed item comes back later,
the algorithm compensates an approximate loss frequency. Whenever a user
requests a list of items that have support s, the algorithm generates output for
item with frequencyf > (s− ε) * current length of stream. While the Lossy
counting algorithm uses decrement mechanism to efficientlyeliminate small
items with counts less than or equal toε, this method prevents all items includ-
ing frequent items from maintaining their true counts. Also, this algorithm
is not suitable for mining sequential stream pattern mining. Our technique is
thus different from this system in the sense that we aim at producing more
complete patterns and to work on sequential and not non-sequential patterns.
Thus, while we use a modified form of the D structure for counting item fre-
quencies, our D-List structure increments rather than decrements counts and is
hash-based for speed improvement. The mining efficiency is further improved
on with the PLWAP and FSP sequential mining and pattern storing structures.

FP-Stream algorithm [8] is used to mine frequent patterns indata stream.
The authors of FP-Stream also extended their framework to answer time-sensitive
queries over data stream. FP-stream algorithm uses a pattern-tree, FP-tree and
a fixed tilted time window frame to handle time-sensitive stream queries. The
idea of the natural tilted time window used for holding up to one month’s data
or 31 days data is that one month’s data is partitioned into 59units, where the
first four units (1 hour data) are in 15 minute units each, next24 units (for 1 day
data) are in one hour units each, and the last 31 units (for onemonth data) are in
1 day unit each. Thus, if for example, five itemsets with theirfrequency counts
as a:48, b:50, c:45, ab:27, ac:29 are stored in tilted time window t0 (standing
for the most recent 15 minutes data), the itemsets stored in the next tilted time
window t1 (standing for the most recent 30 minutes data) will again include all
thet0 patterns and so on as most recent patterns are shifted down from the right
more specific tilted time window to the left more general tilted time window.
With this model, it is possible to compute frequent patternsin the last hour
with the precision of quarter of an hour, for last day with theprecision of its
hours, for the whole month with the precision of its days. However, to keep a
whole year’s data will require keeping 366 (number of days) *24 (hours) * 4
(15 minutes) = 35, 136 units, which is huge and they proposed the Logarithmic
tilted time window frame to cut down on the number of needed time units to
17 asLog2(365∗ 24∗ 4)+ 1. The FP-stream algorithm forms a batchBi every
15 minutes, computes all item frequencies and stores them inmain memory in
descending order of support in f-list. Then, it constructs an FP-tree, pruning all
items with frequency less thanε ∗ |Bi |. Then, it findsε-frequent itemsets from
the FP-tree, which it stores in the pattern tree. While the FP-stream is able to
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retrieve and answer queries over a wide range of time, it requires big storage
for keeping short term period data in order to maintain several time slots. The
FP-stream is only for non-sequential data. Our approach unlike the FP-stream,
uses PLWAP, hash based D-List for frequency counting and FSPfor storing
results and avoids repetitive storage of patterns like the FP-stream.

Teng et al. proposed FTP-Algorithm [23] to mine frequent temporal pat-
terns of data streams. FTP-DS scans online transaction flowsand generate
frequent patterns in real time. Sliding window model is usedin this paper.
Data expires after N time units since its arrival. While mostexisting data
stream systems are for mining non-sequential records, two recent sequential
data stream systems proposed are SPEED [21] and SSM [6]. The SPEED
algorithm mines maximal sequential patterns of an arbitrary time interval of
the stream by inserting each sequence of an arriving batch ina region of a
tree-like data structure called Lattice and later it will extract maximal subse-
quences from the lattice structure. In addition to the lattice storing maximal
sequences, it stores a table of information about the set of items, sequences,
their lenghts as their sizes and the tilted-time window theybelong to, as well
as the region of the lattice tree they belong to and their roots. SPEED prunes
unfrequent sequences by dropping the tail sequences of the tilted-time win-
dows supports that are less than desired batch supports. TheSSM algorithm
[6] presents a draft stream mining algorithm, which is beingextended by this
paper. The main extensions provided by this paper are miningfor more than
the basic landmark model, more extensive literature review, capabilities to han-
dle sliding window, damped model and arbitrary batch range querying, as well
as more experimentation of the system.

Other studies on mining data streams exist for classification of stream data
[3], online classification of data streams [14], clusteringdata streams [10], web
session clustering [11], approximate frequency counts over data streams [17],
mining frequent patterns in data stream at multiple time granularities [8], and
multi-dimensional time series analysis [2], temporal pattern mining in data
streams [23] but more work is needed on mining frequent sequential patterns
in data streams.

1.3 Contributions

Considering the importance of sequential mining in data streams, this pa-
per proposes the SSM-Algorithm, a sequential stream miner that extends the
functionality of PLWAP to make it compatible in data stream environment us-
ing additional flexible and efficient data structures D-Listand FSP-tree. The
structures allow the flexibility of extending the basic solution model provided

8



for landmark model to handle damped, sliding window and computation of
frequent patterns between any adhoc ranges of stream batches.

1.4 Outline of the Paper

The balance of the paper has section 2 presenting details of the proposed
sequential stream mining (SSM) algorithm that is based on the PLWAP sequen-
tial mining algorithm with some examples. Section 3 presents Experimental
and Performance Analysis and section 4 presents conclusions and future work.

2 The Proposed SSM Sequential Stream Mining Sys-
tem

By considering stream environment requirements, we have developed a
method that uses SSM-Algorithm (sequential stream mining algorithm) to col-
lect data stream into a buffer from web applications, forms dynamic sized
batches by taking data stream from the buffer and mines each batch to deliver
results. A batch is a group or a number of customer access sequences. SSM-
Algorithm maintains three data structures (D-List, PLWAP-tree, FSP-tree) in
order to handle and generate result for click stream data. Click stream data can
be generated from the clicks of users on the web. Each data structure has its
own algorithm for updating and retrieving data from the structures. D-List is
a hash chain based data structure that stores all incoming items’ ID and their
frequency if they are above the tolerance error thresholdε. D-List is very ef-
ficient when there are huge numbers of items that are used at the E-commerce
site. Brand new items get posted to the E-commerce site very often. It is very
realistic that each E-commerce site introduces new items assoon as they get
items from the vendors. We assume that we do not have any information on
number of items and their IDs for our algorithm. In other words, our D-List is
totally dynamic, it grows with incoming data stream. PLWAP-tree [4, 16] gets
constructed by selecting frequent sequences from batches.PLWAP-mining al-
gorithm uses preordered linkage and position coding methodto avoid costly
reconstruction of intermediate trees to generate frequentsequential patterns
unlike WAP-tree [Pei et al.2000]. The process of mining frequent sequences
continues batch by batch. Once we find frequent patterns fromfirst batch,
we keep incrementing frequent patterns onto frequent sequential pattern-tree
(FSP-tree) batch by batch. The construction process of FSP-tree is similar to
Pattern-tree that was introduced in [8] but the structure ofFSP-tree is simpler
than pattern-tree. The FSP-tree is made simpler for efficiency and speed. FSP-
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Figure 1. The Main Components of the SSM Stream Miner

tree stores frequent patterns instead of customer access sequences. Whenever
we need to view the results, we are able to generate updated frequent patterns
from the FSP-tree. The proposed method is very memory efficient and ideal
for click stream environment. As the mining process moves only forward and
there is no way to go backward and rescan previous data stream, therefore
we do not keep any items that have support count less than maximum support
error threshold in D-List structure where updated candidate 1-sequences and
their counts are stored. The items less than maximum supporterror threshold
have very small count and chances are very slim for them to become large
items later. Therefore, we get rid of those small items from the beginning.
However, those small items that are potentially large items(very close to large
items) because they have support greater than or equal to maximum support
error, are all kept in the D-List. Maximum support error is a predefined thresh-
old that gives a tolerance of error in the result to allow for approximate, near
accurate mining that produces all correct frequent patterns with possibility of a
few potentially frequent patterns due to the use of tolerance error support. It is
obvious that if maximum support error is very small comparedto user defined
minimum support, then the error in the result will be very nominal. By keeping
all items that have support more than or equal to maximum support error in the
D-List, we assure that our result does not cross error boundary.

2.1 Architecture and Components of the Proposed SSM System

The main components of the SSM (Sequential Stream Mining) system is
depicted in Figure 1.
Step 1: Buffering of Arriving Data Streams: Buffer is basically a staging area

where preprocessed transaction IDs and stream sequences like customer access
sequences (CAS) arrive. We treat a buffer as a long empty string initially with
limited size of about 50MB. Once the stream starts coming, they are added into
the buffer. For example, (100, a b d a c), (101, a b c a c), . . . . Here, 100 is the
transaction ID and the letters (a b d a c) following transaction ID 100 are item
IDs for this transaction. Lossy Counting Algorithm [17], uses buffer mech-
anism to deal with incoming data stream. On the other hand, FP-Stream [8]
uses main memory to handle data stream. While the stream sequences arrive
at the Buffer area, each record is processed and placed in thecurrent batch.
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The system mines a batch once it contains the minimum number of records
set for a batch, and it continuously checks the buffer for more records every 1
minute (or a different value can be set to check the buffer based on application
needs), if there are not enough records to form a batch. If there are enough
records in the buffer, the maximum batch size is used in creating the current
batch for mining. Thus, as soon as there is a batch with numberof records
equal tob, whereminimumBatch size≤ b ≤ maximumBatch size, the batch
is mined. The SSM-Algorithm does not know how many click stream items
it will be dealing with before forming each batch. For extremely busy stream
environment where streams of data are arriving at faster rate than can be ac-
commodated by the buffer, the buffer could either be increased, shut off for
some time when too full and re-opened when de-congested. Another solution
is to re-route non-accommodated arriving streams to a holding storage, where
they can be processed later during slow period. Our model canbe used to find
frequent sequential patterns of visited pages for a site as well.
Step 2: Batching Engine forms batches of stream sequences like the CAS (cus-
tomer access sequences) data from the buffer. For example, abatch is a num-
ber (n) of customer access sequences similar ton record sequences ofn distinct
transaction IDs. The size of the batch depends on incoming stream. The batch
size of the SSM system is not fixed, unlike Lossy Counting Algorithm [17],
or FP-Stream [8]. For extension to accommodate sliding window model with
o number of overlapping records between two consecutive windows,S Wi and
S Wi+1, the SSM system will maintain a global record counterrecord-id. The
batching engine unlike the basic batching model will retainthe lasto records
of earlier sliding windowS Wi deleting this window’s firstb−o records, where
b is the total number of records in new sliding window being formed,S Wi+1

and the system inserts as the last records of the new window being formed
b − o records. For example, if records 1 to 4 have been in the first sliding
window, S W1 and the number of overlapping records is 2, then, in forming
the sliding window 2,S W2, the SSM system should delete the first (4− 2)= 2
records ofS W1 and accept new (4− 2)=2 records for new windowS W2 such
that the records to be processed in the newS W2 window are records 3, 4, 5, 6.
To handle the damped model, the batching model would create either regular
batches or sliding window batches as described above and theD-List can be
modified to remember counts of items of last two or three batches such that
fading weights of older item counts can be used to affect the overall frequency
counts when updating the D-List.
Step 3: D-List data structure for maintaining counts of frequent items: SSM
system uses three data structures: D-List, PLWAP-tree and FSP-tree. D-List
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structure is used for efficiently managing the frequency counts of 1-items and
for obtaining the updated frequent 1-items listL1Bi

at the end of each batch,
Bi. The D-List keeps each item’s ID and their frequency in a hashchain that
stores each unique item in a D-List hash bucket corresponding to the item-id
modulus number of buckets. The SSM system scans records of each batch,Bi,
uses the counts of the items in this batch to update the item counts of items in
the D-List. It then computes the cumulative support counts of D-List items to
find overall frequent 1-items of this batch,L1Bi

. Only items with frequent sup-
port count greater than or equal to the total number of streamsequences that
have passed through the database via all already processed batches multiplied
by the percentage maximum tolerance error,ε, are kept in the D-List. While
items with support counts less than this value are deleted from the D-List, those
with counts greater than or equal to the total number of stream records times
(minimum support (s) minus tolerance error (ε)) are kept in theL1Bi

list. The
use of tolerance error to reduce the count of items kept in theD-List allows
for handling items that may have been small (that is, not frequent) previously,
and whose cumulative count would not be available if they suddenly turn fre-
quent. Once the D-List is constructed, the performance of insertion, updating
and deletion of nodes are faster through this hash chain structure. Thus, this
structure contributes to processing speed and efficiency.
EXAMPLE 1 : Assume a continuous stream with first stream batchB1 con-
sisting of stream sequences as: [(abdac, abcac, babfae, afbacfcg)]. Assume
the minimum support, s is 0.75 (or 75%) and the tolerance error ε, is 0.25 (or
25%). Construct and maintain the support counts of the itemsusing the D-
List structure and compute the set of frequent 1-item listsL1B1

and frequent
sequence recordsFSB1 of batch 1 stream records for mining.
SOLUTION 1 : Since this is the first batch with only 4 records, the tolerance
maximum support cardinality is: 4 * (0.75 - 0.25) = 2. Thus, all items with
support greater than or equal to 2 should be large and inL1B1

. The D-List
minimum error support cardinality is 4 * (0.25) = 1. Thus, allitems with sup-
port greater or equal to 1 are kept in the D-List while those with support count
greater than or equal to 2 are also in theL1B1

list. The L1B1
= {a:4, b:4, c:3,

f:2}. The D-List after reading the batchB1 is shown as Figure 2. Note that
since the stream sequence being used in this example are those of E-commerce
customer access sequence (CAS), the SKU (a special unique item code) for the
items (a,b,c,d,e,f,g) given as (2, 100, 0, 202, 10, 110, 99) are used in the hash
function (item-id modulus number of buckets) (for this example 100 buckets
assumed) to find the bucket chain for inserting the item in theD-List. Since
the C1B1

has been used to update the D-List, which was used for computing
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Figure 2. The D-List After BatchB1

the currentL1B1
and the frequent sequenceFSB1, C1B1

can now be dropped to
save on limited memory.

Extension to be made to the D-List processing structure to accommo-
date the sliding window model, which for each new window,S Wi+1 of size
b records and witho overlapping records is to insert only the window’s last
(b− o) records into the D-List. This is because the firsto records had already
been inserted when processing records of the previous window, S Wi. To han-
dle the damped model, the D-List can be modified to remember counts of items
of last two or three batches so that fading weights of older counts can be re-
flected on the overall frequency counts of the items when updating the D-List.
For example, while the weight of all current batch items willbe rated at 100%
of their counts, the weight of last batch items can be rated at50%, while the
weight of last two batches items is rated at 25% and any older batch items
are rated at 0%. The D-List can be updated such that three counts are listed
for each item and each item node appears with the item label: item current
count: item last batch count: item last two batch count. An example D-List
item node will then look like a:12:5:1 meaning that itema now has total count
of 12 after the current batch, but had a total count of 5 after the last batch and
a total count of 1 after the last two batches. With ana node labeled as above,
the actual weighted frequency count is computed by discarding all counts of
this item that occurred before the last two batches. Since the current batch has
only a count of 3 for itema, it can be seen that previous counts of this item
prior to its counts form the last two batches is 12 - (5 + 4) = 4. Thus, this
count of 4 is taken out of the total count of 12 to have 8, which are weighted
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as: (3∗ 100%)+ (4 ∗ 50%)+ (1 ∗ 25%) = 3 + 2 + .25 = 5. Thus, for itema the
used frequency for 3 + 2 + .25 = 5. Thus, for itema the used frequency for 3 +
2 + .25 = 5. Thus, for itema the used frequency for deciding frequent 1-items
will be the computed weighted frequency.
Step 4: PLWAP Sequential Mining Data Structure for mining current batch
frequent sequences: PLWAP-tree or Pre-ordered Linked WAP-tree was intro-
duced in [4], [5]. The basic idea behind the PLWAP tree algorithm is using
position codes and pre-order linkage on the WAP-tree [19] tospeed up the
process of mining web sequential patterns by eliminating the need for repeti-
tive re-construction of intermediate WAP trees during mining. Eliminating the
re-construction of intermediate WAP trees also saves on memory storage space
and computation time. Generally, the PLWAP miner starts with a frequent 1-
item list, L1Bi

, which had already been formed in the D-List stage. Next, for
each sequence in the current batch, it creates a set of frequent sequencesFSBi

of the batch by deleting all items in the sequences that are not frequent or not in
theL1Bi

list. It now builds the PLWAP tree by inserting each frequentsequence
Si from FSBi top-down from Root to leaf node. PLWAP tree is constructed by
inserting each sequence from root to leaf, incrementing thecount of each item
node every time it is inserted. Each node also has a position code from root,
where the root has null position code and the position code ofany other node
has ‘1’ appended to the position code of its parent node if this node is the left-
most child node, but it has ’0’ appended to the position code of its nearest left
sibling if not the leftmost child node. After construction,theL1Bi

list is used to
construct pre-order header linkage nodes for mining. Each node has the item
node label: its count: its position code. The tree maintainsfrequent 1-item
header linkage for quick mining by traversing the tree preorder fashion (visit
root, visit left node, visit right node) and linking the order of node of the fre-
quent 1-item type on the tree. For example, all nodes of labela will be linked
with a dashed a-frequent header linkage starting from frequent header linkage
item a. The mining of the PLWAP tree is prefix based in that it starts from the
root and following the header linkages, it uses the positioncodes to quickly
identify item nodes of the same type (e.g., item a) on different branches of
the tree at that level of the tree and if the sum of the counts ofall these items
(e.g. a node) on different branches of the tree is greater than or equal to the
accepted minimum tolerance support count (number of records * (s− ε), then,
this item is confirmed frequent and appended to the previous prefix frequent
stream sequence.

EXAMPLE 2 : Given the set of frequent sequences for batch 1,FSB1 con-
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Figure 3. The PLWAP Tree of BatchB1

structed from EXAMPLE 1 above as{abac, abcac, babfa, afbacfc}, as well as
the frequent 1-itemsL1B1

= {a:4, b:4, c:3, f:2}, construct thePLWAPB1 tree
and mine the tree to generate frequent stream sequential patterns for this batch
FPB1.

SOLUTION 2 : The constructed PLWAP tree is as given in Figure 3.
The leftmost branch of this tree shows the insertion of the first sequence abac

when the firsta and b nodes initially had a count of ‘1’ each. Then, when the
second sequence abcac is inserted, the leftmost branch top nodes counts and
position codes becamea:2:1 andb:2:11. Since the next child of thisb node
is notc, then, a new child node ofb is created for the suffix sequencecacas
shown in the figure. The remaining sequence 3 and 4 of the batchare inserted
into the PLWAP tree in a similar fashion. Then the tree is traversed pre-order
way to link the frequent 1-item header nodesL1B1

= {a:4, b:4, c:3, f:2} to the
PLWAP tree nodes using the dashed arrow headed links. For example, follow-
ing the left subtree of “Root”, we find ana:3:1 node that is linked to the fre-
quent header of its kind ‘a’, then the nexta:1:111node found during pre-order
traversal has a link from the first linked ‘a’ node to itself. The idea is to trace all
a nodes on the tree by following the dashed links from the ‘a’ frequent header
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link and this is used with the position code to quickly mine this tree without
needing to construct intermediate conditional pattern bases and trees. Next op-
eration is to mine this constructed PLWAP tree for frequent patterns meeting
a support threshold greater or equal to minimum tolerance support of s− ε or
0.50. The mining method recursively mines frequent sequential patterns from
the tree to generate frequent sequential patterns for batchB1 (or FPB1) with
frequency of ((s− ε) ∗ |B1| = 0.50 * 4 = 2). The PLWAP mining method starts
from PLWAP Root to examine subtree suffix root sets and extract all patterns
with total count on all different branches in the suffix root sets at that height of
the tree, greater or equal to minimum tolerance support. Forexample, the left
branch rooted at a:3:1 and right branch rooted at b:1:10 formthe first suffix
root sets. It can be seen that a:3:1, a:1:10 mean that patterna has a total count
of 4 and is frequent. Then, ab:2:11, ab:1:1101 and ab:1:1011mean ab has
a count of 4 and is frequent. Also, aba:1:111, aba:1:11101, aba:1:11011 and
aba:1:101111 mean a count of 4 for pattern aba. The algorithmuses position
codes of nodes to quickly determine if they are on different branches of the tree
and their counts can be added. More details regarding the PLWAP algorithm
can be found in [4] and [5] and the source codes of the algorithms are generally
available through the author’s web sites. The foundFPB1 = {a:4, aa:4, aac:3,
ab:4, aba:4, abac: 3, abc: 3, ac: 3, acc:2, af: 2, afa: 2, b: 4, ba: 4, bac: 3, bc:
3, c: 3, cc: 2, f: 2, fa: 2}.

To accommodate both the sliding window model and the damped model,
no changes need to be made to the PLWAP construction and mining as the
frequent 1-item list and the current batch sequences are allthat are needed
to build and mine the current batch frequent patterns and to save memory,
the current batch tree is discarded once the patterns are mined and stored in
the FSP result structure. An improvement at this stage of thesystem is us-
ing the incremental version of the PLWAP algorithm [Ezeife &Chen, 2004a,
Ezeife & Chen, 2004b], rather than discarding the tree, but the benefits of such
an extension can be investigated for future work and would work only if there
is need to perform cumulative mining on the same tree withoutusing a separate
structure to store mined patterns cumulatively.
Step 5: The FSP Result Structure for Storing mined frequent patterns: Fre-
quent Sequential Pattern-tree or FSP-tree is a simple form of Pattern-tree [8]
for storing result structure. The sequences and their counts are simply inserted
or updated from root to leaf where the count of the sequence isassigned to the
leaf of the frequent pattern. The FSP tree is maintained withboth footer linked
lists that has linkage to all leaf nodes for pruning nodes from leaf not meeting
required support count, and from the Root for inserting newly found frequent
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Figure 4. The FSP Tree After BatchB1

sequential patterns.
EXAMPLE 3 : Given the found frequent patterns from batch 1 from EXAM-
PLE 2 above,FPB1 = {a:4, aa:4, aac:3, ab:4, aba:4, abac: 3, abc: 3, ac: 3,
acc:2, af: 2, afa: 2, b: 4, ba: 4, bac: 3, bc: 3, c: 3, cc: 2, f: 2, fa: 2}, save this
in the compact frequent sequential pattern tree FSP tree forcumulative storage
and retrieval of mined patterns.
SOLUTION 3 : The constructed self-explanatory FSP-tree which insertsall
FPB1 with their counts into FSP-tree without pruning any items for the first
batchB1 is given in Figure 4. The patterns are inserted in a similar way the
sequences are inserted in the PLWAP tree from Root to leaf node, sharing
common nodes and incrementing node counts by the count of thepattern when
appropriate. For example, patterns a:4, aa:4, aac:3, ab:4 are all inserted and can
be retrieved from the leftwmost branch of Root. If after the next batch mining,
also a pattern a:4 is mined, then, the a:8 nodes is now the updated node of
a:node.
Step 6: Extracting Frequent Patterns from the FSP tree: The FSP is good for
quickly extracting both maximal frequent patterns and all frequent patterns.
EXAMPLE 4 : Given theFS PB1 from EXAMPLE 3 above, the total number
of records up to the end of this batch, the minimum support s and tolerance er-
ror supportε, extract all all frequent sequential patterns from the beginning of
stream to end of this batch,FPB1 with support counts≥ number o f records∗
s− ε.

SOLUTION 4 : From the FSP tree of Figure 4, the maximal patterns (longest
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patterns on each sequence track)MaxFPB1 with support counts≥ (s−ε) or 4 *
(.75 - .25) = 2 transaction counts are:{aac:3, ab:4, bac:3, bc:3, cc:3} and these
can be found through suffix pruning I of the tree using footer list of the leaf
nodes described below. Note that because this is the first batch, all patterns
on the tree met the extraction condition. Also, since this method allows an
error tolerance, it is an approximate mining that finds all frequent patterns
but may include some false positive patterns or patterns that are not exactly
frequent. The amount of false positive patterns depends on the precision of
choice of error tolerance support. It is usually much less than the minimum
support count of s but a relatively high value is used in this example to make it
understandable.

FSP-tree maintains a footer list, which has linkages to eachleaf node of
the tree. Footer list is a linked list that grows with the leaves of the tree. The
FSP-tree maintains this list in order to read the tree from the leaf instead of
root for maintenance purposes of the tree. Like the PLWAP tree, the FSP tree
has the property that all the parent nodes have frequency counts higher than
or equal to those of their children in FSP-tree. Therefore, if parent node does
not have minimum support, its children are ignored during the frequent pattern
extraction process. While the mining algorithm searches for frequent patterns
or FPs in FSP-tree from root down to leaf node for a particularbranch during
the journey, if it finds any node with a count less than minimumsupport, it
does not go further down on that branch. It cuts the suffix sequence of the
branch from that point in this process we call Suffix Pruning I. Suffix Pruning
I is quickly used to trim those branches of the FSP tree from the leaf that
have support counts less thannumber o f records∗ ε after each batch. On
the contrary, Suffix Pruning II allows for milestone pruningof the FSP tree
after a number of batches and transactions have passed through the stream for
reducing on the size of the tree. One other important role of the FSP tree Suffix
Pruning II is that it is used to perform a sequential pruning on the D-List once
we are done with suffix pruning II at the boundary. Sequentialpruning is the
process that checks the frequency of each element in D-List sequentially. If the
frequency of elementsf < number o f records∗ ε, they are deleted from the
D-List. It can be seen that the FSP tree is quick for extracting both maximal
frequent patterns (the longest frequent patterns) and all frequent subsequent
patterns.

This FSP tree structure does not need to be changed to supportsliding
window and damped models. However, to enable extracting patterns between
arbitrary ranges of batches or times, one solution is to employ the same an-
notation scheme for node employed in PLWAP and used in our extension to
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the D-List, where total counts of the most current batch is listed first, then fol-
lowed by the last batch etc. For example, if after processingbatchesB1, B2,
B3, the found patterns include a:4 inB1, a:8 inB2 and a:12 onB3, thea node
is modified in the FSP tree as a:12:8:4. This way we can answer queries like
“List patterns from batchB1 to B2” as those that are frequent inB1 andB2.
Step 7: Maintain FSP, D-List, PLWAP Data Structures for nextround mining:
For next batch mining, the current PLWAP tree is dropped to free space, the
FSP tree is pruned as discussed in step 6 above through eitherSuffix Pruning
I or II. The D-List is pruned through sequential pruning of all items that have
support counts less than the number of records multiplied bythe error support
count ofε.
Step 8: Continuous Infinite Processing of Arriving Stream Data: User may exit
the system at this point or continue to process incoming streams by going back
to Step 1, where stream data are buffered before batching andmining.

2.2 The SSM Sequential Stream Mining Algorithm

The proposed sequential data stream algorithm, SSM is givenas Algorithm
1 of Figure 5, which calls sub algorithms 2 and 3 of Figures 6 and 7. Details
on all other steps of the main algorithm are discussed in section 2.1.

3 Experimental and Performance Analysis

This section reports the performance of proposed SSM algorithm. SSM is
implemented in Java. The experiments are performed on a 2.8 GHz (Celeron
D processor) machine with 512 MB main memory. The operating system is
Windows XP professional. The data sets are generated using the publicly avail-
able synthetic data generation program of the IBM Quest datamining project
at: http://www.almaden.ibm.com/software/quest/. A dataloader program is
incorporated with SSM to load streams of data sets into the Buffer from the
source. The loader loads a transaction, waits 1 ms and then loads the next
transaction. The parameters for describing the data sets are: [T] = Number of
transactions; [S] = Average Sequence length for all transactions; [I] = Num-
ber of unique items. For example, T20K;S5;I1K represents 20000 transactions
with average sequence length of 5 for all transactions and 1000 unique items.

The test was performed by running a series of experiments using five dif-
ferent data sets (T10K;S3;I2K, T20K;S3;I2K, T40K;S3;I2K,T60K;S3;I2K,
T80K;S3;I2K). It can be seen that the sizes of the 5 test data sets increased
from 10K, 20K, 40K, 60K and 80K for two thousand unique items and aver-
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Algorithm 1 (Sequential Stream Miner:Mines Frequent Sequential Stream
Patterns)

Algorithm SSM()
Input: (1) Minimum support threshold (s) where 0< s< 1,

(2) Maximum support error threshold (e) where 0< e< s,
(3) Size of D-List (Size)

Output: 1) Frequent sequential patterns
Temp variables: exit = true, i=0,

num-records (total number of database records);
Begin

While (exit) // exit when user wants
Begin
1. i = i + 1 // indicates which batch or cycle
2. Create-Batch(CAS) //Fig. 6

2.1 ScanBi and generate candidate
1-sequences orC1Bi

3. Update D-List[Size] withC1Bi

// Fig. 7
4. Generate-Frequent-Pattern(FSBi)
with PLWAPB1 // as in [4]
5. Update-FSP-tree(FPBi)
// Update as explained in step 5 of section 2.1
6. If user wants result, then from FSP-tree,
get all FSP with count≥ (s-e)* num-records
7. Maintain-Structures()
//i.e prune D-List and FSP, drop PLWAP,
// as explained in step 7 of section 2.1
8 If user wants to exit, exit = false;
End

End

Figure 5. The Main Sequential Stream Mining (SSM-Algorithm)
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Algorithm 2 (Batch Creation Program)

Algorithm Create-Batch()
Input: (1) Stream ofmBuffer Customer Access Sequences
Output: 1) a batch ofm customer access sequence records
Temp variables: min-CAS, max-CAS
Begin

1. While (min-CAS ¡ mleqmax-CAS) do
1.1 for i = 1 to m sequences do

1.1.1 batch record[i] = buffer record[i]
End

Figure 6. The Batch Creation Program

Algorithm 3 (D-List Update)

Algorithm Update-DList()
Input: (1) Hash Array D-List[size] with buckets,

initialized to Null at creation,
set of Candidate 1-items of ith batchC1Bi

number of candidate elements q inC1Bi

Output: 1) Updated Hash array D-List[size]
Temp variables:m
Begin

1. For each item m in candidate setC1Bi
do

Begin
1.1 Find hash bucket in D-List [size] using hash function

(fn) r = m 1.2 If element m of bucket D-List[r] has
count≥ numCAS ∗ (s− ε), then
L1Bi
= L1Bi

∪m
Begin

End

Figure 7. The D-List Update Algorithm
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Table 2. Execution Times (Sec) of SSM-Algorithm and FP-Stream at s=0.0045 and
e= 0.0004

SSM-Algorithm FP-Stream Alg
Dataset Average Total Average Total

CPU time CPU time CPU time CPU time
per batch per batch per batch

T10K 4.85 9.7 7.25 14.5
T20K 4.4 18.03 6.5 26
T40K 4.37 35.01 5.75 46
T60K 6.25 75 11.66 139.92
T80K 5.69 91.04 10.56 168.99

Figure 8. The Average CPU times fors= .45% ande= .04%

age sequence length of 3. User defined support is set at 0.0045(.45%) for a
minimum support error e, of 0.0004(0.04%). The batch size isset to contain
5000 transactions. This means that runs are on 2 batches to 16batches. The
performance analysis showing the execution times of the proposed SSM Al-
gorithm in comparison with the FP-Stream algorithm on the above data sets is
summarized in Table 2 while the chart showing comparisons ofaverage CPU
times and the total CPU times used by the two algorithms for this data set is
shown as Figure 8.

For testing, the support was lowerered to 1% because there are no items
in the data sets that have support of over 1%. From the experimental results
in Table 2, it can be seen that SSM requires less time than FP-Stream because
SSM-Algorithm uses PLWAP-tree structure and PLWAP-Algorithm to gener-
ate patterns, and thus, does not require to construct intermediate trees to mine
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Table 3. Execution Times (Sec) of SSM-Algorithm and FP-Stream at s=0.0035 and
e=0.0003

SSM-Algorithm FP-Stream Alg
Dataset Average Total Average Total

CPU time CPU time CPU time CPU time
per batch per batch per batch

T10K 6.06 12.12 10.56 21.12
T20K 6.81 27.27 11.77 47.08
T40K 6.9 55.27 12.55 100.4
T60K 7.0 84.02 12.44 149.28
T80K 6.93 111.01 12.23 195.68

Figure 9. The Average CPU times fors= .35% ande= .035%

frequent sequential patterns. For this reason, FP-Growth requires more stor-
age, more computation time than PLWAP. For both algorithms,the average
time of batches varies from batch to batch. It does not go higher constantly.
We can say that average time of a batch is dependent on the dataof the data
sets. It is not related to the size of the data sets. In this experiment a batch is
holding approximately 5000 transactions. A number of experiments similar to
the one in Table 2 at a minimum support of less than 1% were run on the data
sets and the result of a second experiment on the same data sets but at a min-
imum support s of 0.0035 (0.35%) and errorε of 0.0003 (0.03%) is shown in
Table 3 while the chart showing comparisons of average CPU times per batch
and the total CPU times after batches used by the two algorithms for this data
set is shown as Figure 9.

From the experimental results presented above, it can be seen that the av-
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erage time for the SSM sequential algorithm to process stream batches is be-
tween 4.85 and 5.69 seconds for sequences with average lengths of 3 at mini-
mum support of.45%, and it is between 6.06 and 7.0 for the same sequences
with a lower support of.35%. This indicates that the lower the support, the
higher the number of frequent patterns found and higher the execution times.
Thus, comparing with the experimental results of the only other known se-
quential stream mining algorithm SPEED as reported in [21],with data set of
average sequence length 3, but at a much higher minimum support threshold of
10%, it can be seen that the average execution time of the SPEED batch stream
processing is steady at between 5 and 17 seconds for about thesame number of
batches in our experiment. This indicates that at this higher support, generally
the SPEED algorithm execution times are higher than our SSM algorithm time
at an even lower support.

From the tables and for both algorithms, it can be seen that the compu-
tation times increase with decreasing minimum support because more items
will be frequent, making the trees to be mined, bigger and finding more fre-
quent sequential patterns. An experiment was also run on thethree algorithms,
PLWAP, FP-Stream and the newly proposed algorithm, SSM-Algorithm on a
sample data with the purpose of confirming the correctness ofthe implemen-
tation of the SSM-Algorithm. The data set had 4 transactions(Tid, Sequence)
as (100, 10 20 30 40), (200, 10 20 40 30), (300, 20 30 50 60), (400, 20 10
70 30). Note that although PLWAP algorithm is for sequentialmining, it does
not mine stream sequences but SSM does and although, FP-Stream algorithm
mines frequent streams patterns, it does not mine frequent stream sequential
patterns. For this reason, our implementation of the FP-Stream found more
patterns than are found by both the SSM and the PLWAP because of the differ-
ent natures of frequent sequential stream miner and frequent sequential miner.
PLWAP and the SSM algorithm found the same frequent sequential patterns of
((10), (20), (20,30), (30)). As PLWAP is already an established algorithm and
the result of SSM matches with that of PLWAP, this confirms that although the
SSM-Algorithm was processing streams of data, it processedthem correctly
and computed the frequent sequential patterns.

4 Conclusions and Future Work

SSM-Algorithm is proposed to support continuous stream mining tasks
suitable for such new applications as click stream data. It is a complete sys-
tem that fulfills all of the requirements for mining frequentsequential patterns
in data streams. SSM-Algorithm can be deployed for mining E-commerce’s
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click stream data. Features of the SSM-Algorithm include use of (1) the D-
List structure for efficiently storing and maintaining support counts of all items
passing through the streams, (2) the PLWAP tree for efficiently mining stream
batch frequent patterns, and (3) the FSP tree for maintaining batch frequent se-
quential patterns. The use of the support errorε serves to reduce on irrelevant
use of memory for short-memoried stream applications. Experiments show the
SSM algorithm produces faster execution times than runningthe FP-Stream on
similar data sets as well as shows the SSM produces comparable performance
to the only other recently defined sequential stream mining algorithm SPEED
based on the result reported in [21]. Discussion on how to extend the SSM
algorithm to accommodate the sliding window, damped and anybatch query
range mining models have been provided in addition to the main landmark
model mining presented in detail. Future work should consider the possibility
of adding multiple dimensions (e.g. time dimension) or constraints along with
frequency to discover interesting patterns in data streams. Methods to reduce
or eliminate false positive results from mined results for applications needing
highly precise results can be explored. It is still possibleto increase the de-
gree of interactiveness provided by the scheme to allow mining for various
user-chosen parameters like minimum and error support thresholds. It is also
possible to incrementally update the PLWAP tree during the mining of each
batch rather than dropping and re-creating.
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