A PLWAP-BASED ALGORITHM FOR
MINING FREQUENT SEQUENTIAL
STREAM PATTERNS

Christie I. EZEIFE 1, Monwar MOSTAFA 1

1School of Computer Science,
University of Windsor, Windsor, Canada, N9B 3P4
E-mail: cezeife@uwindsor.ca, http://www.cs.uwindsakcezeife

Abstract

The challenges in mining frequent sequential patterns tmsdeeam ap-
plications include contending with limited memory for united data,
inability of mining algorithms to perform multiple scans wffinitely
flowing original stream data set, to deliver current and eaiguresult
on demand. Recent work on mining data streams exist forifitzgson
of stream data, clustering data streams, mining non-séiqliéequent
patterns over data streams, time series analysis on datarstrHow-
ever, only very limited attention has been paid to the pnobdé stream
sequential mining in the literature. This paper proposéd-3Rjorithm
(Sequential Stream Mining-algorithm) based on the efftdRMWAP se-
guential mining algorithm, which uses three types of datacstires (D-
List, PLWAP tree and FSP-tree) to handle the complexitiesimiing
frequent sequential patterns in data streams. It contisly@aumma-
rizes frequency counts of items with the D-List, builds PLI\V&ee and
mines frequent sequential patterns of batches of streaondgcmain-
tains mined frequent sequential patterns incrementaltih WSP tree.
Capabilities to handle varying time range querying, tratisa fading
mining, sliding window model are also added to the SSM-atgor.

Keywords: Web Sequential Mining, Stream Mining, Customer Access
Sequence, Frequent Sequential Patterns, Buffer, ClidaBtiData.

1 Introduction

When a user visits a web site, the web server usually keepe soportant
information about the user in the web log file, such as, thents IP address,

the URL requested by the client, and the date and time forrétptest [18].
The three types of log files available on a web server are stygs, error-
logs, and cookie-logs. Analyzing data on the web serves-legalled “click
stream analysis”. E-commerce or e-business can benefittfisralick stream
analysis. Click stream analysis provides important infaiion to understand
better the marketing and merchandising efforts, for examipbw customers
find the store, what products they search for, and what ptedhey purchase.
Some uses of such stream applications like web log clickastranalysis in-
clude: improving the web site by better understanding trersisnterests,
typical user navigational paths, and the correlation betwsistomer behavior
and the products. Yang et al. [24] suggest an interestinoddb reduce net-
work latency by applying web mining techniques. The methonddifrequent
access patterns from web logs by analyzing click stream d&t&e frequent
access pattern is found, it can be used in web caching anfeéfolgng system
in order to improve the hit rate and reduce unnecessary nietnadfic.

A data stream is a continuous, unbounded, and high-speedoflalata
items. Applications generating large amounts of data stseanclude web
logs and web click streams, computer network monitordfj¢rafonitors, ATM
transaction records in banks, sensor network monitorsfrandactions in re-
tail chains. Mining data in such applications is stream mgniStream sequen-
tial mining adds many complexities to traditional miningugements, which
are: 1) the volume of continuously arriving data is massivé @annot all be
stored and scanned for mining, 2) there is insufficient mgn®&jrthe mining
algorithm does not have the opportunity to scan the entiginal data set
more than once, as the whole data set is not stored, 4) a mithddlivering
considerably accurate result on demand is needed. 5) in rdeine sequen-
tial patterns in streams like click stream data for custoboging interest in an
E-commerce site, there is need to keep Customer Access IBEguECAS) in
the order they arrive. CAS is the sequential buying or prodiewing order
by a customer, e.g., (TV, radio, jean pants, TV, shirt, TV@elding CAS order
intact for each transaction and mining frequent sequepétierns from them
presents additional complexities.

Data stream can be either offline streams, characterizeeédyar bulk
arrivals or online streams characterized by real-time tgutdata [13, 7]. The
four main stream data processing models are:

1. The landmark model, which mines all frequent itemsets twe entire
history of the stream from a specific beginning time pointechithe
landmark to the present.

2. The damped model (also called the time-fading model) clihias a

2

weight attached to each transaction, where the transaat@ght de-
creases as the entry time of the transaction into the stresnodder.
For example, while a record that joins the stream at time @OnAy
have a decreasing weight of 0.2, a record that has just jaheedtream
at the processing time of 16:00 may have a higher weight of Ais T
means that older transactions contribute less weight thitamset fre-
quencies. This is suitable for applications where old dasdfading
effect on frequency as time goes on and may be effective fobage
collection of records.

3. The sliding windows model, which finds and maintains feagutemsets
in sliding windows and only the new data streams within thereni
sliding window are processed. For example, assume a wintennf4
records and a stream of twelve recofls ..., Sy, in sliding window
S W, contains recordSsy, . . .,S4, sliding windowS W contains records
S,, ..., Ss, while windowS W has record§ Ss, ..., Sg and so on.

4. Batch Window model, which finds and maintains frequemnngets in
batch window. All records in the batch window are removedeotie
window is out of range. Batch window is a special case of rsjdivin-
dow model where there is no overlap in transactions in cans&cwin-
dows. For example, assume a window size of 4 records andaarstve
twelve recordsS;,, . ..,S1o, in batch windowBW;, there are recordS;,
..., S4, batch windowBW, contains recordss, ..., Sg, while batch
window BW4, has recordSs, ...,S12 and so on

Three classifications of web mining are:

1. Web content mining for extracting meaningful informatifsom con-
tents of web pages presented in HTML or XML file formats.

2. Web Structure Mining for discovering interesting patsefrom hyper-
links structures from mining in-going and outgoing linksrr web pages.

3. Web Usage Mining for discovering interesting patternkige access-
log files recording information about web users and theirigation
sites.

All users’ behaviors on each web server can be extracted fnenweb log.
The web log records are generally pre-processed and cléaneghsform its
records in the form of a transactional database with schdmamgaction id,
access sequences) before mining to generate frequentngatt&he format

3

Table 1. Sample Web Access Sequence Database

TID | Web access Sequencgs

100 | abdac
200 | abcac
300 | babfae

400 | afbacfcg

and example of a line of data in a web log before pre-procgssinhost/ip
user [date:time] “request url” status bytes

137.207.76.120 - [30/Aug/2001:12:03:24 -0500] “GET /jddtlocs/relnotes/
deprecatedlist.ntml HTTP/1.0” 200 2781 where the host gresk of the com-
puter accessing the web page (137.207.76.120), the uswificktion number
(-)(this dash stands for anonymous), the time of acces2i93124 p.m. on
Aug 30, 2001 at a location 5 hours behind Greenwich Mean TiGMT)),
request is (GET /jdk1.3/docs/relnotes/deprecatedimt)n(other types of re-
quest are POST and HEAD for http header information), théadhreference
locator (url) of the web page being accessed is (HTTP/1t@)us of the re-
quest (which can be either 200 series for success, 300 seriesdirect, 400
series for failure and 500 series for server error), the remob bytes of data
being requested (2781). Since some data may not be avaitableb log, to
obtain complete web usage data source, some extra technspah as packet
sniffer and cookies may be needed. The stream sequentiaigroperations
being proposed in this paper starts with a transaction @dtmsn of the web
log obtained after pre-processing web log. A busy websiteegdes a huge
amount of click stream data everyday. Each click stream skxias reflects a
customer’s buying interest. For an E-commerce companggctieg future cus-
tomers based on their sequential mouse movements on thentpaige would
help significantly to generate more revenue. An examplegssed web log
data representing only four sequences of access to protestabeled “a, b,
c, d, e, f,g"is given in Table 1.

1.1 Problem Definition

Given the set of events or items E&3,ey, . .., ey}, standing for retail store
items like bread, butter, cheese, egg, milk, sugar or welegag stream se-
guential database, SSDB, is an infinitely flowing sequendsatdhes B,,B,,
...) of sequential records (each record is a sequence of eggsts..ey) in

4

the schema (transaction id, record sequence). The prolisiream sequen-
tial mining requires finding all frequent sequential patte=P, having support
greater than or equal to a user given minimum supps$f) from beginning
of a stream batch) to current batchB.) time, given one pass of stream se-
guential database SSDB as a continuous stream of batchedis&;,B,, . ..
and a tolerance error suppo#) (much lower than the minimum suppa¥
for allowing potentially frequent items to have their caintaintained in the
D-List structure.

When the initial batch for mining is the very first batch of theam
database, the mining model is the landmark model. When a euoilvecord
overlap is allowed between consecutive batches, the meddibing window
model. When aging of records of older batches is considerduei frequency
count, it is the damped model and when the initial or final bbascany batch,
the algorithm would compute frequent patterns for sequebegtwveen any ar-
bitrary range of batches of the stream. batch. This papetdymesent a so-
lution for the batched landmark model first and presentsnskias to support
sliding window, damped model and varying batch frequertepatequests.

A batch B; of stream sequential records consistgjafequential records
S1, S, ..., Sq. For example, Table 1 represents a batch with four sequientia
records. The length of a sequen(&,is the number of events in the sequence
and a sequence with lengtls called a j-sequence. For example, while babfae
is a 6-sequence record, abdac is a 5-sequence record. Bsammpiencd =
€16 ...66.1...6n If subsequenc&gystix = &1 ... 6n IS a SUper sequence
of patternP = €/€, ... €, whereec,1 = €], then,Sprefix = €162.. . . &, is called
the prefix of S with respect to pattern P, whidg,; fix is the suffix sequence
of Sprefix. FOr example, in sequence babfae, ba is a prefix subsequénce o
bfae, while bfae is a suffix of ba. A frequent pattern in a dasabor a set of]
sequential records is a sequence that has occurrence cailed the pattern’s
support) in the number of records, which is greater than aaktp the given
minimum support, s. Thus, the support of a sequence is théauaf records
it appears in as a subsequence divided by the number of serotide stream
up to the time of measure. For example, if the sequentiabdataof Table 1 is
batchB; and we want to compute frequent patterns when the minimuipostip
threshold is 75% or 3 out of 4 records, then, it can be seenftbabient 1-
sequences with their support counts inclydes, b:4, c:3 and some frequent
2-sequences and 3-sequences patternsadrd, aa:4, ac:3, ba:4, aba:4, bac:3,

.

1.2 Related Work

Han et al. in [12] proposed the FP-tree algorithm to genediraguent
pattern itemsets. Frequent sequential pattern miningrithges include the
GSP [22], which is Apriori-like, PrefixSpan [20], a pattegrewth method, the
WAP [19], which is based on the FP-tree but used for miningisages, the
PLWAP [4, 5], which is the position-coded, pre-order linkestsion of WAP
that eliminates the need for repetitive re-constructioimtsfrmediate trees dur-
ing mining. PLWAP tree algorithm first builds each frequesdgential pattern
from database transactions from “Root” to leaf nodes asgjgunique binary
position code to each tree node and performing the header Imddhges pre-
order fashion (root, left, right). Both the pre-order ligikaand binary position
codes enable the PLWAP to directly mine the sequential ppatteom the one
initial WAP tree starting with prefix sequence, without structing the in-
termediate WAP trees. To assign position codes to a PLWAIR nibe root
has null code, and the leftmost child of any parent node haxda that ap-
pends ‘1’ to the position code of its parent, while the positcode of any
other node has ‘0’ appended to the position code of its nesefissibling.
The PLWAP technique presents a much better performancefibaachieved
by the WAP-tree technique, making it a good candidate f@astr sequential
mining. An example mining of a batach with the PLWAP tree ieganted as
EXAMPLE 2. This structure is chosen for stream sequentialimgj, in order
to take advantage of its compact structure and speed, @nstemvironment.
Data stream algorithms include the Lossy counting algeriftt7], which is
used for frequency counting in data streams. Previoustgnaark model [17]
was introduced that mines frequent patterns in data streaastuming that
patterns are measured from the start of the stream up totum@ment.

The Lossy counting algorithm finds frequent items in nondsedgjal data
streams with a maximum support s and maximum egreg s. The algo-
rithm suggests am = 10% of s. The Lossy counting algorithm works with
a full fixed sized buffer oh stream records, which are placed in a nuner
of buckets. Each bucket containgslrecords. Then, the Lossy counting al-
gorithm runs on buckets one after the other to find frequemhst It stores
the e-frequent items (having frequency more thgnn a D data structure in
the form of (element, frequency, maximum error count of @eth Whenever
a new element arrives, it increments its frequency in therDcaire by 1 if
the element is already in the D structure, but inserts a nearde(element, 1,
current bucket id - 1) if element is not found. At the boundaiyhe bucket or
window, it performs two types of pruning (1) it decrementisedéments in D
by £'s value, and (2) it deletes items from the D structure iftliequency +

6

maximum error count current bucket-id. If a trimmed item comes back later,
the algorithm compensates an approximate loss frequendyenéver a user
requests a list of items that have support s, the algorithnergees output for
item with frequencyf > (s— &) * current length of stream. While the Lossy
counting algorithm uses decrement mechanism to efficieritginate small
items with counts less than or equaktahis method prevents all items includ-
ing frequent items from maintaining their true counts. Algids algorithm
is not suitable for mining sequential stream pattern mini@gr technique is
thus different from this system in the sense that we aim adlyrimg more
complete patterns and to work on sequential and not noresdéigli patterns.
Thus, while we use a modified form of the D structure for caupiiem fre-
guencies, our D-List structure increments rather thaneteents counts and is
hash-based for speed improvement. The mining efficienayribdr improved
on with the PLWAP and FSP sequential mining and patternreiasiructures.

FP-Stream algorithm [8] is used to mine frequent patterrdaba stream.
The authors of FP-Stream also extended their frameworkdwairtime-sensitive
gueries over data stream. FP-stream algorithm uses arpater, FP-tree and
a fixed tilted time window frame to handle time-sensitiveeatn queries. The
idea of the natural tilted time window used for holding up teanonth’s data
or 31 days data is that one month’s data is partitioned intord®, where the
first four units (1 hour data) are in 15 minute units each, @éxinits (for 1 day
data) are in one hour units each, and the last 31 units (formmh data) are in
1 day unit each. Thus, if for example, five itemsets with threiquency counts
as a:48, b:50, c:45, ab:27, ac:29 are stored in tilted tirmelow ty (standing
for the most recent 15 minutes data), the itemsets stordueingxt tilted time
windowt; (standing for the most recent 30 minutes data) will agaituohe all
thety patterns and so on as most recent patterns are shifted domnte right
more specific tilted time window to the left more generaktltime window.
With this model, it is possible to compute frequent pattamghe last hour
with the precision of quarter of an hour, for last day with grecision of its
hours, for the whole month with the precision of its days. Idwer, to keep a
whole year’s data will require keeping 366 (number of day@tihours) * 4
(15 minutes) = 35, 136 units, which is huge and they propdsed ogarithmic
tilted time window frame to cut down on the number of needatketunits to
17 asLogy(365+ 24« 4) + 1. The FP-stream algorithm forms a batgtevery
15 minutes, computes all item frequencies and stores themain memory in
descending order of support in f-list. Then, it construci$R-tree, pruning all
items with frequency less than:« |B;j|. Then, it findse-frequent itemsets from
the FP-tree, which it stores in the pattern tree. While thestt®am is able to

7

retrieve and answer queries over a wide range of time, itiregjbig storage
for keeping short term period data in order to maintain sguene slots. The
FP-stream is only for non-sequential data. Our approadhkeutiie FP-stream,
uses PLWAP, hash based D-List for frequency counting and fB6Btoring
results and avoids repetitive storage of patterns like thestream.

Teng et al. proposed FTP-Algorithm [23] to mine frequent penal pat-
terns of data streams. FTP-DS scans online transaction Aogwsyenerate
frequent patterns in real time. Sliding window model is usedhis paper.
Data expires after N time units since its arrival. While mesisting data
stream systems are for mining non-sequential records, ésent sequential
data stream systems proposed are SPEED [21] and SSM [6]. PBRES
algorithm mines maximal sequential patterns of an arlyitteme interval of
the stream by inserting each sequence of an arriving batehragion of a
tree-like data structure called Lattice and later it wiltraxt maximal subse-
guences from the lattice structure. In addition to thedatstoring maximal
sequences, it stores a table of information about the sdeis, sequences,
their lenghts as their sizes and the tilted-time window thelpng to, as well
as the region of the lattice tree they belong to and theirstoSPEED prunes
unfrequent sequences by dropping the tail sequences ofitdgkttme win-
dows supports that are less than desired batch supportsSSkealgorithm
[6] presents a draft stream mining algorithm, which is bemtgended by this
paper. The main extensions provided by this paper are mioingore than
the basic landmark model, more extensive literature revéapabilities to han-
dle sliding window, damped model and arbitrary batch rangeryjng, as well
as more experimentation of the system.

Other studies on mining data streams exist for classificaifstream data
[3], online classification of data streams [14], clusterilaga streams [10], web
session clustering [11], approximate frequency counts dat streams [17],
mining frequent patterns in data stream at multiple timegiarities [8], and
multi-dimensional time series analysis [2], temporal @aittmining in data
streams [23] but more work is needed on mining frequent se@igatterns
in data streams.

1.3 Contributions

Considering the importance of sequential mining in dateastrs, this pa-
per proposes the SSM-Algorithm, a sequential stream mivereixtends the
functionality of PLWAP to make it compatible in data streanvieonment us-
ing additional flexible and efficient data structures D-ldasd FSP-tree. The
structures allow the flexibility of extending the basic ¢imin model provided

8

for landmark model to handle damped, sliding window and agaipon of
frequent patterns between any adhoc ranges of stream batche

1.4 Ouitline of the Paper

The balance of the paper has section 2 presenting detaite girbposed
sequential stream mining (SSM) algorithm that is based ePttWAP sequen-
tial mining algorithm with some examples. Section 3 presé&tperimental
and Performance Analysis and section 4 presents conctuaimhfuture work.

2 The Proposed SSM Sequential Stream Mining Sys-
tem

By considering stream environment requirements, we haveldged a
method that uses SSM-Algorithm (sequential stream minliggrighm) to col-
lect data stream into a buffer from web applications, forrgeadnic sized
batches by taking data stream from the buffer and mines estch ko deliver
results. A batch is a group or a number of customer accesesegs. SSM-
Algorithm maintains three data structures (D-List, PLW&&e, FSP-tree) in
order to handle and generate result for click stream datek €fream data can
be generated from the clicks of users on the web. Each datetwste has its
own algorithm for updating and retrieving data from the swoes. D-List is
a hash chain based data structure that stores all incongings'itD and their
frequency if they are above the tolerance error threshol-List is very ef-
ficient when there are huge numbers of items that are used &-ttommerce
site. Brand new items get posted to the E-commerce site faay.dt is very
realistic that each E-commerce site introduces new itens®as as they get
items from the vendors. We assume that we do not have anymat@n on
number of items and their IDs for our algorithm. In other wsyrdur D-List is
totally dynamic, it grows with incoming data stream. PLW#&Be [4, 16] gets
constructed by selecting frequent sequences from batBlh&¥AP-mining al-
gorithm uses preordered linkage and position coding metb@loid costly
reconstruction of intermediate trees to generate freqseguential patterns
unlike WAP-tree [Pei et al.2000]. The process of mining frenf sequences
continues batch by batch. Once we find frequent patterns fiainbatch,
we keep incrementing frequent patterns onto frequent stiglipattern-tree
(FSP-tree) batch by batch. The construction process oftFeHs similar to
Pattern-tree that was introduced in [8] but the structurESP-tree is simpler
than pattern-tree. The FSP-tree is made simpler for effigiand speed. FSP-

9

Data Batch
strean Proces:

Figure 1. The Main Components of the SSM Stream Miner

tree stores frequent patterns instead of customer acogssrags. Whenever
we need to view the results, we are able to generate upd&gdeint patterns
from the FSP-tree. The proposed method is very memory efficied ideal
for click stream environment. As the mining process movdyg famward and
there is no way to go backward and rescan previous data stibemefore
we do not keep any items that have support count less thammaxisupport
error threshold in D-List structure where updated candidatequences and
their counts are stored. The items less than maximum suppuant threshold
have very small count and chances are very slim for them torbedarge
items later. Therefore, we get rid of those small items fréva beginning.
However, those small items that are potentially large itérasy close to large
items) because they have support greater than or equal tonuaxsupport
error, are all kept in the D-List. Maximum support error isragefined thresh-
old that gives a tolerance of error in the result to allow fopmximate, near
accurate mining that produces all correct frequent patteith possibility of a
few potentially frequent patterns due to the use of tolezaarcor support. Itis
obvious that if maximum support error is very small compéaredser defined
minimum support, then the error in the result will be very moah By keeping
all items that have support more than or equal to maximumaagpror in the
D-List, we assure that our result does not cross error baynda

2.1 Architecture and Components of the Proposed SSM System

The main components of the SSM (Sequential Stream Miningfesy is
depicted in Figure 1.

Step 1: Buffering of Arriving Data Streams: Buffer is badliga staging area
where preprocessed transaction IDs and stream sequéteeastomer access
sequences (CAS) arrive. We treat a buffer as a long emphgstritially with
limited size of about 50MB. Once the stream starts comirgy tre added into
the buffer. For example, (100, abdac), (101,abcac),..reH&O0 is the
transaction ID and the letters (a b d a c) following trangectD 100 are item
IDs for this transaction. Lossy Counting Algorithm [17],essbuffer mech-
anism to deal with incoming data stream. On the other haneStréam [8]
uses main memory to handle data stream. While the streanerseegl arrive
at the Buffer area, each record is processed and placed icuthent batch.

10

The system mines a batch once it contains the minimum nunftxecords
set for a batch, and it continuously checks the buffer foremwercords every 1
minute (or a different value can be set to check the buffeetham application
needs), if there are not enough records to form a batch. téthee enough
records in the buffer, the maximum batch size is used in icigdhe current
batch for mining. Thus, as soon as there is a batch with nummbercords
equal tob, whereminimumBatch size< b < maximumBatch size the batch
is mined. The SSM-Algorithm does not know how many click atneitems
it will be dealing with before forming each batch. For extedynbusy stream
environment where streams of data are arriving at fasterthatn can be ac-
commodated by the buffer, the buffer could either be in@éashut off for
some time when too full and re-opened when de-congestedthAnsolution
is to re-route non-accommodated arriving streams to amglsiorage, where
they can be processed later during slow period. Our modebearsed to find
frequent sequential patterns of visited pages for a siteedls w

Step 2: Batching Engine forms batches of stream sequeheghé CAS (cus-
tomer access sequences) data from the buffer. For examipdeclais a num-
ber (n) of customer access sequences similarécord sequences onfdistinct
transaction IDs. The size of the batch depends on incomiegrst The batch
size of the SSM system is not fixed, unlike Lossy Counting Atgm [17],
or FP-Stream [8]. For extension to accommodate sliding ainchodel with
o number of overlapping records between two consecutive avisglS W and
SW,1, the SSM system will maintain a global record coumtmord-id The
batching engine unlike the basic batching model will rethim lasto records
of earlier sliding windows W deleting this window’s firsb— o records, where
b is the total number of records in new sliding window beingried, S W, 1
and the system inserts as the last records of the new windowg bermed
b — o records. For example, if records 1 to 4 have been in the fidingl
window, SW and the number of overlapping records is 2, then, in forming
the sliding window 2S W, the SSM system should delete the first(2)= 2
records ofSW and accept new (4 2)=2 records for new window W such
that the records to be processed in the 1$W window are records 3, 4, 5, 6.
To handle the damped model, the batching model would créthter @egular
batches or sliding window batches as described above ang-ttist can be
modified to remember counts of items of last two or three letcduch that
fading weights of older item counts can be used to affect Weeadl frequency
counts when updating the D-List.

Step 3: D-List data structure for maintaining counts of rexgt items: SSM
system uses three data structures: D-List, PLWAP-tree &RitFee. D-List

11

structure is used for efficiently managing the frequencynt®of 1-items and
for obtaining the updated frequent 1-items list, at the end of each batch,
Bi. The D-List keeps each item’s ID and their frequency in a rdshin that
stores each unique item in a D-List hash bucket correspgrigirthe item-id
modulus number of buckets. The SSM system scans recordslobetch,B;,
uses the counts of the items in this batch to update the itemts®f items in
the D-List. It then computes the cumulative support coufif3-tist items to
find overall frequent 1-items of this batdh,, . Only items with frequent sup-
port count greater than or equal to the total number of streaguences that
have passed through the database via all already proceatadad$®€ multiplied
by the percentage maximum tolerance ersmare kept in the D-List. While
items with support counts less than this value are deleted fihe D-List, those
with counts greater than or equal to the total number of strescords times
(minimum support (s) minus tolerance errej)(are kept in theL;, list. The
use of tolerance error to reduce the count of items kept irDiest allows
for handling items that may have been small (that is, notuead) previously,
and whose cumulative count would not be available if theydsaty turn fre-
guent. Once the D-List is constructed, the performances#riion, updating
and deletion of nodes are faster through this hash chaintsteu Thus, this
structure contributes to processing speed and efficiency.

EXAMPLE 1: Assume a continuous stream with first stream bdglton-
sisting of stream sequences as: [(abdac, abcac, babfasfajl]. Assume
the minimum support, s is 0.75 (or 75%) and the tolerance erns 0.25 (or
25%). Construct and maintain the support counts of the itesirsg the D-
List structure and compute the set of frequent 1-item lists and frequent
sequence recordsSg, of batch 1 stream records for mining.

SOLUTION 1: Since this is the first batch with only 4 records, the toleean
maximum support cardinality is: 4 * (0.75 - 0.25) = 2. Thud,ims with
support greater than or equal to 2 should be large aridjjn The D-List
minimum error support cardinality is 4 * (0.25) = 1. Thus, itdims with sup-
port greater or equal to 1 are kept in the D-List while thostwupport count
greater than or equal to 2 are also in 1hlg1 list. The LlB1 = {a4, b:4, c:3,
f:2}. The D-List after reading the batdBy is shown as Figure 2. Note that
since the stream sequence being used in this example asedhBscommerce
customer access sequence (CAS), the SKU (a special uneqnedde) for the
items (a,b,c,d,e,f,g) given as (2, 100, 0, 202, 10, 110, 89used in the hash
function (item-id modulus number of buckets) (for this exden100 buckets
assumed) to find the bucket chain for inserting the item inDHest. Since
the C1; has been used to update the D-List, which was used for congputi

12

CAS FS

abdac abac 9 *@»>
S Rt

afbacfcg afbacfc

B1 (first batch)

(10 | xET)m(E2 il
99 *

D-List

Figure 2. The D-List After BatchB;

the currentL;; and the frequent sequenE&g,, C1; can now be dropped to
save on limited memory.

Extension to be made to the D-List processing structure tmramo-
date the sliding window model, which for each new wind@wV,, of size
b records and witto overlapping records is to insert only the window's last
(b — 0) records into the D-List. This is because the fo'secords had already
been inserted when processing records of the previous wirslgy. To han-
dle the damped model, the D-List can be modified to rememhentsof items
of last two or three batches so that fading weights of oldemtocan be re-
flected on the overall frequency counts of the items when tiqgléhe D-List.
For example, while the weight of all current batch items Wwélrated at 100%
of their counts, the weight of last batch items can be ratégD8é, while the
weight of last two batches items is rated at 25% and any old&hbitems
are rated at 0%. The D-List can be updated such that thredsaom listed
for each item and each item node appears with the item lateh ¢urrent
count: item last batch count: item last two batch count. Aanegle D-List
item node will then look like a:12:5:1 meaning that itamow has total count
of 12 after the current batch, but had a total count of 5 aftedast batch and
a total count of 1 after the last two batches. Withaamode labeled as above,
the actual weighted frequency count is computed by disegrdil counts of
this item that occurred before the last two batches. Sineedlrent batch has
only a count of 3 for iteng, it can be seen that previous counts of this item
prior to its counts form the last two batches is 12 - (5 + 4) = 4u§, this
count of 4 is taken out of the total count of 12 to have 8, whichwaeighted

13

as: (3« 100%)+ (4 = 50%)+ (1= 25%) =3 + 2 + .25 = 5. Thus, for itemthe
used frequency for 3 + 2 + .25 = 5. Thus, for iterthe used frequency for 3 +
2 +.25 =5, Thus, for itena the used frequency for deciding frequent 1-items
will be the computed weighted frequency.

Step 4: PLWAP Sequential Mining Data Structure for miningrent batch
frequent sequences: PLWAP-tree or Pre-ordered Linked \Wa&was intro-
duced in [4], [5]. The basic idea behind the PLWAP tree athariis using
position codes and pre-order linkage on the WAP-tree [1%pdeed up the
process of mining web sequential patterns by eliminatirgnied for repeti-
tive re-construction of intermediate WAP trees during mgniEliminating the
re-construction of intermediate WAP trees also saves onanestorage space
and computation time. Generally, the PLWAP miner starté aifrequent 1-
item list, Ly, , which had already been formed in the D-List stage. Next, for
each sequence in the current batch, it creates a set of friespiguenceb Sg,
of the batch by deleting all items in the sequences that ariegguent or not in
theL,, list. It now builds the PLWAP tree by inserting each frequsequence
Si from FSg, top-down from Root to leaf node. PLWAP tree is constructed by
inserting each sequence from root to leaf, incrementing @t of each item
node every time it is inserted. Each node also has a positida from root,
where the root has null position code and the position codmgpfother node
has ‘1’ appended to the position code of its parent nodesfrbide is the left-
most child node, but it has 0’ appended to the position cddesmearest left
sibling if not the leftmost child node. After constructighg LlBi listis used to
construct pre-order header linkage nodes for mining. Eacle ihas the item
node label: its count: its position code. The tree maintfieguent 1-item
header linkage for quick mining by traversing the tree pleofashion (visit
root, visit left node, visit right node) and linking the orde node of the fre-
guent 1-item type on the tree. For example, all nodes of laléll be linked
with a dashed a-frequent header linkage starting from &agjbeader linkage
item a. The mining of the PLWAP tree is prefix based in that it starsrf the
root and following the header linkages, it uses the positiodes to quickly
identify item nodes of the same type (e.g., item a) on diffet@anches of
the tree at that level of the tree and if the sum of the countdldhese items
(e.g. a node) on different branches of the tree is greater than aaldqithe
accepted minimum tolerance support count (number of recofd- ¢), then,
this item is confirmed frequent and appended to the previoefixgdrequent
stream sequence.

EXAMPLE 2: Given the set of frequent sequences for batck 3g, con-

14

Figure 3. The PLWAP Tree of BatcliB;

structed from EXAMPLE 1 above gsbac, abcac, babfa, afbagfas well as
the frequent 1-item&,, = {a:4, b:4, c:3, f:2, construct thePLWAR;, tree

and mine the tree to generate frequent stream sequentietnsator this batch
FPg,.

SOLUTION 2: The constructed PLWAP tree is as given in Figure 3.

The leftmost branch of this tree shows the insertion of tle iequence abac
when the firs and b nodes initially had a count of ‘1’ each. Then, when the
second sequence abcac is inserted, the leftmost branclotigs wounts and
position codes became?2:1 andb:2:11. Since the next child of thib node
is notc, then, a new child node df is created for the suffix sequencacas
shown in the figure. The remaining sequence 3 and 4 of the baé¢cimserted
into the PLWAP tree in a similar fashion. Then the tree isdraed pre-order
way to link the frequent 1-item header node_tg1 = {a4, b:4, c:3, f:2 to the
PLWAP tree nodes using the dashed arrow headed links. Forgeafollow-
ing the left subtree of “Root”, we find as3:1 node that is linked to the fre-
guent header of its kind ‘a’, then the nextl:111node found during pre-order
traversal has a link from the first linked ‘a’ node to itselhelidea is to trace all
a nodes on the tree by following the dashed links from the ‘egfrent header

15

link and this is used with the position code to quickly mines ttnee without
needing to construct intermediate conditional patteredasd trees. Next op-
eration is to mine this constructed PLWAP tree for frequeattgsns meeting
a support threshold greater or equal to minimum toleranppati of s— & or
0.50. The mining method recursively mines frequent sedglgpdtterns from
the tree to generate frequent sequential patterns for t¢br FPg,) with
frequency of (§—¢) = |B1| = 0.50 * 4 = 2). The PLWAP mining method starts
from PLWAP Root to examine subtree suffix root sets and exathpatterns
with total count on all different branches in the suffix roetssat that height of
the tree, greater or equal to minimum tolerance supportekample, the left
branch rooted at a:3:1 and right branch rooted at b:1:10 tbmenfirst suffix
root sets. It can be seen that a:3:1, a:1:10 mean that pattexs a total count
of 4 and is frequent. Then, ab:2:11, ab:1:1101 and ab:1:1044n ab has
a count of 4 and is frequent. Also, aba:1:111, aba:1:11164:1411011 and
aba:1:101111 mean a count of 4 for pattern aba. The algoxiten position
codes of nodes to quickly determine if they are on differeahbhes of the tree
and their counts can be added. More details regarding theAPLE\gorithm
can be found in [4] and [5] and the source codes of the algosthre generally
available through the author’s web sites. The folRk, = {a:4, aa:4, aac:3,
ab:4, aba:4, abac: 3, abc: 3, ac: 3, acc:2, af: 2, afa: 2, ba:44 bac: 3, bc:
3,c:3,cc: 2, f 2 fa

To accommodate both the sliding window model and the dampadkemn
no changes need to be made to the PLWAP construction and gr@sirthe
frequent 1-item list and the current batch sequences arhatllare needed
to build and mine the current batch frequent patterns ancate snemory,
the current batch tree is discarded once the patterns amdnaimd stored in
the FSP result structure. An improvement at this stage ofyiséem is us-
ing the incremental version of the PLWAP algorithm [Ezeifé&C&en, 2004a,
Ezeife & Chen, 2004b], rather than discarding the tree,lribenefits of such
an extension can be investigated for future work and wouldkwaly if there
is need to perform cumulative mining on the same tree witheurg a separate
structure to store mined patterns cumulatively.

Step 5: The FSP Result Structure for Storing mined frequattems: Fre-
guent Sequential Pattern-tree or FSP-tree is a simple féfatern-tree [8]
for storing result structure. The sequences and their sanetsimply inserted
or updated from root to leaf where the count of the sequenassigned to the
leaf of the frequent pattern. The FSP tree is maintained wath footer linked
lists that has linkage to all leaf nodes for pruning nodemfteaf not meeting
required support count, and from the Root for inserting gdaiind frequent

16

Figure 4. The FSP Tree After BatcB;

sequential patterns.

EXAMPLE 3: Given the found frequent patterns from batch 1 from EXAM-
PLE 2 aboveFPg, = {a:4, aa:4, aac:3, ab:4, aba:4, abac: 3, abc: 3, ac: 3,
acc:2, af: 2, afa: 2, b: 4, ba: 4, bac: 3, bc: 3, c: 3, cc: 2, fa22}, save this
in the compact frequent sequential pattern tree FSP tremifoulative storage
and retrieval of mined patterns.

SOLUTION 3: The constructed self-explanatory FSP-tree which insatts
FPg, with their counts into FSP-tree without pruning any itemstfee first
batchB; is given in Figure 4. The patterns are inserted in a similay the
sequences are inserted in the PLWAP tree from Root to leaé,nsickring
common nodes and incrementing node counts by the count pattern when
appropriate. For example, patterns a:4, aa:4, aac:3, eballinserted and can
be retrieved from the leftwmost branch of Root. If after tlestrbatch mining,
also a pattern a:4 is mined, then, the a:8 nodes is now theegpdade of
a:node.

Step 6: Extracting Frequent Patterns from the FSP tree: Bii§ good for
quickly extracting both maximal frequent patterns andraitjfient patterns.
EXAMPLE 4 : Given theFS Rs, from EXAMPLE 3 above, the total number
of records up to the end of this batch, the minimum supportdealerance er-
ror supportg, extract all all frequent sequential patterns from the tueigig of
stream to end of this batck,Pg, with support counts number of records:
S— &

SOLUTION 4: From the FSP tree of Figure 4, the maximal patterns (longest

17

patterns on each sequence tralkgxF Pg, with support counts (s—¢) or 4 *
(.75 - .25) = 2 transaction counts af@ac:3, ab:4, bac:3, bc:3, c¢¢:8nd these
can be found through suffix pruning | of the tree using fookgtr df the leaf
nodes described below. Note that because this is the firshball patterns
on the tree met the extraction condition. Also, since thishoe allows an
error tolerance, it is an approximate mining that finds adlgfrent patterns
but may include some false positive patterns or patternsateanot exactly
frequent. The amount of false positive patterns depend$s@pitecision of
choice of error tolerance support. It is usually much lesstthe minimum
support count of s but a relatively high value is used in tRaneple to make it
understandable.

FSP-tree maintains a footer list, which has linkages to éaahnode of
the tree. Footer list is a linked list that grows with the keswof the tree. The
FSP-tree maintains this list in order to read the tree froenl¢af instead of
root for maintenance purposes of the tree. Like the PLWA®, tilee FSP tree
has the property that all the parent nodes have frequenaytsdigher than
or equal to those of their children in FSP-tree. Therefdrpaient node does
not have minimum support, its children are ignored durirggftequent pattern
extraction process. While the mining algorithm searchedrémuent patterns
or FPs in FSP-tree from root down to leaf node for a partictanch during
the journey, if it finds any node with a count less than minimsupport, it
does not go further down on that branch. It cuts the suffix segel of the
branch from that point in this process we call Suffix Pruninguffix Pruning
| is quickly used to trim those branches of the FSP tree froeldaf that
have support counts less thaomber of records« & after each batch. On
the contrary, Suffix Pruning Il allows for milestone pruniofthe FSP tree
after a number of batches and transactions have passedglthitoel stream for
reducing on the size of the tree. One other important rolb@HSP tree Suffix
Pruning Il is that it is used to perform a sequential pruningte D-List once
we are done with suffix pruning Il at the boundary. Sequeptiahing is the
process that checks the frequency of each element in D-égstentially. If the
frequency of element§ < number of records« &, they are deleted from the
D-List. It can be seen that the FSP tree is quick for extrgdtioth maximal
frequent patterns (the longest frequent patterns) andediuént subsequent
patterns.

This FSP tree structure does not need to be changed to sigijlimg
window and damped models. However, to enable extractingnpatbetween
arbitrary ranges of batches or times, one solution is to eynflie same an-
notation scheme for node employed in PLWAP and used in o@nsidn to

18

the D-List, where total counts of the most current batchsi®d first, then fol-
lowed by the last batch etc. For example, if after procesbmighesB;, B,
B3, the found patterns include a:4 By, a:8 inB, and a:12 orBs, thea node
is modified in the FSP tree as a:12:8:4. This way we can answaias like
“List patterns from batcltB, to B,” as those that are frequent By andB,.
Step 7: Maintain FSP, D-List, PLWAP Data Structures for mexind mining:
For next batch mining, the current PLWAP tree is dropped ¢e pace, the
FSP tree is pruned as discussed in step 6 above through 8iiffec Pruning
| or Il. The D-List is pruned through sequential pruning dfiEdms that have
support counts less than the number of records multipliethéyerror support
count ofe.

Step 8: Continuous Infinite Processing of Arriving StreanteD&ser may exit
the system at this point or continue to process incomingssissby going back
to Step 1, where stream data are buffered before batchinghamag.

2.2 The SSM Sequential Stream Mining Algorithm

The proposed sequential data stream algorithm, SSM is giwéiigorithm
1 of Figure 5, which calls sub algorithms 2 and 3 of Figures & AnDetails
on all other steps of the main algorithm are discussed incse2t1.

3 Experimental and Performance Analysis

This section reports the performance of proposed SSM #fgoriSSM is
implemented in Java. The experiments are performed on ala8(Geleron
D processor) machine with 512 MB main memory. The operatirsjesn is
Windows XP professional. The data sets are generated Ungmublicly avail-
able synthetic data generation program of the IBM Quest lditiéng project
at: http://www.almaden.ibm.com/software/quest/. A datder program is
incorporated with SSM to load streams of data sets into thié&eBtrom the
source. The loader loads a transaction, waits 1 ms and thels fihe next
transaction. The parameters for describing the data set§¥dr= Number of
transactions; [S] = Average Sequence length for all traimas; [I] = Num-
ber of unique items. For example, T20K;S5;11K represen@@@ransactions
with average sequence length of 5 for all transactions af@ Lidique items.

The test was performed by running a series of experimenis disie dif-
ferent data sets (T10K;S3;12K, T20K;S3;I2K, T40K;S3;I2K60K;S3;12K,
T80K;S3;12K). It can be seen that the sizes of the 5 test detincreased
from 10K, 20K, 40K, 60K and 80K for two thousand unique itemsl aver-

19

Algorithm 1 (Sequential Stream Miner:Mines Frequent Sequential Sirea
Patterns)

Algorithm SSM()
Input: (1) Minimum support threshold (s) whereOs < 1,
(2) Maximum support error threshold (e) where @ < s,
(3) Size of D-List (Size)
Output: 1) Frequent sequential patterns
Temp variables: exit = true, i=0,
num-records (total number of database records);
Begin
While (exit) // exit when user wants
Begin
1. i=1i+1// indicates which batch or cycle
2. Create-Batch(CAS) //Fig. 6
2.1 ScarB; and generate candidate
1-sequences @@,
3. Update D-List[Size] witlCy,
/I Fig. 7
4. Generate-Frequent-Pattefiyg,)
with PLWARs, // as in [4]
5. Update-FSP-treEPsg,)
/I Update as explained in step 5 of section 2.1
6. If user wants result, then from FSP-tree,
get all FSP with count (s-e)* num-records
7. Maintain-Structures()
/li.e prune D-List and FSP, drop PLWAP,
/I as explained in step 7 of section 2.1
8 If user wants to exit, exit = false;
End
End

Figure 5. The Main Sequential Stream Mining (SSM-Algorithm)

20

Algorithm 2 (Batch Creation Program)

Algorithm Create-Batch()
Input: (1) Stream oim Buffer Customer Access Sequences
Output: 1) a batch ofm customer access sequence records
Temp variables: min-CAS, max-CAS
Begin

1. While (min-CAS j mleqgmax-CAS) do

1.1fori=1to msequences do

1.1.1 batch record][i] = buffer record][i]

End

Figure 6. The Batch Creation Program

Algorithm 3 (D-List Update)

Algorithm Update-DList()
Input: (1) Hash Array D-List[size] with buckets,
initialized to Null at creation,
set of Candidate 1-items of ith batCh,
number of candidate elements oG,
Output: 1) Updated Hash array D-List[size]
Temp variables:m
Begin
1. For each item m in candidate €&, do
Begin
1.1 Find hash bucket in D-List [size] using hash function
(fnN)r=m 1.2 If element m of bucket D-List[r] has
count> nunmAS = (s— g), then
LlBi = L]_Bi um
Begin
End

Figure 7. The D-List Update Algorithm

21

Table 2. Execution Times (Sec) of SSM-Algorithm and FP-Stream at@846 and
e=0.0004

60 -

40 |

SSM-Algorithm FP-Stream Alg
Dataset| Average | Total Average | Total
CPU time| CPUtime| CPU time| CPU time
per batch | per batch | per batch
T10K | 4.85 9.7 7.25 14.5
T20K | 4.4 18.03 6.5 26
T40K | 4.37 35.01 5.75 46
T60K | 6.25 75 11.66 139.92
T80OK | 5.69 91.04 10.56 168.99
] g«

20

Average CPU time iper batch(st

0 T T T) 0 T T T 1
TIOK T20K T40K T60K T8OK TIK T20K T40K TEOK T8OK

Total Stream Dataset Total Stream Dataset

Figure 8. The Average CPU times fa= .45% ande = .04%

age sequence length of 3. User defined support is set at 0(0B%) for a

minimum support error e, of 0.0004(0.04%). The batch sizeigo contain
5000 transactions. This means that runs are on 2 batcheshatdles. The
performance analysis showing the execution times of thpqeed SSM Al-

gorithm in comparison with the FP-Stream algorithm on thevaldata sets is
summarized in Table 2 while the chart showing comparisoreefage CPU
times and the total CPU times used by the two algorithms fisrdhta set is
shown as Figure 8.

For testing, the support was lowerered to 1% because therecaitems
in the data sets that have support of over 1%. From the expatahresults
in Table 2, it can be seen that SSM requires less time thantfeas8 because
SSM-Algorithm uses PLWAP-tree structure and PLWAP-Algon to gener-
ate patterns, and thus, does not require to construct inthate trees to mine

22

Table 3. Execution Times (Sec) of SSM-Algorithm and FP-Stream at@3&6 and
€=0.0003

SSM-Algorithm FP-Stream Alg
Dataset| Average | Total Average | Total
CPU time| CPUtime| CPU time| CPU time
per batch | per batch | per batch

T10K | 6.06 12.12 10.56 21.12
T20K | 6.81 27.27 11.77 47.08
T40K | 6.9 55.27 12.55 100.4
T6OK | 7.0 84.02 12.44 149.28
T80K | 6.93 111.01 12.23 195.68

74
bl P
N\ FP-stream w0 N\ F-stream

Average CPU time iper batch(secs)
o
Il

T T T T T |
T10K T20K T40K T60K T80K T10K T20K T40K T60K T8OK

Total Stream Dataset Total Stream Dataset

Figure 9. The Average CPU times far= .35% ande = .035%

frequent sequential patterns. For this reason, FP-Grogghires more stor-
age, more computation time than PLWAP. For both algorithtihe, average
time of batches varies from batch to batch. It does not godrigbnstantly.
We can say that average time of a batch is dependent on thefddia data
sets. It is not related to the size of the data sets. In this@xent a batch is
holding approximately 5000 transactions. A number of expents similar to
the one in Table 2 at a minimum support of less than 1% were mth@data
sets and the result of a second experiment on the same datausett a min-
imum support s of 0.0035 (0.35%) and ereoof 0.0003 (0.03%) is shown in
Table 3 while the chart showing comparisons of average Cietiper batch
and the total CPU times after batches used by the two algesifior this data
set is shown as Figure 9.

From the experimental results presented above, it can lbetisatthe av-

23

erage time for the SSM sequential algorithm to processrsttegches is be-
tween 4.85 and 5.69 seconds for sequences with averagédesigd at mini-
mum support 0f45%, and it is between 6.06 and 7.0 for the same sequences
with a lower support 0f35%. This indicates that the lower the support, the
higher the number of frequent patterns found and higherxtbeution times.
Thus, comparing with the experimental results of the onlyepotknown se-
quential stream mining algorithm SPEED as reported in [R4f)y data set of
average sequence length 3, but at a much higher minimum duppeshold of
10%, it can be seen that the average execution time of the BBREh stream
processing is steady at between 5 and 17 seconds for ab@artteenumber of
batches in our experiment. This indicates that at this lighpport, generally
the SPEED algorithm execution times are higher than our Sig§Mithm time

at an even lower support.

From the tables and for both algorithms, it can be seen tatdmpu-
tation times increase with decreasing minimum support leEanore items
will be frequent, making the trees to be mined, bigger andrmanore fre-
guent sequential patterns. An experiment was also run atbe algorithms,
PLWAP, FP-Stream and the newly proposed algorithm, SSMedétdgm on a
sample data with the purpose of confirming the correctnesisecimplemen-
tation of the SSM-Algorithm. The data set had 4 transact{dis Sequence)
as (100, 10 20 30 40), (200, 10 20 40 30), (300, 20 30 50 60),, (20a.0
70 30). Note that although PLWAP algorithm is for sequentiaing, it does
not mine stream sequences but SSM does and although, FtaSdtgorithm
mines frequent streams patterns, it does not mine frequesns sequential
patterns. For this reason, our implementation of the FBa&trfound more
patterns than are found by both the SSM and the PLWAP beciétise differ-
ent natures of frequent sequential stream miner and freégeguiential miner.
PLWAP and the SSM algorithm found the same frequent secplgraiterns of
((10), (20), (20,30), (30)). As PLWAP is already an estdigd algorithm and
the result of SSM matches with that of PLWAP, this confirmg #igoough the
SSM-Algorithm was processing streams of data, it procefisenh correctly
and computed the frequent sequential patterns.

4 Conclusions and Future Work

SSM-Algorithm is proposed to support continuous streamingirtasks
suitable for such new applications as click stream datas 4 ¢complete sys-
tem that fulfills all of the requirements for mining frequesgiquential patterns
in data streams. SSM-Algorithm can be deployed for miningoEymerce’s

24

click stream data. Features of the SSM-Algorithm include ofs(1) the D-
List structure for efficiently storing and maintaining sopjcounts of all items
passing through the streams, (2) the PLWAP tree for effilienining stream
batch frequent patterns, and (3) the FSP tree for maintaiatch frequent se-
guential patterns. The use of the support etrserves to reduce on irrelevant
use of memory for short-memoried stream applications. Expats show the
SSM algorithm produces faster execution times than runthied-P-Stream on
similar data sets as well as shows the SSM produces comparaetibrmance
to the only other recently defined sequential stream miniggridhm SPEED
based on the result reported in [21]. Discussion on how terekthe SSM
algorithm to accommodate the sliding window, damped andbatgh query
range mining models have been provided in addition to thenrtaaidmark
model mining presented in detail. Future work should caersille possibility
of adding multiple dimensions (e.g. time dimension) or ¢@ists along with
frequency to discover interesting patterns in data strediethods to reduce
or eliminate false positive results from mined results foplecations needing
highly precise results can be explored. It is still possibléncrease the de-
gree of interactiveness provided by the scheme to allowngifor various
user-chosen parameters like minimum and error supporstibtds. It is also
possible to incrementally update the PLWAP tree during tliwing of each
batch rather than dropping and re-creating.

Acknowledgments

This research was supported by the Natural Science and éargig Re-
search Council (NSERC) of Canada under an Operating gr&aP¢0194134)
and a University of Windsor grant., School of Computer Sog&rUniversity
of Windsor,

References

[1] Cai, Y. Dora., Clutter, David.,, Pape, Greg., Han, JiaweélNelge,
Michael., Auvil, Loretta., 2007 MAIDS: Mining Alarming Incidents
from Data StreamsDemonstration Proposal Paper, University of Illinois
at Urbana-Champaign.

[2] Chen, Y. and Dong, G. and Han, J. and Wah, W.B. and Wan@002,
Multidimensional regression analysis of time-series dsttaams pro-

25

ceedings of the 28th VLDB conference, pages 323-334, HonggKo
China.

[3] Domingos, P. and Hulten, G., 200®ining high-speed data streams

proceedings of the 2000 ACM SIGKDD Int. Conf. knowledge Digery
in Database (KDD'00), pages 71-80.

[Ezeife & Chen, 2004a] Ezeife, C.l1., Chen, Min. 2004. MinMgb Sequen-

tial Patterns Incrementally with Revised PLWAP Tree, peategs of
the fifth International Conference on Web-Age InformatioarMgement
(WAIM 2004) Dalian, sponsored by National Natural Scienceifda-
tion of China, published in LNCS by Springer Verlag, pp. 5388.

[Ezeife & Chen, 2004b] Ezeife, C.I., Chen, Min. 2004. Incesttal Mining of

[4]

[5]

[6]

[7]

[8]

Web Sequential Patterns Using PLWAP Tree on Tolerance Mip&u,
proceedings of the IEEE 8th International Database Engimgand Ap-
plications Symposium (IDEAS04), Coimbra, Portugal, Jully #® 9th,
pp. 465-479.

Ezeife, C.1. and Lu, Yi., 2009Vining Web Log sequential Patterns with
Position Coded Pre-Order Linked WAP-trethe International Journal
of Data Mining and Knowledge Discovery (DMKD), Vol. 10, pp-38,
Kluwer Academic Publishers, June

Ezeife, C.I. and Lu, Yi and Liu, Yi., 20059PLWAP Sequential Mining:
Open Source Code papearoceedings of the Open Source Data Mining
Workshop on Frequent Pattern Mining Implementations inuwaetion
with ACM SIGKDD, Chicago, IL, U.S.A., pp. 26-29.

Ezeife, C.I., Mostafa, Monwar., 2008SM: A Frequent Sequential Data
Stream Patterns MineProceedings of the IEEE Symposium on Compu-
tational Intelligence and Data Mining (CIDM 2007), HonaluHawaii,
USA, April 1-5, 2007, IEEE press.

Gaber, Mohamed M., Zaslavsky, Arkady., Krishnaswamyor&ali.,
2005, Mining Data Streams: A ReviewWACM Sigmod Record, Vol. 34,
Issue 2, June, pages 18-26.

Giannella, C. and Han, J. and Pei, J. and Yan, X. and Yu, P@®3,
Mining Frequent Patterns in Data Streams at Multiple Timeaurlari-
ties in H. Kargupta, A. Joshi, K. Sivakumar, and Y. Yesha (eddext
Generation Data Mining.

26

[9] Guna, S. and Mishra, N. and Motwani, R. and O’Callaghan,2000,
Clustering data streamdProceedings of IEEE Symposium on Founda-
tions of Computer Science (FOCS’00), pages 359-366.

[10] Guna, S. and Meyerson, A., and Mishra, N. and Motwani2B00,Clus-
tering data streams:Theory and PractjCEKDE special issue on cluster-
ing, vol 15.

[11] Gunduz, S. and Ozsu, M.T., 2008,web page prediction model based
on click-stream tree representation of user behav8GKDD, Page 535-
540.

[12] Han, J. and Pei, J. and Yin, Y. and Mao, R., 208Uning frequent pat-
terns without candidate generation: a frequent patterre tegproach
Data Mining and Knowledge Discovery, 8, 1, Page 53-87.

[13] Jiang, Nan., Gruewald, Le., 200Besearch Issues in Data Stream Asso-
ciation Rule Mining ACM Sigmod Record, Vol. 35, No. 1, Mar., pages
14-19.

[14] Last, M., 2002,0nline classification of nonstationary data streanms
telligent Data Analysis, Vol. 6, No. 2, Page 129-147.

[15] Lin, J and Keogh, E. and Lonardi, S. and Chiu, B., 2083ymbolic
representation of time series, with implication for straéagnalgorithms
In Proc. of the 8th ACM SIGMOD workshop on research issuesaia d
mining and knowledge discovery, San Diego, USA.

[16] Lu, Yi., Ezeife, C.1., 2003Position Coded Pre-Order Linked WAP-Tree
for Web Log Sequential Pattern Miningroceedings of the 7th Pacific-
Asia Conference on Knowledge Discovery and Data Mining (PEK
2003), pages 337-349, Springer LNCS.

[17] Manku, Gurmeet Singh. and Motwani, Rajeev., 208@proximate fre-
quency counts over data streamsoceedings of the 28th VLDB confer-
ence, pages 346-357, Hong Kong, China.

[18] Masseglia, Florent., Teisseire, Maguelonne., PatcdPascal., 2002,
Real Time Web usage Mining: a Heuristic based Distributedévlipro-
ceedings of the second International conference on Welmaftion Sys-
tems Engineering, Volume: 1, Pages 288-297.

27

[19]

[20]

[21]

[22]

[23]

[24]

Pei, Jian and Han, Jiawei and Mortazavi-asi, Behzad Amd, Hua.,
2000, Mining Access Patterns Efficiently from web Ipd&oceedings
2000 Pacific-Asia conference on Knowledge Discovery and &éin-

ing,Pages 396-407, Kyoto, Japan.

Pei, J. and Han, J. and Mortazavi-Asl, B. and Pinto, Hi @hen, Q.
and Dayal, U. and Hsu, M.C., 200RrefixSpan: Mining Sequential Pat-
terns Efficiently by Prefix-Projected Pattern Growth Proceedings of
the 2001 International Conference on Data Engineering BOD), Hei-
delberg, Germany, pages 215-224.

Raissi, Chedy., Poncelet, Pascal., Maguelonne, 8ietsss2006 SPEED:
Mining Maximal Sequential Patterns Over Data Streapreceedings of
the 3rd International Conference on Intelligent Systerf862

Srikanth, Ramakrishnan and Aggrawal, Rakesh., 1886ing Sequen-
tial Patterns: generalizations and performance improvaetgeResearch
Report, IBM Almaden Research Center 650 Harry Road, San @’se
95120, Pages 1-15.

Teng, W. and Chen, M. and Yu, P., 2008, regression-based tempo-
ral pattern mining scheme for data streantis proceedings of the 29th
VLDB conference, Berlin, Germany.

Yang, Qiang., Haining, Henry., Li, Tianyi., 200Mining web logs for
prediction models in WWW caching and prefetchiRgoceedings of the
ACM SIGKDD International conference, ACM Press.

28

