
1

60-140
Introduction to Algorithms and Programming I

 FALL 2015
INSTRUCTOR: DR. C.I. EZEIFE Everybody

knows that the
WORLD’S COOLEST
STUDENTS TAKE

60-140

60-140 Dr. C.I. Ezeife © 2015 Slide 1

SCHOOL OF COMPUTER SCIENCE,
UNIVERSITY OF WINDSOR

60 140

1. Overview of Computer Systems

 Computers are classified based on their generation and
type.

 The architecture of different generations of computers
differ with advancement in technology.

60-140 Dr. C.I. Ezeife © 2015 Slide 2

 Changes in computer equipment have gone through
four generations namely:

• First Generation Computers (1945-1955): Bulky,
expensive, consumed a lot of energy because main
electronic component was vacuum tube. Pro-
gramming was in machine language and wiring up
plug boards.

Overview of Computer Systems

 Second Generation Computers (1955-1965): Basic
electronic components became transistors. Prog-
ramming in High level language with punched cards.

 Third Generation Computers (1965-1980): Basic

60-140 Dr. C.I. Ezeife © 2015 Slide 3

technology became integrated circuit (I Cs) allowing
many transistors on a silicon chip. Faster, cheaper and
smaller in size, e.g., IBM system 360.

 Fourth Generation (1980-1990): Personal Computers
came to use. Technology in use is large scale
integration(LSI). Support for network and GUI.

 Higher Generations: Use of VLSI technology.

Overview of Computer Systems

60-140 Dr. C.I. Ezeife © 2015 Slide 4

Vacuum Tube, Transistor, an LSI chip

2

Types of Computers

 Computers belong to one of these types based on their
size, processing power, number of concurrent users
supported and their cost.

• Micro or Personal Computers - support only a

60-140 Dr. C.I. Ezeife © 2015 Slide 5

single user, very compact in size. Processing power
is increasing but still limited when shared by many
programs and users, e.g., IBM PC, laptops.

• Mini Computers (minis) - More processing power
can be shared among multiple users, e.g., SUN
workstations. Generally, more expensive than micro
computers. A network of minis used for

Types of Computers

implementing powerful virtual computing processing powers
like grid and cloud computing. Grid computing applies
resources of many computers to a single problem (European
Data Grid) while cloud computing is used for Internet based
computing (e.g., online web mail like GoogleApps) where
resources and data are stored online and shared with users.
M i f C t G ll bi th i i

60-140 Dr. C.I. Ezeife © 2015 Slide 6

• Mainframe Computers – Generally, bigger than mini
computers, and support hundreds of users at a time, e.g., IBM
370.

• Super Computers - Used for high performance number-
crunching applications like processing satellite data from
space, e.g., Cray Jaguar with about 150,000 cores (CPUs)..

 Every computer system is made up of hardware and software
components.

Hardware Components
 The computer hardware consists of physical electronic

components for performing the following functions:
Function Component

• Data Storage -Primary memory (RAM
and ROM).
S d

60-140 Dr. C.I. Ezeife © 2015 Slide 7

-Secondary memory
(disks & CD-ROMs, usb or
flash memory key, tapes)

• Data Processing Central Processing Unit (CPU)

• Input of Data Input devices, e.g, Keyboard,
mouse, web camera

• Output of Data Output devices, e.g., printer,
monitor, speakers

Data Storage in Main Memory

 Computers represent information (programs and data)
as patterns of binary digits (bits)

 A bit is one of the digits 0 and 1.
 Thus, to represent a bit, the hardware needs a device

bl f b i i f t t t (it h f

60-140 Dr. C.I. Ezeife © 2015 Slide 8

capable of being in one of two states (e.g., a switch of
“on” for bit 1 and “off” for bit 0)

 Data and programs are represented as a string of
binary digits

 E.g., 9 + 6 in binary are represented as 00001001 and
00000110, then passed to an add circuit to produce
binary result.

3

Data Storage

 Bits of data are stored in memory and bit collections of
size 8 make 1 byte.

 A memory cell is made up of 1 to 4 bytes (ie. 8 bits to 32
bits) depending on the word length of the system.

60-140 Dr. C.I. Ezeife © 2015 Slide 9

 1 kilobyte memory has 1024 bytes (approx 103 or 210)

 1 Megabyte memory has approx 106 or 220 bytes.

 1 Gigabyte memory has approx 109 or 230 bytes.
 Individual cells in a machine’s main memory are identified with

unique names called addresses

 The addresses of 1MB memory are 0 through 1048575 if a memory
cell is just 1 byte.

Data Storage in Memory

 Each cell of memory can be read or written (modified)
individually.

 RAM is volatile because information stored is lost on
power off.

60-140 Dr. C.I. Ezeife © 2015 Slide 10

 Thus, secondary memories are used to store data for
future use (disks, CD-ROMs and tapes).

 At the user and program level, physical storage
addresses are commonly referenced using logical names
or addresses like file names for block of data on disk,
and variable names for memory cells.

Data Storage

 While numeric data are represented in binary,
characters are represented using standard codes.

 One code is ASCII (American standard code for
Information Interchange) which uses seven bits to

60-140 Dr. C.I. Ezeife © 2015 Slide 11

represent a character.

 Disks are a common storage device for storing
information for future use. Storage space is generally
more available on disk which are cheaper per unit of
storage space than main memory.

The Central Processing Unit (CPU)

 CPU is the part of the computer responsible for
fetching instructions and data from memory and
executing them.

 Central Processing Unit (CPU): Processes information,

60-140 Dr. C.I. Ezeife © 2015 Slide 12

arithmetic and logical (+, -, *, /, % and
logical/relational operations (e.g. And, Or, Not)).

 It receives instructions and data from input devices
which it stores in main memory.

 Later, it fetches these instructions and data from main
memory and executes them to produce output (results)

4

The Input/Output Devices

 Input device accepts input from the user and thus has
mechanisms for converting characters into bits, e.g.,
keyboard or mouse.

60-140 Dr. C.I. Ezeife © 2015 Slide 13

 Output device displays output or result of processing to
the user, e.g., printer or monitor.

Software Components

 The software system drives the physical hardware
components through a sequence of instructions called
programs.

 There are many software systems in a computer

60-140 Dr. C.I. Ezeife © 2015 Slide 14

• (1) Operating Systems for managing computer
resources, e.g., UNIX, LINUX, MSDOS, Windows
2000/XP/Vista/7, Apple Macintosh OS X.

• (2) Compilers for translating high level language
programs to machine language (bits), e.g., C,
PASCAL compilers.

Software Systems

• (3) Network Software for allowing more than one
computer to be connected together and to share
information (e.g., SSH, SFTP, telnet, ftp).

• (4) Productivity Tools for allowing users to perform

60-140 Dr. C.I. Ezeife © 2015 Slide 15

daily business and office operations in a more
productive fashion called productivity tools (e.g.,
word processors, database, slide presentation and
spread sheet programs)

• (5) Others, e.g., utility applications like virus
checkers, games, etc.

Overview of Algorithms &
Programming Languages

 Computer Science as a field is involved with issues
related to
• algorithm definition, coding, refinement, analysis

and discovery
• as well as issues related to simulation of human

60-140 Dr. C.I. Ezeife © 2015 Slide 16

intelligence.
 An algorithm is a sequence of steps for solving a specific

problem given its input data and the expected output
data.

 Examples of real-life algorithms are
• operating a laundry machine, playing a video game, baking a

cake

5

Overview of Algorithms &
Programming Languages

 Algorithms?

 Algorithms are executed by human beings or
computers. An example software for executing
algorithms is RAPTOR which is available on our cs
servers through NoMachine connection

60-140 Dr. C.I. Ezeife © 2015 Slide 17

servers through NoMachine connection.

 When executed by people, an algorithm needs to be
presented at their level of understanding and in a
language they understand

 When executed by machine (computer), an algorithm
also needs to be presented at its level of understanding
and in a language it understands.

Overview of Algorithms &
Programming Languages

 Example of an algorithm: Example 1.1
 Find the largest common divisor of 2 positive integers.

(The Euclidean algorithm)
• Begin

60-140 Dr. C.I. Ezeife © 2015 Slide 18

• Input: 2 positive integers, large and small
• Output: their largest common divisor (LCD)
• Procedure:

– Step 1: Read large and small
– Step 2: Remainder = large % small
– Step 3: If Remainder == 0

Overview of Algorithms &
Programming Languages

– then
• Step 3.11: LCD = small

• Step 3.12: Goto Step 4

– else

60-140 Dr. C.I. Ezeife © 2015 Slide 19

• Step 3.21: large = small

• Step 3.22: small = Remainder

• Step 3.23: Go to Step 2

• Step 4: Output the LCD of large and small

• Step 5: End

Overview of Algorithms &
Programming Languages

 E.g., Find the largest common divisor of 40 and 16

60-140 Dr. C.I. Ezeife © 2015 Slide 20

6

Algorithms & Programming
Languages

 Focus of the course (60-140) is on how to discover
programs for solving a task (problem solving)

 To do this, we may need to first define the precise
sequence of steps for solving this problem represented

60-140 Dr. C.I. Ezeife © 2015 Slide 21

as an algorithm in pseudocode.

 The computer does not understand pseudocode but a
program written in a computer language.

 Thus, for the computer to execute our algorithm, it
eventually needs to be translated into a program in a
computer language like C.

Algorithms & Programming
Languages

 Computer languages are machine language, assembly
language and high level languages.

 High level programming languages are easier to use by
humans since they are closest to English and Math.

60-140 Dr. C.I. Ezeife © 2015 Slide 22

 Current programming languages fall into one of the
following four programming paradigms:

Algorithms & Programming
Languages

LISP ML Scheme

Machine
l

Fortran Basic C Ada
C b l Al l APL P l

functional

procedural
/i ti

60-140 Dr. C.I. Ezeife © 2015 Slide 23

langs Cobol Algol APL Pacal

Simula C++ Ada95
Smalltalk Java

GPSS Prolog

/imperative

object-
oriented

declarative

Algorithms & Programming
Languages

 Before a program written in a high level language is
executed by the CPU, it needs to be translated, linked
and loaded into memory in a process called compilation
and linking.

 Program preparation process is:

60-140 Dr. C.I. Ezeife © 2015 Slide 24

 Program preparation process is:
• Step 1. Type Source program in high level language

(eg. C lang) using text editor (eg. pico filename.c)
• Step 2. Compile to get object program in machine

language using cc filename.c
• Step 3. Link to get load module
• Step 4. Load into memory to execute with ./a.out

7

Introduction to C Programming
Language

 A C source program file must be given a name with .c
extension, e.g., test.c and this file must be prepared
with a text editor like Unix/Linux vi editor, nedit, pico
or PC’s notepad or Visual C++ editor.

60-140 Dr. C.I. Ezeife © 2015 Slide 25

 A C compiler is used to compile a C program. To
compile on Unix/Linux, use: cc filename.c

 Program instructions that violate the syntax or
grammar rules of C will cause syntax errors and must
be corrected before a successful compilation is
achieved.

Introduction to C Programming
Language

 After compilation, the program is run to obtain the
desired result. On Unix/Linux, run with the command:
./a.out

 General structure of a simple C program is:

60-140 Dr. C.I. Ezeife © 2015 Slide 26

#include <stdio.h>
int main(void)
{
Variables declared here; /* in correct syntax*/
program instructions; // in correct syntax
return 0;
}

Introduction to C Programming Language

 #include <stdio.h>

/* Simple C program for finding the sum of two integers */
int main(void)
{

int num1, num2, sum;
printf("Type the two integers to sum :");

60-140 Dr. C.I. Ezeife © 2015 Slide 27

printf(Type the two integers to sum :);

scanf("%d %d", &num1, &num2);
sum = num1 + num2;
printf("sum = %d \n", sum);

return 0;
}

Introduction to C Programming Language

 To work on Windows development environment, you
can download Microsoft Visual C++ compiler and
check section 1.8 of book on how to use it to type,
compile, link and execute your program.

 Note that sections on how to use pico and nedit text

60-140 Dr. C.I. Ezeife © 2015 Slide 28

 Note that sections on how to use pico and nedit text
editors on Unix/Linux are 1.5.2 and 1.5.3 of book

 Section on how to use SSH and SFTP is 1.6 of book.
 Section on Macintosh Personal computer is 1.7
 Note that each chapter ends with possible

programming errors and has a section on exercises
with solutions.

8

2. Problem Solving Steps

 Objectives

• Understand what a problem is

• Discuss six problem solving steps (RCMACT)

 Types of Problems

60-140 Dr. C.I. Ezeife © 2015 Slide 29

 Types of Problems

 1. Problems with Algorithmic Solutions

• Have a clearly defined sequence of steps that would
give the desired solution

– E.g. baking a cake, adding two numbers

Problem Solving Steps

• the sequence of steps or recipe for arriving at the
solution is called the algorithm

 2. Problems with Heuristic Solutions

• Solutions emerge largely from the process of trial

60-140 Dr. C.I. Ezeife © 2015 Slide 30

g g y p
and error based on knowledge and experience

• E.g., winning a tennis game or a chess game, making
a speech at a ceremony

 Many problems will require a combination of the two
kinds of solution

Problem Solving Steps

 In this course, we are mostly concerned with algorithmic
problems.

• computers are good at solving such problems

 Heuristic problem solving (getting computers to speak English or
recognize patterns) is the focus of Artificial Intelligence

60-140 Dr. C.I. Ezeife © 2015 Slide 31

recognize patterns) is the focus of Artificial Intelligence

 What is a Problem?

• It has three main components of (i) input data set, (ii) desired
output data set and

• (iii) we want to define a sequence of steps (algorithm and/or
program) for transforming input data to desired output data.

Problem Solving Steps

 What is a problem’s algorithmic solution?

• the sequence of steps needed to reach the desired
output or the best output data expressed in
pseudocode.

60-140 Dr. C.I. Ezeife © 2015 Slide 32

 What is a Program?

• the sequence of steps (algorithms) expressed(coded)
in a computer language like C.

problem with
input & output

Algorithmic
Solution

Coded into a
Program

Desired output
through computer

9

Problem Solving Steps

 Example 2.1: Management wants to see the patterns in
absenteeism across its two departments, dept1 and
dept2 for one week. It is interested in knowing the total
absenteeism in each department in the one week it

i i if i

60-140 Dr. C.I. Ezeife © 2015 Slide 33

collected data. You are required to identify the input
and output data of this problem and attempt to define
an algorithm and a program.

Problem Solving Steps

60-140 Dr. C.I. Ezeife © 2015 Slide 34

Problem Solving Steps (RCMACT)

 1. Defining the Problem Requirements (R)
• clearly defining the problem in words, stating the input and

output data as well as the processing logic. It may need
knowledge or familiarity with a real life environment to
understand the needs of a problem

2 Id tif i P bl C t (C)

60-140 Dr. C.I. Ezeife © 2015 Slide 35

 2. Identifying Problem Components (C)
• From the problem definition, identify the list of problem

inputs, outputs, constraints and relationships between input
and output data expressed in coherent formulas.

 3. Possibly break problem solution into small modules (M)
• This step uses top-down design approach to solve a big

problem using structure chart. This step may be skipped for
small problems that do not need breaking down.

Steps in Problem Solving

 4. Design the Algorithm to solve the problem (A)

• Best among many alternative ways for solving the
problem is chosen.

• Define algorithmic solution for all modules in

60-140 Dr. C.I. Ezeife © 2015 Slide 36

g
structure chart.

• E.g., solution that is most cost efficient, space
efficient or fastest.

 5. Implementation and Coding (C)

• Translate the algorithmic solution from step 4 to C
programming language to obtain a program.

10

Steps in Problem Solving

• Programs have to obey the grammar rules (syntax) of C and
any violation results in a syntax error (called bug).

• A bug needs to be corrected during debugging before the
program is accepted by the compiler.

• Other types of error that might need to be corrected during
di f t lt t b bt i d l i d ti

60-140 Dr. C.I. Ezeife © 2015 Slide 37

coding for correct results to be obtained are logic and runtime
errors.

• The C implementation of Example 2.1 is: (solve)
 6. Test or Evaluate the solution to ensure it produces desired

results(T)
• A set of complete test data is used to test the correctness of the

program by tracing the program/algorithm with hand and
running the program.

Difficulties With Problem Solving

 Failing to outline details of the solution (algorithm and
program) completely

 Failing to define the problem correctly

 Failing to generate a sufficient list of alternatives

60-140 Dr. C.I. Ezeife © 2015 Slide 38

g g

 Failing to use a logical sequence of steps in the solution

 Poor evaluation of the solution (algorithm and
program)

 Always remember that computer does not see and
needs to be given all details about what to do.

3. Types of Algorithmic and Program
Instructions

 Objectives
 1. Introduce programming language concepts of

variables, constants and their data types
 2. Introduce types of algorithmic and program

i t ti

60-140 Dr. C.I. Ezeife © 2015 Slide 39

instructions
 3. Discuss Read(scanf)/Print(printf) and Assignment

instructions.
 Variables and Constants
 Variables and Constants are names for storage

locations (memory cells) holding data values processed
by the computer

Problem Solving Concepts
(Variables and Constants)

 Programmers define data relevant to a problem as
constants or variables

 Variables and constants form building blocks for
equations and expressions used in problem solving.

60-140 Dr. C.I. Ezeife © 2015 Slide 40

 Both variables and constants have specific data types.
E.g., alphabetic or numerical value

 Differences Between Variables & Constants

• The value of a variable may change during
processing of a problem in a program, but the value
of a constant cannot change

11

Problem Solving Concepts
(Variables and Constants)

 The format for declaring variables in both an algorithm and a C
program is:

datatype variablename[,variablenames];

 The format for declaring constants in both an algorithm and a C

60-140 Dr. C.I. Ezeife © 2015 Slide 41

 The format for declaring constants in both an algorithm and a C
program is:

const datatype
variablename=value[,variablenames=values];

A constant can also be defined using preprocessor directive:
#define constantname value

Problem Solving Concepts
(Variables and Constants)

 Example 3.1 : A class of ten students took a quiz. The
grades (integers in the range 0 to 100) for quiz are
available to you. Determine the class average on the
quiz.

60-140 Dr. C.I. Ezeife © 2015 Slide 42

• Identify the constants and variables you need to
solve this problem

Variables and Constants

 Show the variables and constants needed to solve these
problems.

 Example 3.3: You are required to count the number of
60-140 students who have completed assignment #1.

60-140 Dr. C.I. Ezeife © 2015 Slide 43

The class has 250 students

 Example 3.4: Find the sum and product of 2 numbers.

Issues concerning Variables/Constants

 Rules for naming variables/constants differ from
language to language. C allows unlimited number of
alphanumeric characters.

 It is good problem solving practice to use variable
names close to the meaning of its data values

60-140 Dr. C.I. Ezeife © 2015 Slide 44

names close to the meaning of its data values

 Multiple word variable names should be separated with
underscore to make them more readable, e.g., asn1_140

 Use variable names with less than 15 characters to
avoid ambiguities.

 Check Table 3.1 of text for keyword names not to be
used as variable names in programs.

12

Data Types

 Input Data are facts (values) used by the computer to
process algorithmic solutions and programs to a
problem while output data are the results (values)
produced by the computer after running the program.

60-140 Dr. C.I. Ezeife © 2015 Slide 45

Input Data
Computer steps
through algorithm
or program

Output
Data

E.g.
Quiz marks Equations for finding

Sum & Average

Class
Average

Data Types

 Data are of many different types:

 1. Integer Data Type(called int or long int in C): Integers (whole
numbers, e.g., 1577, -18). Arithmetic operations can be performed
on this data type. Example declarations are: int age, score;

long int bignumber;

60-140 Dr. C.I. Ezeife © 2015 Slide 46

g g ;

 2. Real Data Type(in C are float or double): numeric value with
whole number and decimal parts, e.g., 23.75, 230000 or 2.3E5 in
Scientific notation. Arithmetic operations are performed on this
data type. E.g.,

float salary;
double bigrealnumber;

Data Types

 3. Character Data Type(called char in C): all letters,
numbers and special symbols (surrounded by single
quotation signs), e.g., ‘A’, ‘a’, ‘1’, ‘+’. E.g.,

char grade, location=‘A’;
 4 String Data Type(implemented as char

60-140 Dr. C.I. Ezeife © 2015 Slide 47

 4. String Data Type(implemented as char
variablename[] in C)
• Combination of more than one character

(surrounded by double quotation signs), e.g.,
“Randy”, “85611”, “519-111-2345”. Eg
declarations:

char lastname[15], address[30];

Data Types

 5. Boolean or LOGICAL Data Type (implemented with
int in C)

• TRUE or FALSE are the only data values.

• In C, an int variable with a value of 0 can be treated

60-140 Dr. C.I. Ezeife © 2015 Slide 48

,
as logical type FALSE, while a value of not equal to
0 (like 1 or a number > 1) is TRUE. E.g.,

int flag=0; /* declares flag as FALSE */

 Each data type has a data set, the set of values from
which any datum of that data type is specified.

13

Data Types

Data Type Data Set Example Data
Integer(int) All whole numbers, e.g.,

-231 to (231-1)
1999, -67

Real (float/
double)

All real numbers (whole
+ decimal parts)

1999.0,
258923.61
0 00581

60-140 Dr. C.I. Ezeife © 2015 Slide 49

0.00581
Character
(char)

All letters, numbers, and
special symbols.

‘A’,`b’,`K’,
`1’,`8’,`+’

String(char
variable[])

Combination of >1 chars. “Atlas”,“956”

Logical
(int with 0
or !0)

TRUE FALSE TRUE FALSE

Operations on Character/String Data

 1. Character/String data can be compared and
arranged in alphabetical order (using their ASCII codes)

• A comparison between characters ‘A’ and ‘B’ gives
‘A’ < ‘B’ since 65 < 66 (see Appendix A of text)

Th h t t i “M ” i t th

60-140 Dr. C.I. Ezeife © 2015 Slide 50

• The character string “Money” is greater than
“Make” because `o’=111 > `a’=97 but > is not used
for string comparison in C. String functions and
processing are discussed in ch. 8.

 2. Other character and string operations including a lot
of built-in functions are available in C and more details
are in sections 4.3 and 8.4 of text.

Uses for Different Data Types

 1. Numerical Data (integer(int/long int) and
real(float/double))
• used in business, government & academic

applications for values such as salary, price, scores
d f b th t ill i

60-140 Dr. C.I. Ezeife © 2015 Slide 51

• used for numbers that will require some
computations on them

• E.g., number of employees, assignment marks,
salary.

 2. Character Data (char)
• used for initials, grades or things needing only one

character. No mathematical calculation allowed.

Uses for Different Data Types

 3. String (char variablename[])

• used for names, labels and things needing more than
one character and not needing any mathematical
calculation

60-140 Dr. C.I. Ezeife © 2015 Slide 52

• e.g., student number, phone number & account
number.

 4. Boolean (int with value 0 or !0)

• used in making yes-or-no decisions

• e.g., is a student’s grade ‘A’ ?

14

Rules for Data Types

 1. Data types are not usually mixed. E.g., character
data cannot be placed in a variable memory location
designated as numerical. C allows use of cast operator
for type conversion when necessary.

 2 Data defining the value of a variable or a constant

60-140 Dr. C.I. Ezeife © 2015 Slide 53

 2. Data defining the value of a variable or a constant
will be one of four data types: numerical, character,
string and Boolean.

 3. The use of any data outside the data set of the data
type results in an error.

 4. Only valid operations on a data type are allowed.
E.g., numbers designated as string type cannot be used
in calculations.

Algorithmic Structure

 [Global Input/Output Variables]
[Function Prototype list : type and parameters]

Mainalgorithm
{
Input: Variables/ Constants lists and their types
Output: Variables lists and their types

60-140 Dr. C.I. Ezeife © 2015 Slide 54

Others: Variables/Constants lists and their types
/* Now the body of Main Driver or Control Module is defined*/

Instruction 1;
Instruction 2;

:
Instruction n;

}
[function definition 1] …
[function definition n]

C Program Structure
 #include <stdio.h>

[Optional Global Variable declarations]
[Function Prototype list : type and parameters]
int main(void)
{
variable declarations;
/* N th b d f M i D i C t l M d l i d fi d*/

60-140 Dr. C.I. Ezeife © 2015 Slide 55

/* Now the body of Main Driver or Control Module is defined*/
Instruction 1;
Instruction 2;
:

Instruction n;
return 0;

}
[function definition 1] …
[function definition n]

Types of Algorithmic Instructions

 An algorithmic or program instruction can be one of the following
types:
• 1. Read (scanf in C) or Print (printf in C) instruction - Read

instruction is used to read data from the key board while a
Print instruction prints output to the monitor.E.g.,
Algorithm: Read (Num1);

60-140 Dr. C.I. Ezeife © 2015 Slide 56

Algorithm: Read (Num1);
Print (Num1);

C Program: scanf(“%d”, &Num1);
printf(“%d”, Num1);

• 2. Assignment instruction - used to copy a computed value on
the right hand side of an equation to the memory cell labeled
the left hand side of the equation. E.g., both algorithm and
program: sum = Num1 + Num2;

15

Types of Algorithmic Instructions

• 3. A function call - used to delegate some portion of
the task to a small independent program segment.
E.g., In both algorithm and program:
Compute_Product(Num1, Num2,&product);

• 4 A Decision instruction used to decide between

60-140 Dr. C.I. Ezeife © 2015 Slide 57

• 4. A Decision instruction - used to decide between
which one of a number of alternative instructions to
execute. E.g., if ((large % small) ==0) lcd = small;

• 5. A Repetition instruction - used to cause a
sequence of instructions to be executed repetitively a
number of times or until some event occurs. E.g,
while, do-while and for instructions.

Read(scanf) and Print(printf)
Instructions

 Read (scanf) instructions get input data typed by the user from the
key board, while print (printf) instructions display the value of a
variable or an expression on the screen.

 The general forms of these two instructions are:
In an Algorithm:
Read(variable1 variable2 variablen);

60-140 Dr. C.I. Ezeife © 2015 Slide 58

Read(variable1, variable2,…, variablen);
Print(variable1, variable2, …, variablen);

 The format of C program scanf and printf
instructions are:

 scanf(“format specifiers”, &variable1, &variable2, ..
,&variablen);

 printf(“format specifiers”, variable1, variable2, ..
,variablen);

Read(scanf) and Print(printf)
Instructions

 Both scanf and printf accept a number of parameters
(arguments).

 A parameter could be a variable name, an expression
or a string literal, but only variable name parameters
are accepted by scanf

60-140 Dr. C.I. Ezeife © 2015 Slide 59

are accepted by scanf.

 Both scanf and printf have the first parameter as a
string literal for format specifiers (specifying the data
type of the variables or data in the parameters).

 Format specifiers for int is %d and %ld for long int,
%f for float and %lf for double, %c for char and %s
for string.

Read(scanf) and Print(printf)
Instructions

 Example 3.5: Find the sum of two numbers
Algorithm: Read (num1, num2);

Print (“The sum of”, num1, “and”, num2, “is”, sum);

 C Program:

60-140 Dr. C.I. Ezeife © 2015 Slide 60

g
scanf(“%d %d”, &num1, &num2);
printf(“The sum of %d and %d is %d”, num1, num2,
sum);

 Note that if the variable type for scanf is string, then,
the address operator, &, does not precede the variable.

16

Output Formatting with printf

 Use the format specifier %E or %e to display a floating point
number in exponential form, %o to display in octal, %x or %X to
display in hexadecimal. E.g.,
printf (“%e\n”, pi*10); will print 3.14159e01.

 Specify the number of columns, “c”, used to print an integer value

60-140 Dr. C.I. Ezeife © 2015 Slide 61

p y , , p g
with specifier %cd, e.g., %3d, %4d. E.g.
printf (“%3d\n”, 25);

printf (“%4d\n”, 25);

 The number of columns, “c”, and number of digits, “d”, to the
right of decimal point for a floating point value is specified with
%c.df, e.g., %8.1f.
printf (“%8.1f\n”, 3.14159);

Output Formatting with printf

 An escape sequence is used for printing characters not
printable through simple inclusion in printf control
string. E.g., (“ printed as \``, newline printed as \n) for
printf is represented by a backslash followed by a

i S 3 6 f i

60-140 Dr. C.I. Ezeife © 2015 Slide 62

particular escape character. See Table 3.6 for details.

 Other characters like % must be typed twice to be
printed with printf as in printf(“ 50%%\n”);

 Check tables 3.3 to 3.6 for format control string
parameters.

Assignment Instructions

 An assignment instruction is used to read a value from a memory
cell (any variable on its right hand side) and to assign a value to a
memory cell (the only variable on its left hand side).

 The general form of an assignment instruction (in both algorithm
and C program) is:

60-140 Dr. C.I. Ezeife © 2015 Slide 63

p g)
variable = expression;

 Example 3.6: Copy the contents of variable assn1 to assn2.

 Solution: assn2 = assn1;

 Example 3.7: Copy the sum of assn1 and assn2 into assn3

 Solution: assn3 = assn1 + assn2;

Expressions

 What is an expression?
 An expression is a variable, a constant or a literal or a

combination of these connected by appropriate
operators. There are 3 basic types namely:

A ith ti i i bl i l

60-140 Dr. C.I. Ezeife © 2015 Slide 64

• Arithmetic expressions : variables are numerical
and connected by arithmetic operators (+,-,/,%,*)

• Relational expressions : variables are any type (but
same type on both sides of operator) connected by
relational operators (<,>,<=,>=,==,!=). Result is boolean

• Logical expression: apply to logical values using logical
operators NOT (!), AND (&&), OR (||).

17

Operators

 Operators tell the computer how to process data

 They are used to connect data (operands) in expressions and
equations to produce a result.

 Types of Operators

• 1 Arithmetic: addition (+) subtraction () multiplication (*)

60-140 Dr. C.I. Ezeife © 2015 Slide 65

• 1. Arithmetic: addition (+), subtraction (-), multiplication (*),
division (/), integer division (/), modulos division (or remainder
after integer division %).

• E.g. if Jane has worked 17 days during the month in a 5-day
work week, how many whole weeks has she worked and how
many days not belonging to a week has she worked?

Numweek = TotalDays / 5;

Numdays = TotalDays % 5;

Operators

• 2. Relational Operators: <, >, <=, >=, == and !=

• Used to program decisions and need data operands
of any type except the two operands must be same
type.

60-140 Dr. C.I. Ezeife © 2015 Slide 66

• E.g., 31 > 15 is TRUE

• “Alpha” < “Beta” is wrong operation in C because
string comparison is done with function (strcmp).

• ‘C’ < ‘A’ is FALSE

• Results of these operators are either TRUE (!0) or
FALSE (0)

Operators

• 3. Logical Operators: Used to connect relational
expressions (decision-making expressions)

• Logical operators are NOT (!), AND (&&), OR (||)

• E.g., Refuse registration into 60-141 if mark in 60-

60-140 Dr. C.I. Ezeife © 2015 Slide 67

g , g
140 is less than 50%.

• if (m60140 < 50)

printf (“Error, Need at least a 50%% in 60-140”)
else

printf(“Registration in 60-141 successful\n”);
• Operands and results are logical type (TRUE or FALSE)

Definition of Logical Operators

 NOT (!)
A ! A
T F
F T

AND (&&)
A B A && B
T T T
T F F
F T F
F F F

60-140 Dr. C.I. Ezeife © 2015 Slide 68

F F F

OR (||)
A B A || B
T T T
T F T
F T T
F F F

18

Precedence Hierarchy of Basic
Operators in C

 Higest Operator Associativity Rule

() left to right

Functions left to right
!, (-) right to left

* / % left to right

60-140 Dr. C.I. Ezeife © 2015 Slide 69

*, /, % left to right
+, - left to right

<, >, <=, >=, left to right

==, != left to right
&& left to right

Lowest || left to right

 Parenthesis can be used to overide precedence order

Setting up Numerical Expression

 1. Set up the following mathematical expression for use
in a C program.

 a. X(3Y + 4) - 4Y
X + 6

60-140 Dr. C.I. Ezeife © 2015 Slide 70

 Ans:

 b. Set up the following math equation as a C equation.

 Y + 3 = X (Z + 5)

 Ans:

Setting Up Relational Expression

 1. Given the expression X is less than Y + 5, set it up for
use in a C program.

 Ans:

 2. In order to cash a check, a customer must have a

60-140 Dr. C.I. Ezeife © 2015 Slide 71

,
driver’s license (A) or a check-cashing card (B) on file
at the store, set up this transaction for a C program.

 Ans:

Evaluating a Mathematical Expression

 Evaluating a math expression means assigning values
to all variables and testing the result to determine if it
is correct.

 Evaluate

60-140 Dr. C.I. Ezeife © 2015 Slide 72

 5 * (X + Y) - 4 * Y / (Z + 6)
with X = 2, Y=3, and Z=6

19

Evaluating Relational/Logical
Expressions

 Evaluate the Relational Expression
A - 2 > B
where A=6, B= 8

60-140 Dr. C.I. Ezeife © 2015 Slide 73



 Evaluate the logical Expression
A && B || C && A
with A=TRUE, B=FALSE, C= TRUE

Evaluating a Relational/Logical
Expressions/assignment instructions



60-140 Dr. C.I. Ezeife © 2015 Slide 74

 Evaluate the following assignment instruction
Q = !(A < B) && (C || D)
where A=4, B=2, C=TRUE and D=FALSE

Other C Operators

 1. C’s Increment Operator (++) for adding 1 to a
variable.
E.g., Num=Num + 1; is same as :
Num++; (postfix form that adds 1 after using Num)
and

60-140 Dr. C.I. Ezeife © 2015 Slide 75

and
++Num; (prefix form that adds 1 before using Num)

 2. C’s Decrement Operator (--) for subtracting 1 from a
variable.
E.g., Num = Num – 1; is same as:
Num--;
and --Num;

Other C Operators

 3. Bit Operations in C

• A) Bitwise OR (|) for ORing two bit values.E.g.,
1 | 0 is 1, 1 | 1 is 1 and 0 | 0 is 0

• B) Bitwise AND (&) for ANDing two bit values. E.g.,

60-140 Dr. C.I. Ezeife © 2015 Slide 76

) () g g ,
001111 & 010111 is 000111

• C) Bitwise Exclusive OR (^) that returns 1 only
when one of the two input bits is 1. E.g., 1 ^ 1 = 0, 0
^ 0 = 0 and 1 ^ 0 = 1, 0 ^ 1 = 1.

• D) Bitwise Inverse operation (~), which flips the
value of an input bit. E.g., ~ 1 is 0 and ~0 is 1.

20

Other C Operators

• E) Bitwise left Shift operation (<<) for shifting the input value
a number of bits to the left. E.g.,
00010101 << 2 is 01010100

• F) Bitwise Right shift operation (>>) for shifting the input
value a number of bits to the right. E.g.,
00010101 >> 2 is 00000101

60-140 Dr. C.I. Ezeife © 2015 Slide 77

00010101 >> 2 is 00000101

 4. C’s sizeof operator, which returns the number of
bytes a variable of type requires. E.g., sizeof(int) is 4.

 5. C’s cast operator, which accepts an expression as its
operand and converts the type of the operand to the
type specified by the cast operator. Used as:
(Type) Expression

Other C Operators

 6. C’s Operator Assign Operations: Used for writing
short forms of various forms of assignment
instructions. These instructions have an arithmetic (+, -
, *, /, %) or bitwise (<<, >>, ^, ~, |, &) operator
preceding an assignment operator. General form is:

60-140 Dr. C.I. Ezeife © 2015 Slide 78

preceding an assignment operator. General form is:
 Variable operator= value;

E.g., total += 40 means total = total + 40;
total -= 10 means total = total – 10;
total /= 4 means total = total / 4;

 Figure 3.4 of text shows the comprehensive operator
precedence and association order in C.

4. Problem Solving Tools (Top-Down
Design)

 Objective: 1. Discuss structure chart

• 2. Discuss functions and algorithms with
parameters, local and global variables

• 3. Discuss Built-in Functions and flowcharts.

60-140 Dr. C.I. Ezeife © 2015 Slide 79

 Top-down design approach to problem solving is based
on the principle of “divide and conquer”.

 It breaks down the problem to be solved into smaller
sub-problems using the problem solving tool of
structure chart

The Structure Chart

 Example 4.1: Write a solution (algorithm/program)
that inputs three different integers from the keyboard
and then prints the sum, average and product of these
numbers. Use top-down design approach showing all 6

i

60-140 Dr. C.I. Ezeife © 2015 Slide 80

problem solving steps.

 Top-down design approach uses a structure chart with
the main problem as the control module and the
subtasks located below it.

 A module processes only those tasks directly below and
connected to it.

21

The Structure Chart

 Modules are given unique number labels based on their
level with the top labeled 0000

60-140 Dr. C.I. Ezeife © 2015 Slide 81

Control
0000

FindSum
2000

FindProd
3000

FindAve
4000

ReadData
1000

PrintResult
5000

Types of Modules in a Problem

 1. Control Module or the Main Driver: shows the
overall flow of the problem and calls other modules

 2. Init Module - for initializing data; e.g., Sum=0, knt=1
 3. Read and Data Validation Module
 4 Calculation Modules: for arithmetic calculation

60-140 Dr. C.I. Ezeife © 2015 Slide 82

 4. Calculation Modules: for arithmetic calculation,
string manipulations like sorting

 5. File Maintenance Modules for adding or deleting
records from a file

 6. Print Modules: Prints outputs
 7. Wrap-Up Module: E.g. closing files or printing to

mark normal end of program.

Cohesion and Coupling

 In separating a problem into parts, it is desirable to

• 1. Create modules that perform independent
functions with one entrance and one exit -- cohesion

– Cohesion allows modules to perform independent

60-140 Dr. C.I. Ezeife © 2015 Slide 83

tasks (e.g., functions FindSum, FindDiff)

• 2. But modules need to work together towards
solving the bigger problem --- Coupling

– Coupling allows connecting modules through an
interface where data can be transferred from one
module to another (e.g., through parameters and
global variables)

Coupling Techniques

 That is, how can data be communicated between
modules? (3 approaches)
• 1. Use of Parameters in functions, e.g.,

– a) Call-by-Value Parameters with a function
t l f th f ti t t A l

60-140 Dr. C.I. Ezeife © 2015 Slide 84

return value for the function output. An example
call is Sum = FindSum(X,Y)

– b) Call-by-Reference Parameters for function
outputs. Example call is FINDSUM(X,Y,&Z)

• 2. Use of Data that all modules can access (global
variables)

22

Top-Down Design: Cohesion and Coupling

 Top-Down design is achieved through cohesion
(separating a large problem into independent modules)
and coupling (modules working together towards one
goal).

60-140 Dr. C.I. Ezeife © 2015 Slide 85

Advantages of Top-Down Design

 1. Many programmers can work on a large problem
producing faster results

 2. It is much easier to write and test many small
modules than a single one

60-140 Dr. C.I. Ezeife © 2015 Slide 86

 3. It is much easier to modify small modules.

 4. Reusability: a defined module can be used several
times by any module.

Functions

 A function is a set of instructions that performs specific
tasks and can return only one value although it can
modify others through parameters (call-by-reference).

 Functions contribute towards the solution of a problem
Th tl k th l ti f bi bl

60-140 Dr. C.I. Ezeife © 2015 Slide 87

 They mostly make the solution of a big problem more
efficient because they can be reused, more elegant
because it is structured and easier to read

 Many languages provide a variety of built-in functions.
 However, modules of the structure chart are defined as

functions in the problem solution by the problem
solver.

Functions

 A function needs to be provided for each module in the structure
chart.

 In the solution, we first provide each function prototype used to
tell the compiler functions to expect, the type of result they return
and their parameter types

60-140 Dr. C.I. Ezeife © 2015 Slide 88

p yp

 Secondly, we provide the full algorithmic/program definition of
each function

 Format for specifying a function prototype is
functiontype functionname (type for par1, type for par2, …, type
for parn);

 Example function prototype: int FindSum(int, int, int *);

 Example funtion header: int FindSum(int X, int Y, int *Sum);

23

Functions Definition Structure

 Functiontype Functionname ([type par1], ..[type parn])
{

[local variable declaration];
instruction1;
i i 2

60-140 Dr. C.I. Ezeife © 2015 Slide 89

instruction2;

:
instructionn;
[return (output variable or expression or 0)];

}

Functions Definition Example

 int FindSum(int first, int second)
{

int sum; /* This is a local variable of FindSum */

fi

60-140 Dr. C.I. Ezeife © 2015 Slide 90

sum = first + second;
return(sum);

}

Function Parameters

 Parameters are data needed by the functions to return
results

 E.g., in X = SQRT(N), N is the parameter, and in
Getsum(X,Y,&Z), X,Y,&Z are the parameters.

60-140 Dr. C.I. Ezeife © 2015 Slide 91

 Parameters are surrounded by parenthesis

 A function can have 0 or more parameters

 E.g., rand() generates a random number

 A parameter can be a constant, variable or an expression

 E.g. valid call is: Getsum(29, 10, &Z)

Parameters

 Parameters are data passed from one module
(function) to another.

 They enable us to avoid using global variables so that
we can improve on data protection.

60-140 Dr. C.I. Ezeife © 2015 Slide 92

 Parameters are enclosed in brackets in the definition of
the module (these are called formal parameters).

 Any other module can request the services of this
module by specifying the actual value for each
parameter in the exact order they appear in the
definition and with same data type.

24

Parameters

 Parameters used in the calling statements are called
actual parameters.

 The formal list and the actual list do not need to have
the same name so long as they are in the correct order
with the right data type

60-140 Dr. C.I. Ezeife © 2015 Slide 93

with the right data type.

 Parameters can be passed in two ways

• 1. Call-by-Value: Here, only the value of the variable
specified in the actual parameter list is passed to the
module called (not its address).

• means value the actual parameter had in the calling
module is not overwritten.

Parameters

• 2. Call-by-reference Parameter: The address of the
memory location for the actual parameter is passed
to the called module. Example in the function call,
FindSum(X, Y, &Sum), the actual parameter &Sum
i f S i i

60-140 Dr. C.I. Ezeife © 2015 Slide 94

is the address of the Sum in the calling module.

• So, the value it has in the calling module before the
call can be changed or replaced.

Address Operator (&), Pointer
Variable and Indirection Operator (*)

 A pointer variable stores only memory addresses

 A pointer variable has to be declared before use in a
program with the format:

datatype pointed to *variablename;

60-140 Dr. C.I. Ezeife © 2015 Slide 95

yp _p _ ;

E.g., if in main, Num1 is an integer variable with value 35
and Sum is another int variable with value 200.

 We might want to call a function to find the sum of
Num1 and Sum with the call FindSum(Num1, &Sum).

 The actual parameter &Sum is the address of the
variable Sum. This means that in the definition of

Address Operator (&), Pointer
Variable and Indirection Operator (*)

 the function FindSum, the second formal parameter has to be
declared as a pointer variable that points to an integer value.
Thus, the Function header is:

 void FindSum(int Num1, int *Sumf)
 Here, the formal parameter Sumf, is a pointer variable.

60-140 Dr. C.I. Ezeife © 2015 Slide 96

 Note that in the function call, FindSum(Num1, &Sum), the address
operator (&) is used to obtain the address of the variable Sum in
main.

 The indirection operator (*) is used to obtain the value pointed to
by the pointer variable using the pointer variable name. E.g., to
add and print the sum in main using the Sumf in the function
FindSum, we use:

 *Sumf += Num1;
printf (“%d”, *Sumf);

25

Parameter Example (Example 4.2)

 Given the following program solution, show the values of the variables a, b,
c, x, y, z in the control module (module1) after each function call to
module2.

 /* function prototype declaration for Module2 */
void module2(int, int, int *);
void main(void) {

60-140 Dr. C.I. Ezeife © 2015 Slide 97

int a=3, b=4, c=5, x=7, y=8, z=10;
/* body of main */
module2 (a, b, &c); /* a first call to Module2 */
module2 (x, y, &z); /* a second call to Module2 */
}
void module2 (int a, int b, int *c)
{ a += 4;

b += 4;
*c += 4; }

Parameter Example

60-140 Dr. C.I. Ezeife © 2015 Slide 98

The Algorithms/Programs

 Algorithms are mostly written in Pseudocode (a cross
between English language and high level programming
language)

 Each instruction in an algorithm should directly

60-140 Dr. C.I. Ezeife © 2015 Slide 99

convert to a programming language statement during
coding.

 Each module in the structure chart has a separate set
of instructions in the algorithm defined as a function.

Algorithm Example (Example 4.3)

 Provide the algorithm and program to Example 4.1
using the structure chart already defined and
parameters. Also provide the flowchart solution.

60-140 Dr. C.I. Ezeife © 2015 Slide 100

26

Flowchart

 The solution to a problem can be organized in a
number of ways and each algorithmic solution
corresponds to a flowchart.

 A flowchart is a graphical representation of an

60-140 Dr. C.I. Ezeife © 2015 Slide 101

algorithm. It shows the sequence of execution of the
instructions.

 Flowchart and algorithm represent the same execution
flow in different forms.

 A flowchart always starts at the top of the page with
straight and neat connecting flow lines.

Flowchart

 Flowchart symbols are given below:
Start, End, Exit
Return, enter

Module

Automatic counter
for (knt = s; knt
relop e; knt arithop=
i)

knt
s (relop)e

(arithop)i

60-140 Dr. C.I. Ezeife © 2015 Slide 102

Decision, while,
switch

Read, Print

Assignment instr.

i)
On-Page Connectors

Off-Page Connectors

Flow lines

Indicating function parameters

Local and Global Variables

 Cohesion and Coupling are realized through the concept
of local and global variables

 In a module, the difference between local and global
variables is in their scope (where, in which modules their
values are allowed to be used)

60-140 Dr. C.I. Ezeife © 2015 Slide 103

)
 Local variables can be used only inside the module they

are declared.
 Global variables are declared outside functions and can

be used by only functions below their declarations in the
algorithm or program.

 Global variable is one coupling method, a better
coupling method is use of parameters

Local and Global Variables

 Example 4.4: Solve the problem of Example 4.1 using
global variables and not parameter passing. Show all
the local and global variables in your solution.

60-140 Dr. C.I. Ezeife © 2015 Slide 104

27

Local and Global Variables

60-140 Dr. C.I. Ezeife © 2015 Slide 105

Shortfalls of Global Variables

 1. Side Effects: A global variable may be accidentally
or wrongly altered by an incorrect or malicious module
(that is, no protection of data)

 2. No Duplication of Variable names: When an inner

60-140 Dr. C.I. Ezeife © 2015 Slide 106

module declares a local variable with same name as the
global variable, all changes it makes to this variable is
local and it no longer has access to the global variable.

Built-in Functions

 Some common built-in functions provided by C
language are:

 1. Mathematical functions: E.g., sqrt(x), exp(x), log(x), ceil(x), floor
(x), pow(x,y), fabs(x) for absolute value

2 St i F ti E t f th t i i t th

60-140 Dr. C.I. Ezeife © 2015 Slide 107

 2. String Functions:E.g., copy part of the string into another
variable, find number of characters in a string. E.g.,
strcmp(s1,s2), strstr(s1,s2), strcpy(s1,s2), strlen(s), strcat(s1,s2)

 3. Character Functions: For manipulating character data. E.g.,
isdigit(C), islower(C) for seeing if C is lower case letter or not.

 4. Conversion Functions: convert data from one data type to
another. E.g., used to convert a string value to a numerical value,
in “C lang.” atoi(“2593”)=2593 (integer value)

Built-in Functions

 5. Utility Functions: used to access information outside
the program and the language in the computer system,
e.g., date and time functions.

60-140 Dr. C.I. Ezeife © 2015 Slide 108

28

5. Program Logic Structures

 Objectives
 1. Program Logic structures (General)
 2. Discuss Sequential logic structure
 3. Discuss solution testing and documentation

60-140 Dr. C.I. Ezeife © 2015 Slide 109

 The logic structure of a program enforces the sequence
of execution of instructions in the program and the
main logic structures are:
• sequential logic structure and function calls
• Decision logic structure and
• Repetition logic structure

Program Logic Structures

 Thus, to provide a good solution to any problem, we
should proceed as follows:

 1. Use top-down design approach when necessary.

 2. For defining both the control module and the
functions in the solution use the relevant structure(s)

60-140 Dr. C.I. Ezeife © 2015 Slide 110

functions in the solution, use the relevant structure(s)
among the three program logic structures:
• a. Sequential structure (executing instructions. one after the

other)

• b. Decision Structure (executes one of many alternative
instructions.)

• c. `Repetition Structure (executes a set of instructions. many
times

Program Logic Structures

 3. Eliminate duplication of steps in parts of same
program by using a module that can be re-used

 4. Improve readability using proper naming of
variables, internal documentation and proper

60-140 Dr. C.I. Ezeife © 2015 Slide 111

indentation.

Problem Solving with Sequential
Logic Structure

 Sequential logic structure is the most common and
simplest structure

 Sequential structure asks the computer to process a set
of instructions in sequence from top to the bottom of an

60-140 Dr. C.I. Ezeife © 2015 Slide 112

algorithm.

29

Problem Solving with Sequential
Logic Structure

 This is the default structure and all problems use this structure in
possible combination with other structures

 #include <stdio.h>
int main (void)
{

start

instr 1

60-140 Dr. C.I. Ezeife © 2015 Slide 113

Input variable list ;
Output variable list;
Instruction 1;
Instruction 2;

:
Instruction n;
return 0;

}

 Execution flow is Instruction1, followed by 2, 3, 4, etc.

instr. 1

instr. 2

instr. n

End

Testing the Solution

 Testing the algorithm or program entails selecting test
data to check the correctness of the algorithm/program.

 With the test data, stepping through the program
should give the expected results

60-140 Dr. C.I. Ezeife © 2015 Slide 114

g p

 Test data should be selected to test all possible
situations that may arise (e.g. -ve, 0, +ve)

 Program testing entails pre-computation of correct
result first, followed by hand simulation or tracing of
the program to obtain the result produced by the
program, which should be the same as the correct result.

Internal and External Documentation

 Internal documentation are remarks written with the
instructions to explain what is being done in the
program

 External documentation are manuals written for the

60-140 Dr. C.I. Ezeife © 2015 Slide 115

user to know how to use the program

 Objective of internal documentation is to make
program easily readable, maintainable and expandable
by either the original programmer or another
programmer.

 It includes

• the input, output and processing information

Internal and External Documentation

• Variable usage, writer of the program and
• other acknowledgements

 Objective of External documentation is to make
program easy to use.

60-140 Dr. C.I. Ezeife © 2015 Slide 116

 In solving problems, experienced problem-solvers use
the sequence of steps:
• 1. The Structure Chart
• 2. The Algorithm or the flowchart and/or
• 3. The program.

 Thus, a problem solver can go straight to step 3 or get to step 3
through step 1, or through both steps 1 and 2. Ultimate solution is
3 (the program).

30

Problem Solving with Sequential
Logic Structure

 Check Examples 5.1 and 5.2 in the book showing
programs with only sequential logic instructions, use of
built-in functions, and selecting test data to evaluate all
possible paths of a program.

 Other important parts of program solution shown by

60-140 Dr. C.I. Ezeife © 2015 Slide 117

 Other important parts of program solution shown by
example 5.2 are use of internal documentation
(comments) for making programs readable and
maintainable as well as external documentation (e.g.,
user manual to specify how the program should be
executed) and the type of input and output data it takes
and prints.

6. Problem Solving with Decisions

 Objectives
 1. Discussing Problem solution using both Sequential

and Decision logic structures.
• if/else and switch_case instructions

60-140 Dr. C.I. Ezeife © 2015 Slide 118

 The Decision Logic Structure has two main instructions
- the if instruction and the switch_case instruction.

 The if/else instruction
 Meaning is IF the condition is true, we execute the TRUE part (a

set of instructions), else (that is, condition is false), we execute the
ELSE part (another set of instructions)

Problem Solving with Decisions

 if (condition(s))
{

TRUE instructions; }

else
{ FALSE instructions; }

60-140 Dr. C.I. Ezeife © 2015 Slide 119

{ FALSE instructions; }

A

IF
(cond)

FALSE TRUE

Instruction set
for FALSE

Instruction set
for TRUE

Decision
Structure

Problem Solving with Decisions

 Example 6.1: Write decision instruction to indicate if a
given integer number is an even number.

if ((Num%2) == 0)

60-140 Dr. C.I. Ezeife © 2015 Slide 120

printf(“ The number is an even number\n”);
else
printf(“ The number is an odd number\n”);

31

Problem Solving with Decisions

 Example 6.2: A retail store allows part-time workers a
rate of $8.00 an hour for a maximum of 20 hours of
work in a week. However, a part-time worker earns
$10.00 an hour for each additional hour over 20 hours.

i i i i i i

60-140 Dr. C.I. Ezeife © 2015 Slide 121

Write a decision instruction to compute a given part-
time worker’s wage for a week.

Decision Logic (If Instructions)

 The if form

• Process all decisions sequentially one after the other
(no ELSE part of the instructions)

• if (condition1) (Draw the flowchart)

60-140 Dr. C.I. Ezeife © 2015 Slide 122

() ()
Instructions_T1;

• if (condition2)
Instructions_T2;

Decision Example

 Example 6.3: Solve the problem of Example 6.2 using
straight through if instructions (with no else part).

• Num_hours Week_wage
hours <= 20 8 * hours

60-140 Dr. C.I. Ezeife © 2015 Slide 123

hours > 20 (8 * 20) + (10 * (hours-20)

Decision Example

 Comparing solution versions 6.2 (if with else part) and
6.3 (if with no else part) of the same problem, which is
more efficient and why?

60-140 Dr. C.I. Ezeife © 2015 Slide 124

32

if INSTRUCTION

 Now, when is it efficient to use the if form (with no else
part) of the decision structure?

 With some problems where the sequence of tests are to
be conducted on different variables, the only solution is
the straight through if structure (with no else part)

60-140 Dr. C.I. Ezeife © 2015 Slide 125

the straight through if structure (with no else part).
 Example 6.4:

• Assume you want to assign a number of students
(S), to different classrooms for an exam such that
each room takes only 150 students and once you
have got 150 students for one room you initialize S
back to 0. Similarly, the GA’s (G) for supervising

• the exams are assigned 10 to each room. Once you
have got 10 GA’s assigned, you initialize G back to
0. Write decision instructions for initializing both S
and G to 0.

if/then INSTRUCTION

60-140 Dr. C.I. Ezeife © 2015 Slide 126

Nested if/else Form

 Nested if/else form is the if instruction where either the
“TRUE” sequence of instructions (first part) or the
“FALSE” sequence of instructions (“else” part), or
both sequences contain another “if” instruction.

60-140 Dr. C.I. Ezeife © 2015 Slide 127

Nested if/else Form

 if (decision expression 1 is true)

 if (decision expression for expression1-true is true)

 instructions for when expression of expression1-true is true;

 else

 instructions for when expression of expression1-true is false;

60-140 Dr. C.I. Ezeife © 2015 Slide 128

p p ;

 else

 if (decision expression for expression1-false is true)

 instructions for when expression of expression1-false is true;

 else

 instructions for when expression of expression1-false is false;
 This structure has if instruction in both the True and else parts.

33

Nested if/else Form

 Example 6.5:

• In a city, the monthly bus fare for seniors 65 years
or older is half the normal rate of $45.00 for adults
while fare rate for kids under the age of 18 is

60-140 Dr. C.I. Ezeife © 2015 Slide 129

one_third the normal rate. Write an IF instruction
to determine what fare to charge a person given
his/her age.

 Solution

• Conditions(Age) Actions(fare)
Age >= 65 1/2 * 45

65 > Age >= 18 45
18 >Age 1/3 * 45

Nested if/else Form

 For problems involving nested if instructions in only
the Else or True part, they can be expressed in two
ways, namely:

• 1) Using positive logic, and

60-140 Dr. C.I. Ezeife © 2015 Slide 130

• 2) Using negative logic.

 Positive logic writes the instruction such that some
action (like assignment instruction) is executed if
decision expression evaluates to TRUE but another IF
instruction is executed when decision evaluates to
FALSE

Using Positive Decision Logic

 if (Age >= 65) (Draw the flowchart)
Fare = (0.5) * 45.0;

else
if (Age >= 18)

4 0

60-140 Dr. C.I. Ezeife © 2015 Slide 131

Fare = 45.0;
else

Fare = 0.33 * 45.0;

Using Negative Logic

 Process a set of instructions when “if expression” evaluates to
FALSE but process another decision instruction when “if
expression” evaluates to TRUE.

 Can use negative logic to decrease the number of tests

 The Age example with negative logic

60-140 Dr. C.I. Ezeife © 2015 Slide 132

 if (Age < 65) (Draw Flowchart)
if (Age < 18)

Fare = (1/3) * 45.0;
else Fare = 45.0;

else
Fare = (1/2) * 45.0;

34

Logic Conversion

 May help improve on efficiency or readability of a
solution

 E.g., a decision should always have instructions for the
TRUE section but not necessarily for the FALSE

60-140 Dr. C.I. Ezeife © 2015 Slide 133

section.

 A solution with no instructions for the TRUE section is
better converted to negative logic.

 How? To convert from positive to negative logic do the
following:

Logic Conversion

 1. Write the opposite of each relational operator in
every decision as:
• operator opposite

< >=
<= >

60-140 Dr. C.I. Ezeife © 2015 Slide 134

<= >
> <=
>= <
== !=
!= ==

 2. Interchange all the TRUE set of instrs. with the
corresponding ELSE set of instrs.

Logic Conversion

 Example 6.6

• Calculate the number of bonus air miles earned
given that the bonus air miles earned by customers
is 100 if traveled miles exceed 5000 in a period of

60-140 Dr. C.I. Ezeife © 2015 Slide 135

time, but 60 bonus air miles are earned if traveled
miles only exceed 3000 while 10 bonus air miles are
earned otherwise by the customer. Write two
positive logic if program/algorithmic solutions for
the above problem. Then, write 2 negative logic
solutions.

Logic Conversion Example

60-140 Dr. C.I. Ezeife © 2015 Slide 136

35

Which if Logic to Choose?

 Choose the if logic that is most efficient, and most
readable

 Most efficient logic is characterized by

• 1. Fewer tests both when you know about data and

60-140 Dr. C.I. Ezeife © 2015 Slide 137

y
when you don’t

• 2. Easiest to maintain (modify)

 In the above example, solutions 1 and 2 (positive logic)
are most readable with same number of tests. So, any
of the two may be chosen.

switch_case Instruction

 The switch_case Instruction is the second type of
instruction with the decision logic structure.

• It is made up of several or more sets of instructions,
only one of which will be selected if a case label

60-140 Dr. C.I. Ezeife © 2015 Slide 138

matches the label for that set of instructions.

• switch_case instruction is used to decide which one
execution path among many to choose, while IF
instruction chooses one path out of two alternatives.

 Format of switch_case instruction is given below:

switch_case Logic Structure

 switch (EXPRESSION) {
case label1:instructions to execute if expression = labe11;

break;
case label2: instructions to execute if expression = labe12;

break;

60-140 Dr. C.I. Ezeife © 2015 Slide 139

b e ;
:

case labeln: instructions to execute if expression = labe1n;
break;

[default: instructions to execute if expression
matches none of labels 1 to n above;

break;]

}

switch_case Logic Structure

A

case label1 case label2 case labeln default

switch
(expr)

60-140 Dr. C.I. Ezeife © 2015 Slide 140

Instructions;
break;

case label1

Instructions
break;

case label2

Instructions;
break;

case labeln

Instructions;
break;

default

..

B

FLOWCHART Diagram for the switch_case Logic structure

……...

36

switch_case Logic Structure

 Give the if instruction Equivalent to the switch_case
instruction.

60-140 Dr. C.I. Ezeife © 2015 Slide 141

switch_case Instruction Example

 Example 6.7: Write a program that keeps track of the
number of houses in each of the five zones labeled A, C,
K, L, Q in a city. It reads the zone of a given house,
increments the appropriate zone count and prints the

f i

60-140 Dr. C.I. Ezeife © 2015 Slide 142

number of houses in each zone.

switch_case Instruction Example

60-140 Dr. C.I. Ezeife © 2015 Slide 143

swich_case Instruction Example

60-140 Dr. C.I. Ezeife © 2015 Slide 144

37

7. Repetition Logic Structure

 Objectives
 1. Use three types of Loop instructions in problem

solving (while, do-while, for instructions)
 2. Use nested loops in problem solutions touching on

i ll

60-140 Dr. C.I. Ezeife © 2015 Slide 145

recursion as well.
 The Repetition Logic Structure
 Repetition logic structure allows a sequence of

instructions to be executed continuously as long as a
condition is satisfied.

 E.g. loop problems: Counting, accumulating sum

 3 types of loop instructions are used:

while Instruction

 1. while Instruction
 Tells the computer to (a) test a <condition> and while

that condition is true (b) to repeat all instructions
between the while (begin) bracket “{“ and (end) “}”.

I iti li ti i t ti

60-140 Dr. C.I. Ezeife © 2015 Slide 146

• Initialization instructions;
while (condition(s))
{

INSTRUCTION;
INSTRUCTION;

:
Update Instructions;

}

while Instruction

A

while
if
(conds)

F
F

while loop chart

Initializations

A

Initializations

60-140 Dr. C.I. Ezeife © 2015 Slide 147

B

(conds)

Instructions

Update Instr

B

()

Instructions

Update Instr

goto

F

while

T
T

if instruction equivalent of while

while Instruction

 While loop can be used for both event-controlled and
counter-controlled loop

 Important parts of a loop structure are:

• 1. Initialization of variables (control and

60-140 Dr. C.I. Ezeife © 2015 Slide 148

(
accumulation variables)

E.g., count = 0; and Sum = 0

• 2. Testing of the control variables (for termination
condition). E.g., while (count < 10)

• 3. Updating the control variable (to advance to next
data item). E.g., count ++

38

while Instruction (counter controlled)

 Example 7.1: A class of ten students took a quiz. The
marks (integers in the range 0 to 100) for this quiz are
available to you. Determine the class average on the
quiz using a program. [Complete this rough solution]

60-140 Dr. C.I. Ezeife © 2015 Slide 149

• 1. Declare Variables

• 2. Init_Module {Sum=0, Counter = 0}

• 3. while (Counter < 10)
{

– Read_Module(mark, sum)

– /*reads and adds to sum */

while Instruction Example Problem

– Counter = Counter + 1

– }

• 4. Finish_Module /* does the following instrs. */

– average = sum/10

60-140 Dr. C.I. Ezeife © 2015 Slide 150

average sum/10

– Print_Results_Module (average)

• 5. } /* end of main program*/

 Note that the ReadModule and Finish_Module need to
be defined properly in a full program.

while Instruction With Sentinel

 Example 7.2: Write a program that counts the number
of houses belonging to each of the five zones A, C, K, L,
Q in a city. The zone of each house is entered for
reading and a sentinel value of ‘0’ is used to mark the

f

60-140 Dr. C.I. Ezeife © 2015 Slide 151

end of data.

while Instruction Example Problem

60-140 Dr. C.I. Ezeife © 2015 Slide 152

39

while and EOF marker

 Example 7.3: Write a program that counts the number
of houses belonging to each of the five zones A, C, K, L,
Q in a city. The zone of each house is entered for
reading and the last data line is marked with end-of-file
marker.

60-140 Dr. C.I. Ezeife © 2015 Slide 153

while and EOF marker

60-140 Dr. C.I. Ezeife © 2015 Slide 154

(2) do-while

 Tells the computer to repeat the set of instructions
between the “do” and the “while” keywords as long as
the condition is TRUE.

 Differences between “do-while” and “while”
instructions

60-140 Dr. C.I. Ezeife © 2015 Slide 155

instructions
• 1. Test for loop termination condition is done at the

beginning with “while” loop but at the end with “do-
while” loop.

• 2. With the “do-while”, the loop must execute at
least once, with the “while” loop, zero iteration is
possible.

(2) do-while

 With “do-while” loop, the loop instructions are processed at least
once before the termination condition is tested.

 Thus, for problems that may need zero iterations (number of times
the loop is processed), “do-while” loop should not be used (E.g., no
data read)
F t i

60-140 Dr. C.I. Ezeife © 2015 Slide 156

 Format is:
• Initializations;

do {
Instruction;
Instruction;
:

update instruction
} while (CONDITION(S));

40

(2) do-while

do Instructions

Instructions

A

Initializations

A

Initializations

60-140 Dr. C.I. Ezeife © 2015 Slide 157

Update Instr

if
<conds>

B

goto

REPEAT/UNTIL IF (DECISION) EQUIVALENT

T

F

Update Instr

while
(conds)

B

T

F

(2) do-while

 Example 7.4: A computer class took a quiz. The scores
(integer in range 0 to 100) for this quiz are available to
you and the last data line is marked with a sentinel
value of -1. Determine class average using the do-while

60-140 Dr. C.I. Ezeife © 2015 Slide 158

loop structure.

do-while

60-140 Dr. C.I. Ezeife © 2015 Slide 159

(3) for Instruction (Automatic
Counter Loop Control)

 This “for” instruction decrements or increments the control variable each
time the loop is repeated

 e.g. for loop
 The initialization, termination value, testing and update of the control

variable all occur in the one loop instruction
 Format:

f (b i l (l i l) d l

60-140 Dr. C.I. Ezeife © 2015 Slide 160

• for (counter = begin value; counter (relational_operator) end value;
• counter=counter (arithmetic operator) step)
• {
• instruction 1;
• instruction 2;
• :
• instruction n;
• }

41

(3) for Instruction (Automatic
Counter Loop Control)

counter
Begin (relop)End

(arithop) STEP
a), b)

Show the Decision Equivalentfor

60-140 Dr. C.I. Ezeife © 2015 Slide 161

COUNTER

Instructions

Instruction
c)

(3) for Instruction (Automatic
Counter Loop Control)

 Example 7.5: A computer class of 15 students took a
quiz. The scores (integers in the range of 0 to 100) for
this quiz are available to you. Determine the class
average on the quiz with a program.

60-140 Dr. C.I. Ezeife © 2015 Slide 162

(3) for Instruction (Automatic
Counter Loop Control)

60-140 Dr. C.I. Ezeife © 2015 Slide 163

Nested Loops & indicators

 Nested loop instructions are loop instructions inside an
outer loop

 Nested loops do not have to be same types of loop
structures

 Event controlled loops programmed with while & do

60-140 Dr. C.I. Ezeife © 2015 Slide 164

 Event-controlled loops, programmed with while & do-
while loop structures make use of indicators.

 Indicators are logical/control variables set inside a
program when a certain condition occurs (e.g., end-of-
file or no more data in the file, or an error occurs like
invalid data)

 Indicators are also called flags, switches, dummy or trip values

42

Example Problem With Nested Loop

 Example 7.6: Write a program and a flowchart that
utilizes nested looping to produce the following table of
values:

• A A+2 A+4 A+6

60-140 Dr. C.I. Ezeife © 2015 Slide 165

3 5 7 9
6 8 10 12
9 11 13 15
12 14 16 18
15 17 19 21

Example Problem With Nested Loop

60-140 Dr. C.I. Ezeife © 2015 Slide 166

Example Problem With Nested Loop

60-140 Dr. C.I. Ezeife © 2015 Slide 167

Example Problem With Nested Loop

 Example 7.7: Write a program and a flowchart to
display the following checkerboard pattern
using nested looping.

* * * * * * * *

60-140 Dr. C.I. Ezeife © 2015 Slide 168

* * * * * * * *
* * * * * * * *

* * * * * * * *

43

Example Problem With Nested Loop

60-140 Dr. C.I. Ezeife © 2015 Slide 169

Example Problem With Nested Loop

60-140 Dr. C.I. Ezeife © 2015 Slide 170

Recursion

 Recursion is a type of loop structure where a module or
a function calls itself

 Some problems are naturally recursive, e.g., factorial

 A recursive solution should have a base case for

60-140 Dr. C.I. Ezeife © 2015 Slide 171

termination

 Any problem that can be solved recursively can also be
solved iteratively

 Recursive approach carries more overhead in terms of
memory space needed during execution and processor
time.

Recursion

 So, why use Recursion?

• For some problems that are naturally recursive,
providing and maintaining a recursive solution is
easier

60-140 Dr. C.I. Ezeife © 2015 Slide 172

• In terms of performance, recursive solution takes
longer and consumes more memory

 Example 7.8: write a recursive program to obtain 10!

44

Recursion

60-140 Dr. C.I. Ezeife © 2015 Slide 173

Recursion

60-140 Dr. C.I. Ezeife © 2015 Slide 174

8. Arrays

 Objectives

 1. Develop problem solution using a more complex data
structure, arrays which will enable table look-ups,
sequential and others.

60-140 Dr. C.I. Ezeife © 2015 Slide 175

 2. Discuss string processing and functions.

 If we want to store 5 assignment marks for a student,
we can create the variables Asn1, Asn2, Asn3, Asn4,
Asn5

 If there are 10 to 20 assignments to record, this
approach becomes clumsy

Arrays

 If we also have to record a matrix of 20 assignment
marks for say 100 students, with a different variable
for each assignment mark, we have:

Stu1_Asn1, Stu1_Asn2, ……., Stu1_Asn20
S 2 A 1 S 2 A 2 S 2 A 20

60-140 Dr. C.I. Ezeife © 2015 Slide 176

Stu2_Asn1, Stu2_Asn2,…….., Stu2_Asn20
: : : :
Stu100_Asn1,Stu100_Asn2,….,Stu100_Asn20

 Approach is inconvenient and prone to error

 A way out? ---- Use ARRAY data structure

45

Arrays

 An array data structure allows us to use the same
variable name for the 20 assignment marks for one
student.

 Using an array, we replace Asn1, Asn2, ……,Asn20
with a single variable Asn subscripted as: Asn[1]

60-140 Dr. C.I. Ezeife © 2015 Slide 177

with a single variable Asn subscripted as: Asn[1],
Asn[2], .., Asn[20].

 Thus, an array is a data structure allowing more than
one memory location to be designated for a single
variable.

 Each element of the array variable is referenced using
its subscript

Arrays

 Arrays are useful for many data values of the same
type, e.g., all ages, all grades etc.

 Arrays are easier to read and use in program
statements than having different variables.
T i th h t b d l d

60-140 Dr. C.I. Ezeife © 2015 Slide 178

 To use arrays in a program, they have to be declared
and the size of the array (number of elements) needs to
be included. Format is shown below:

 E.g., to declare a one-dimensional array in a program
datatype arrayname[size];

e.g., int assn1[7];
 Two ways to declare the size or dimension of an array

Arrays

• 1. Static Arrays: allowed by many programming
languages.

– Size and dimension declared at the beginning and
never changes during the execution of the

60-140 Dr. C.I. Ezeife © 2015 Slide 179

program

• 2. Dynamic Arrays: Number of array locations is a
variable which can be increased or reduced during
the execution of the solution (using malloc in C).

– More flexible but more time consuming during
program execution

Arrays

 The first array element (the base element) is numbered
zero (has subscript 0) in some languages like C, but
numbered 1 in some others.

 If the base element is 0, the second element is 1; and if

60-140 Dr. C.I. Ezeife © 2015 Slide 180

the base element is 1, the second element is 2.

A[0] 0
A[1] 1
A[2] 2

: : :

A[n-1]

A (base 0)
A[1] 1
A[2] 2
A[3] 3

: : :

A[n] N

A (base 1)

46

Arrays

 By using the assignment instruction, we can assign the
value of a constant, a variable, or an expression to an
element.

 One Dimensional array is the simplest array structure.

60-140 Dr. C.I. Ezeife © 2015 Slide 181

Conceptually, a one dimensional array represents an
array variable that has only one column of elements.

 E.g. of a one dimensional array: 10 assignment marks
for student Maggie

Arrays

 Example 8.1: Read and print the marks for 10
assignments obtained by student Maggie as well as her
average assignment marks.

60-140 Dr. C.I. Ezeife © 2015 Slide 182

Arrays

60-140 Dr. C.I. Ezeife © 2015 Slide 183

Array Variables in Functions

 An array variable can be used any where any simple variable can
be used in all types of instructions including function calls but a
complete array cannot be returned using a function return value.

 An array parameter passing all elements of the array, in a
function call simply includes the name of the array variable
without specifying the dimension or size.

60-140 Dr. C.I. Ezeife © 2015 Slide 184

 However, an array’s dimension needs to be specified in the
function prototype and function header. Its size may also be
specified if passed as a parameter in the function call.

 E.g., a function ReadData reads data into a 1-dimensional array of
seven assignment marks. The function prototype and header for
ReadData are respectively:

 void ReadData(int [], int);
 void ReadData(int assn [], int size)

47

Arrays (one-dimensional parallel)

 Example 8.2: Write a program that computes the
assignment average for assignments 1 and 2 in a small
class of seven students whose names and ids are Maggie
(id 1050), John (id 1051), Ken (id 1052), Joy (id 1053),

(i 10 4) i (i 10) (i 10 6)

60-140 Dr. C.I. Ezeife © 2015 Slide 185

Pat (id 1054), Tim (id 1055) and Tom (id 1056). The
program reads their ids, computes and prints the
average mark obtained by each student id as well as
asn1 and asn2 averages.

Arrays (one-dimensional parallel)

60-140 Dr. C.I. Ezeife © 2015 Slide 186

Arrays

 Asn1[1] and Asn2[1] both relate to Student[1]; and
Asn1[5] and Asn2[5] both relate to Student[5]

 To declare these three arrays, we use
int Student[7], Asn1[7], Asn2[7];

60-140 Dr. C.I. Ezeife © 2015 Slide 187

Array Example

60-140 Dr. C.I. Ezeife © 2015 Slide 188

48

Array Examples

60-140 Dr. C.I. Ezeife © 2015 Slide 189

Array Examples

 Example 8.3: We want to use arrays to summarize the
results of data collected in a survey. Forty students
were asked to rate the quantity of the food in the
student cafeteria on a scale of 1 to 5 (1 means awful and

) f i

60-140 Dr. C.I. Ezeife © 2015 Slide 190

5 means excellent). Place the forty responses in an
integer array and summarize the results of the poll
using a C program.

Array Examples

60-140 Dr. C.I. Ezeife © 2015 Slide 191

Array Examples

60-140 Dr. C.I. Ezeife © 2015 Slide 192

49

Two-Dimensional Arrays

 While a one-dimensional array has only one subscript
indicating the number of rows, a two-dimensional
array has two subscripts indicating
(number of rows, number of columns).

 A two dimensional array can be used to store a table of

60-140 Dr. C.I. Ezeife © 2015 Slide 193

 A two dimensional array can be used to store a table of
values with more than one column (e.g., a Matrix).

 To declare a 2-dimensional array, use:
datatype arrayname[num_row][num_column];

 The two parallel arrays for Asn1[7] and Asn2[7] we
defined earlier on, can be stored in one two dimensional
array as:(write answer here)

Two-Dimensional Arrays

 Example 8.4: Write a program that computes the assignment
average for assignments 1 and 2 in a small class of seven students
named Maggie, John, Ken, Joy, Pat, Tim and Tom. The average
mark obtained by each student is also computed and printed.
Solve using two dimensional array where necessary.

60-140 Dr. C.I. Ezeife © 2015 Slide 194

Two-Dimensional Arrays

60-140 Dr. C.I. Ezeife © 2015 Slide 195

Two-Dimensional Arrays

60-140 Dr. C.I. Ezeife © 2015 Slide 196

50

Two-Dimensional Arrays

60-140 Dr. C.I. Ezeife © 2015 Slide 197

Multidimensional Arrays

 These are arrays with three or more dimensions

 With three dimensional array, three subscripts are
needed and three nested loops are used.

 An example of a 3 dimensional array is given in the

60-140 Dr. C.I. Ezeife © 2015 Slide 198

p y g
course book section 8.2

 int Cube[row][column][depth];

String Processing

 A string in C is an array of characters declared as:
char variable[number of characters];

 The last character of the string is the null character ‘\0’
 Thus, a string with 20 characters has the 20th as ‘\0’
 E.g., char studentname[20] can hold only one student name with

60-140 Dr. C.I. Ezeife © 2015 Slide 199

up to 19 alphanumeric characters.
 Now, if we want to declare a variable to hold 10 student names, it

is declared as a 2-dimensional array:
char studentname[10][20];

 Names can also be initialized at declaration as:
 char studentname[10][20] = {“John Smith”, “John Adams”, “Mary

Goods”, “Peter Kent”, “Chu Lee”, “Paul Best”, “Okee Ndu”, “Pat
Madu”, “Andrew New”, “Mark Ogods”};

String Processing

 Library functions for string input and output include:
 gets (stringvariable);
 fgets (stringvariable, length, filepointer);
 puts (stringvariable); fputs(stringvariable, length, filepointer);
 sscanf(string to readfrom, format specifiers, variablelist);

60-140 Dr. C.I. Ezeife © 2015 Slide 200

sscanf(string_to_readfrom, format specifiers, variablelist);
 sprintf(string_to_printto, format specifiers, variablelist);
 Library functions for string copying, concatenation, comparisons

and others include:
 strcpy(s1, s2) , strncpy(s1, s2, numchars) , strcat(s1,s2) ,

strncat(s1,s2,n) .
 The list of string functions in C library <stdlib.h> for I/O are

summarized in section 8.4, while functions for copying and other
operations are summarized in section 4.3 of book.

51

Searching or Table LooKup
Techniques

 Searching is one important application of arrays.

 Searching entails using a value to look up another value in a table
of values. For example, 100 test scores are stored in an array
score[100] and you want to answer the question regarding whether
there is any 96% in the 100 scores.

60-140 Dr. C.I. Ezeife © 2015 Slide 201

y

 You can go about this look-up in two ways

• 1. Sequential Searching

• 2. Binary searching

 Example 8.5: Given n test scores and a search key score, write a
sequential search program to return the position of the first
element in the array equal to the key score.

Sequential Search

 The program for sequential search is:

• int main (void) {
• int Score[10], key , k, I, n=10;
• scanf (“%d”, &key);

for (I = 0; I < n; I++)
scanf(“%d” &score[I]);

60-140 Dr. C.I. Ezeife © 2015 Slide 202

scanf(%d , &score[I]);
• k = 0;
• while (key != score[k] && (k < n))

k = k + 1;
If (k>=n) printf (“element not found”);

else printf(“element %d is equal to key %d”, k, key);
return 0;

}

Sequential Search

 Works well for small or unsorted arrays. Inefficient for
large arrays

 In the worst case, the algorithm will search through all
n elements of the array before either finding the value

60-140 Dr. C.I. Ezeife © 2015 Slide 203

or not finding it at all

 In the best case, the algorithm searches through only 1
element

Binary Search

 Binary search is faster, but only works on sorted arrays
as it eliminates half of the elements in the array being
searched during each iteration.

 Binary search compares the mid-element of remaining
array list to the search key

60-140 Dr. C.I. Ezeife © 2015 Slide 204

array list to the search key.

• 1. Set the lower boundary at 0

• 2. Upper boundary is set as the number of elements
in the array minus 1 (that is the last element)

52

Binary Search
• 3. The loop is started and will continue as long as

mid element if not the search key and the end of the
list is not yet passed. That is while ((test[mid] !=
key) && (LB <= UB)). If LB > UB, it indicates the
last element has been searched.

60-140 Dr. C.I. Ezeife © 2015 Slide 205

• 4. The mid-element number is calculated (truncated
to integer value) as mid = (LB+UB)/2

• 5. Also, upper and lower boundaries are re-
calculated. If search value is greater than value of
mid element number, then lower boundary is set to
one more than the midpoint, otherwise it is set to
one less. (see solution 8.5 for details)

Binary Search

• 6. Once the search loop has ended, test to know
whether the search key was found or not. If the
lower boundary is greater than the upper boundary,
it means element could not be found.

60-140 Dr. C.I. Ezeife © 2015 Slide 206

Binary Search Algorithm

60-140 Dr. C.I. Ezeife © 2015 Slide 207

Binary Search Algorithm



60-140 Dr. C.I. Ezeife © 2015 Slide 208

53

Binary Search Algorithm

60-140 Dr. C.I. Ezeife © 2015 Slide 209

Binary Search Algorithm

 Example 8.6: Assume the following 10 test scores are
sorted in an array test[10], find if a score of 84 is in this
array using binary search.

60-140 Dr. C.I. Ezeife © 2015 Slide 210

Test(k) -56 63 65 71 72 75 80 81 84 86

Sorting Techniques

 Sorting is the process of putting the data in
alphabetical or numerical order using a key field

 primary key is the first key by which data in a file is
sorted, e.g., area code for a mailing list

60-140 Dr. C.I. Ezeife © 2015 Slide 211

 Secondary key is the second key by which data in a file
is sorted within the primary key order.

 E.g., a mailing list sorted by area code can again be
sorted in alphabetical order of name within each area
code.

Sorting Techniques

 Sorting techniques include

• 1. Selection Exchange Sort, bubble Sort, Quick Sort,
Shell Sort and Heap Sort

 Best sorting techniques are determined by the number

60-140 Dr. C.I. Ezeife © 2015 Slide 212

g q y
of comparisons and switches that take place for a file of
n records in a specific order.

54

The Selection Exchange Sort

 To sort n records

 Maintain 2 sublists within n records

• 1. List of sorted part (S)

• 2 List of unsorted part (U)

60-140 Dr. C.I. Ezeife © 2015 Slide 213

2. List of unsorted part (U)

 Initially number of elements in S=0 and number of
elements in U = n

 1. Find the smallest element in U and switch its position
with the first element of U
[now number of elements in S=1 and number of
elements in U = n-1]

The Selection Exchange Sort

 2. While number of elements in (U) > 1
• Find the smallest element U and switch with first

element of U. [Once switched this first element of U
becomes the last element of S]

E l 8 7 t th f ll i i di d

60-140 Dr. C.I. Ezeife © 2015 Slide 214

 Example 8.7: sort the following in ascending order
using selection exchange sort

 56
80
75
63
58
79

The Selection Exchange Sort

 int main(void) {
int score[6], num_score, I, minpos, j, temp;

for (I=0; I < num_score-1; I++)
{

i

60-140 Dr. C.I. Ezeife © 2015 Slide 215

min = I;
for (j = (I+1); j < num_score; j++)
{

if (score[min] > score[j])
min = j

} /* end of for j */

The Selection Exchange Sort

 if (min != I)

{
temp = score[I];
score[I] = score[min];
score[min] = temp;

60-140 Dr. C.I. Ezeife © 2015 Slide 216

[] p;
}

} /* for I */

return 0;

} /* of main */

55

The Bubble Sort

 Example 8.8: Sort in ascending order with bubble sort

 To obtain the S list from the U list, compare each
element in U with the next element and switch if
element is larger than next one

60-140 Dr. C.I. Ezeife © 2015 Slide 217

 56
80
75
63
58
79

The Bubble Sort Algorithm

int main (void) {
int score[6], numscore=6;
int temp, numleft ;

for (numleft=numscore-2; numleft >= 0; numleft- -)
{

f (j 0 j l ft j)

60-140 Dr. C.I. Ezeife © 2015 Slide 218

for (j = 0; j <= numleft; j++)
{

if (score[j] > score[j+1])
{ temp = score[j];

score[j] = score[j+1];
score[j+1] = temp; }

} /* end of for j */
} /* end of for numleft */

return 0;
} /* end of main */

The QuickSort

 Using Quicksort, sort
56 80 75 63 58 79

60-140 Dr. C.I. Ezeife © 2015 Slide 219

9. Pointers, Files, Records and others

 Objectives

 1. Get introduced to more advanced data structures
like pointers, files, records, stacks, linked lists and
binary trees

60-140 Dr. C.I. Ezeife © 2015 Slide 220

 Pointers

 A pointer is a variable that can store only memory
addresses as its value.

56

Pointers

Address labels memory

X John

Y 70.8
A 60

60-140 Dr. C.I. Ezeife © 2015 Slide 221

A 60

B *

C *

Here, cells X, Y and A hold ordinary data values while cells B and C hold
addresses of variables Y and A respectively.

Pointers

 A pointer variable needs to be declared before use and
the format for declaring them is:

 type_of_data_it_points_to *pointervariable;

 E.g, float *B;

60-140 Dr. C.I. Ezeife © 2015 Slide 222

g, ;

 int *C;

 Operations on Pointer Variables

• 1. A pointer variable can be initialized to 0 or null
E.g., B = 0;
meaning that it is pointing to nothing but it exists.

Pointers

 2. A pointer variable can be set to point to a variable by
assigning the address of the variable using address
operator (&).
E.g. B = &Y;

C &A

60-140 Dr. C.I. Ezeife © 2015 Slide 223

C= &A;

 3. We can read or write the data value being pointed to
by a pointer variable through the pointer variable by
using the indirection or dereferencing operator (*).
E.g., print (*B) will display 70.8
*C = *C + 10 will replace the value in A with 70.

Pointers

 4. A pointer may be subtracted from another pointer
and a pointer may be incremented with an integer
value.

 5. A pointer can be assigned another pointer variable if

60-140 Dr. C.I. Ezeife © 2015 Slide 224

they both point to values of the same type.

57

File Concepts

 So far, we have read data from the key board
 If we write a program to process one thousand student

records, reading data from the key board, then, every
time we need to run the program again, we have to
start typing in all one thousand records

60-140 Dr. C.I. Ezeife © 2015 Slide 225

start typing in all one thousand records.
 Approach in this case is inconvenient and prone to

error.
 A solution to this problem is to pre-type our one

thousand records in a disk file, save it and tell our
program to read data from a disk file and not from the
standard input device which is the key board.

File Concepts

 A file structure consists of a number of records with
each record representing a real life entity.

 A record is made up of a sequence of fields or
attributes (e.g., student id, name, major, gpa).

60-140 Dr. C.I. Ezeife © 2015 Slide 226

 Records in a file could be accessed either sequentially
or randomly.

 Sequential access files store records in some order
(usually in primary key order)

 For a file to be used in a program/algorithm, the
following steps should be taken:

File Related Program Instructions

 1. Declare a file pointer variable or logical variable
name. That is, declare a pointer variable to point to
variable of type FILE. Format is:

 FILE *filepointer;
FILE * t t

60-140 Dr. C.I. Ezeife © 2015 Slide 227

 e.g., FILE *stnptr;
 2. OPEN the file: This step associates the file pointer

variable with a disk file which is to be opened for either
read (r), write (w), update (r+) or append (a). Format
for opening a file is:
filepointer = fopen (“disk file name”, “mode”);
E.g., stnptr = fopen(“stnrec.dat”, “r”);

File Related Program Instructions

 3. Read/Write records from/into the file:
• Read copies the next record from disk file into the internal

memory variables for processing
Format is: fscanf(filePointer, “format specifiers”, variable list
to be read);
f i tf(fil P i t “f t ifi ” i bl li t t b

60-140 Dr. C.I. Ezeife © 2015 Slide 228

• fprintf(filePointer, “format specifiers”, variable list to be
printed);

• fscanf(stnptr,”%s %s %s %f ”, studentid, name, major,
&gpa);

 4. CLOSE the file
• tells the computer the file is no longer needed. Format is:

fclose(filePointer);
• E.g., fclose(stnptr);

58

File Related Program Instructions

 FILE END-OF-FILE (feof) Marker with files
 Data files contain feof marker to indicate there are no more data.
 When testing for feof marker in a file include the file pointer as

parameter. E.g., while (! feof (stnptr))

60-140 Dr. C.I. Ezeife © 2015 Slide 229

 Loop structures can be used to read lines of records from a file
sequentially as:

• K=0;
fscanf(fptr,”%s %s”, field1, field2);
while (!feof(fptr)

{
K++;
fscanf(fptr,”%s %s”, field1, field2);

}

Record Structure

 A record has many fields identified using one variable name but
the fields can be of different data types.

 E.g., record student has fields studentid, name, major (of type
string), and gpa (of type real) and can be declared as follows:

• struct student type {

60-140 Dr. C.I. Ezeife © 2015 Slide 230

struct student_type {

• char studentid[15];

• char name[20];

• char major[15];

• float gpa;

• } /* of student record type */

Record Structure
 To declare a variable of record type, we need to first

define the record structure type as we have done above
for student record type, then secondly, we define a
variable to be of this record type.

 To define a variable of student record type, we do:

60-140 Dr. C.I. Ezeife © 2015 Slide 231

yp ,

• struct student_type studentvar;

 Now we can assign values to fields of the variable
Student as follows:
• scanf(“%s %s %s %f”,
studentvar.studentid,studentvar.name,
studentvar.major, &studentvar.gpa);

Record Structure

 Any other valid operations can be performed on these fields of the
record (e.g., print, assignment etc.)

 We can also define an array of student records to store more than
one student record as follows:

• struct Record type record var[size] ;

60-140 Dr. C.I. Ezeife © 2015 Slide 232

struct Record_type record_var[size] ;

• E.g., struct Student-type Student[100];

• To print the record for student number 51, we use:

• printf (“%s %s %s %f”, Student[51].name, Student[51].age,
Student[51.major, &Student[51].GPA]);

 And to read a record variable from a file, we again specify the file pointer
first before listing the fields of the record.

 typedef command can be used to rename a record structure.

59

Other Data Structures

 Data structure specifies the way data are stored in the
computer memory

 Two types of Data Structures are

• 1. Single Valued data types [or Ordinal types]

60-140 Dr. C.I. Ezeife © 2015 Slide 233

g yp [yp]

– have ordinal values with a defined preceding or
succeeding value

– E.g. of ordinal types are char, integer, logical
type

– Real numbers do not have ordinal values

Data Structures

• 2. Structured Data Types

– Strings, arrays and records

– each variable has multi-values e.g., an array

• a Stacks

60-140 Dr. C.I. Ezeife © 2015 Slide 234

a. Stacks

• A stack is a list of numbers

• All additions and deletions are at one end (top of
stack)

Data Structures

• A last-in, first-out procedure

• Operations defined on stack are

– Push to add a value to the top of stack, and

– Pop to delete a value from top of stack

60-140 Dr. C.I. Ezeife © 2015 Slide 235

Pop to delete a value from top of stack

• E.g., trace the following procedure on stack data
structure and show the states of the stack before and
after the procedure.

• It should be noted that before data is pushed onto
stack, there has to be room to hold the data

• Also, before data is popped from stack, there is data available

Data Structures

• Push 4
Push 5
Push Y
Pop A
push 7

10A B 2 Y 3

60-140 Dr. C.I. Ezeife © 2015 Slide 236

Push 8
push B

60

b. Linked Lists

 A linked list is a data type where each record points to
its successor except for the last record

 Each record contains a field (the linking field) that
contains the address of the next record in sequence.

60-140 Dr. C.I. Ezeife © 2015 Slide 237

 The link field of the first record points to the second
record, that of the second record points to the 3rd
record, etc. and that of the last record contains zero
meaning it points to no record.

 It is easier to add or delete records from a linked list
file than an array of records

Linked Lists

 With the linked list, deleted records are placed in an
empty list and additions are placed in the records that
had been deleted or at the bottom of the file

 Example is Figure 9.1 of course text.

60-140 Dr. C.I. Ezeife © 2015 Slide 238

Linked Lists

 Record of this type can be declared as follows:

 struct list_type

{char id[15];

char name[20];

60-140 Dr. C.I. Ezeife © 2015 Slide 239

char name[20];

list_type *listptr ;

}

 struct list_type *listptr ;

c. Binary Trees

 A tree structure uses a top down or hierarchical
structure for data

 Each record is stored as a node of the tree. E.g.

g

60-140 Dr. C.I. Ezeife © 2015 Slide 240

g

d k

b
f i l

61

Binary Trees

 A parent node is at a higher level. The nodes at a lower
level of a node are its children.

 E.g. g is the root node, d is the parent of b and f. b and f
are children of d.

A b i f h i f d

60-140 Dr. C.I. Ezeife © 2015 Slide 241

 A subtree consists of a chain of nodes.

 A branch is a path from root to leaf.

 A binary tree is a tree in which each node has at most
two children

 Each record (a node) contains two link fields, one
pointing to the left node (child) and the other pointing to
the right child.

Binary Trees (Declaration

 To declare a variable of type binary tree, we do:

struct btree_type {

char node_name[20];

btree type *leftPtr;

60-140 Dr. C.I. Ezeife © 2015 Slide 242

btree_type leftPtr;

btree_type *rightPtr;

} btree_ptr (pointer to btree_type)

 struct btree_type btree_ptr;

Binary Trees



60-140 Dr. C.I. Ezeife © 2015 Slide 243

Binary Trees (Creation Algorithm)

60-140 Dr. C.I. Ezeife © 2015 Slide 244

62

Binary Trees (Traversal Algorithms)

 Records stored as binary trees have to be processed
and printed in order

 Processing of these records can be done using tree
traversal techniques

60-140 Dr. C.I. Ezeife © 2015 Slide 245

 3 tree traversal algrorithms are used

• 1. Preorder (N L R)

• 2. Inorder (L N R)

• 3. Postorder (L R N)

Binary Trees (Traversal Algorithms)

 E.g. the order of the binary tree in Fig. 14.13 when
processed in each of these methods are:

 1. Preorder: g d b f k i l

 2. Inorder: b d f g i k l

60-140 Dr. C.I. Ezeife © 2015 Slide 246

g

 3. Postorder: b f d i l k g

