60-415: Advanced and Practical Database
Systems (with Oracle PL/SQL and Form)

GETTING OUR HANDS DIRTY Database client, Forms,
:DB APPLICATION BUILDING Query databa:

/’/\/

Database Server
Databases, SQL,
Sqlplus,PL/SQL

Dr. C.I. Ezeife

L/ School of Computer Science,

University of Windsor, Canada.
Email: cezeife@uwindsor.ca

60-415 Dr. C.I. Ezeife © 2008 Slide 1

Course Objectives

Broad Course Objective

- Components of a database management system

- Acquire database development skills necessary for building real life database
applications with Oracle DBMS.

Reference Materials

e C.I Ezeife, Custom Course Ware, Course Notes for 60-415, Project
Using Selected Tools: Advanced and Practical Database Systems (with
Oracle PL/SQL and Form), University of Windsor, Fall 2006.

» Benjamin Resenzweig and Elena Silverstrova, “Oracle PL/SL
Interactive Workbook™, The Prentice Hall PTR Oracle Series, 2003
edition 2, ISBN 0-13-047320-0

« Baman Motivala, “Oracle Forms Interactive Workbook™, The PTR
Oracle Series, 2000 edition 1, ISBN 0-13-015808-9

* Alex Morrison & Alice Rischest, “Oracle SQL Interactive
Workbook”, The PTR Oracle Series, 2003 edition 3, ISBN 0-13-
145131-6

60-415 Dr. C.1. Ezeife © 2008 Slide 2

Course Objectives

= Companion web site:
http://www.phptr.com/Rosenzweig

http://www.phptr.com/phptrinteractive
http://www.phptr.com/motivala

60-415 Dr. C.I. Ezeife © 2008 Slide 3

Course Objectives

Detailed Course Objective
Part A: DBMS Components (Review)()
DB design and Normal Forms
SQL DDL & DML
Oracle SqlPlus (slides 7 — 10; slide 26)
File Organizations and Indexing
Query Optimization
Transaction Processing
Part B: Oracle Database Development (slides 69 — 204)
e Oracle PL/SQL
— Oracle PL/SQL summary (slides 205 — 377)
Part C: Database Development (GUI) (slides 205 — 377)
* Oracle Forms
— Oracle Forms Summary (slides 207 — 219)

60-415 Dr. C.1. Ezeife © 2008 Slide 4

Hardware and Software Requirements

Software Requirements

1. Oracle DB Server (e.g., Oracle 10g R2 or a slightly lower
version)

2. Oracle DB Client (e.g., Oracle 10g)

3. Sqlplus

4. Access to WWW

5. Windows OS (e.g., XP) and / or Unix OS (e.g., Solaris)
Hardware Requirements

1. A Personal Computer (e.g., 1 GHz processor, --Memory)
2. A Unix Multiprocessor System (e.g., sol or luna systems)

60-415 Dr. C.I. Ezeife © 2008 Slide 5

Hardware and Software Requirements

Note that both the software 1 & 2 can reside on the
same computer or on two separate computers. Also,
while the Oracle client software [e.g., Oracle 10g client]
Is most suitable on a Windows based PC, the Oracle
Server software can reside on a Unix machine (like CS
sol / luna)

60-415 Dr. C.1. Ezeife © 2008 Slide 6

SQLPLUS

 Sqlplus is the software for executing SQL stmts
(Sqlplus is to SQL stmts what C compiler isto C
programs)

= How to end an SQL command in Sqlplus

SQL command can be ended in Sqlplus in one of the
following 3 ways:
 with a semicolon (;)
 with a forward (/) on a line
» with a blank line

60-415 Dr. C.I. Ezeife © 2008 Slide 7

SQLPLUS

= The SQL Buffer

» Sqlplus stores recently typed SQL command or
PL/SQL block in an area of memory called SQL
buffer.

* The SQL buffer remains unchanged until a new
command is entered or you exit sqlplus.

* The SQL buffer can be edited by typing EDIT at
SQL prompt.

* While SQL and PL/SQL stmts are captured in the
SQL buffer, Sglplus commands (e.g., SET LINE...)
are not captured in the buffer.

60-415 Dr. C.1. Ezeife © 2008 Slide 8

SQLPLUS

* When you create stored procedures, functions or
packages, you begin with CREATE command.

* When you begin a PL/SQL block, you start by
entering the word DECLARE or BEGIN

* Typing either BEGIN, DECLARE or CREATE puts
the Sqlplus into PL/SQL mode.

= Running PL/SQL Blocks in Sglplus
= How to End a PL/SQL block in Sqglplus
* A PL/SQL block is ended with a period (.).

60-415 Dr. C.I. Ezeife © 2008 Slide 9

SQLPLUS

How to Execute a PL/SQL Block in Sqlplus
e A PL/SQL block is executed with a forward slash (/) or RUN
e A PL/SQL program can be edited in sqlplus using EDIT

e A PL/SQL program can be saved as a script file with a .sql
extension. In that case, the file should be ended with a period
to mark end of program, and followed with a forward slash (/)
to execute the program when loaded.

e To execute a script file in PL/SQL, use @filename.sql

E.g., sql>@scriptfile.sql

60-415 Dr. C.I1. Ezeife © 2008 Slide 10

Part A: DBMS Components (Review)
DBMS OVERVIEW(What are?)

= What is a database? : It is a collection of data, typically
describing the activities of one or more related
organizations, e.g., a University, an airline reservation
or a banking database.

= What isa DBMS?: A DBMS is a set of software for
creating, querying, managing and keeping databases.
Examples of DBMS’s are DB2, Informix, Sybase,
Oracle, Microsoft Access (relational).

= Alternative to Databases: Storing all data for
university, airline and banking information in separate
files and writing separate program for each data file.

60-415 Dr. C.I. Ezeife © 2008 Slide 11

Components of a DBMS

A DBMS has the following basic components

« 1. A specific data model: the data structure for logically
representing data by the DBMS (e.g., relational, object-
oriented, hierarchical etc.).

e 2. Database Design and Tuning: Allows schema design at the
conceptual level (e.g., normalization, fragmentation of data
and performance tuning)

e 3. A Data definition and data manipulation language for
creating files in the database and querying the database (e.g.,
SQL, QBE)

4. File Organization techniques for storing data physically on
disk efficiently (e.g., B+-tree indexing or ISAM indexing).

60-415 Dr. C.I1. Ezeife © 2008 Slide 12

Components of a DBMS

* 5. Query Optimization and Evaluation facility: helps
to generate the best query plan for executing a
query efficiently.

6. Transaction Processing

— Concurrency Control and recovery: Allowing
more than one user access data concurrently and
maintaining a consistent and correct data even
after hardware or software failure.

— Database Security and Integrity Issues:

Protecting data from inconsistent changes made
by different concurrent users.

60-415 Dr. C.I. Ezeife © 2008 Slide 13

1. DBMS Data model

= Data model provides the data structure that the
database is stored in, and the operations allowed on
this data structure.

= Some existing DBMS data models are relational, entity-
relationship model, object-oriented and hierarchical
data model.

Schema in the relational model is used to describe the
data in the database.

60-415 Dr. C.I1. Ezeife © 2008 Slide 14

1. DBMS Data model

nstudent

Example of a relational instance of the table student is
given above. Example of integrity constraint that can be
defined on this table is “Every student has a unique id”.

60-415 Dr. C.I. Ezeife © 2008 Slide 15

1. DBMS Data model

Data in DBMS are described in 3 levels of abstraction
namely:

» External schema (representing how different users
view the data). E.g., view for students with gpa > 3.2

¢ Conceptual Schema (logical schema) - data
described in terms of data model (e.g.)
— student (stuid:string, name:string, gpa:real)
— faculty (fid:string, fname:string, salary:real)
— courses (cid:string, cname:string, credits:integer)
— Rooms (rno: integer, address:string, capacity:integer)
— Enrolled (stuid:string, cid:string, grade: string)

60-415 Dr. C.I1. Ezeife © 2008 Slide 16

1. DBMS Data model

— Teaches (fid:string, cid:string)
— Meets_In (cid:string, rno:integer, time:string)

» Physical Schema: describes how data are actually
stored on disks and tapes including indexes.
Example physical design are:

— store all relations as unsorted files of records

— create indexes on the first column of student, faculty and course
relations, the salary column of faculty and capacity column of
rooms.

60-415 Dr. C.I. Ezeife © 2008 Slide 17

2. Database Design and Tuning model

= The steps in database design are:

= 1. Requirements analysis: information about environment gathered

= 2. Conceptual & Logical Design: Presents a high-level description of data
and relationship between data entities (e.g., ER model). The second part
is the logical design, which converts the ER model to relational database
schema and applies refinement guided through the powerful theory of
normalization.

3. Physical Database Design: Here indexes are built on relations, tables
are clustered or re-designed using information about work load to
improve performance.

4. Database Tuning: Uses interaction between 3 steps above to achieve
better performance.

5. Security Design: Identify user groups and roles (of privileges) are

assigned to appropriate user groups. Example user groups are DBA.
PUBLIC.

60-415 Dr. C.I1. Ezeife © 2008 Slide 18

2. Quick Review of ER Model

The Entity-Relationship (ER) data model allows us to describe the
data involved in a real world enterprise in terms of objects and
their relationships.

An entity is an object in the real world (e.g., Student, Faculty,
Courses, Rooms)

A relationship is an association among two or more entities (e.g.,
Enrolled, Teaches, Meets_In).

An entity set (e.g., student), has a collection of similar entities
described by the set of attributes (e.g., stuid, name, gpa).

Each attribute has a domain of possible values (e.g., domain of gpa
is 0to 13)

An entity set (e.g., student) is represented by a

60-415 Dr. C.I. Ezeife © 2008 Slide 19

2. Database Design and Tuning model
(ER model)

An entity set is represented by a rectangle, an attribute by an oval
with each primary key attribute underlined.

A relationship is represented by a diamond box and a relationship
is uniquely identified by the participating entities.

An arrow from an entity to a relationship places a key constraint
requiring that each entity value has only one such relationship.

A relationship set can be (eg. Meets-in: A room is
used for teaching many courses but no two courses are meeting in
same room at the same time).

A relationship can also be many-to-many (e.g. Enrolled: a student
can enroll in several courses and a course can have several
students enrolled in it.

A relationship can as well be one-to-one (e.g. Teaches: if a faculty
is allowed to teach only one course and a course is taught by only
one faculty)

60-415 Dr. C.I1. Ezeife © 2008 Slide 20

10

2. Database Design and Tuning model

Schema Refinement and Normal Forms
= Schema refinement in relations is an approach based on
decomposition of relations.

= This is intended to address problems caused by redundant storage
of information which are: wasting storage, update anomalies,
insertion anomalies and deletion anomalies.

Ssn pame lot rating wage hours
123-22-3666 Attishoo 48 8 10 40
231-31-5368 Smiley 22 8 10 30
131-24-3650 Smethurst 35 5 7 30
434-26-3751 Guldu 35 5 7 32
612-67-4134 Madayan 35 8 10 40

Hourly-Emps Relation

60-415 Dr. C.I. Ezeife © 2008 Slide 21

2. Database Design and Tuning model

= Assume that wage attribute is determined by rating
attribute. And if same rating appears in the rating
column of two tuples, then same value must appear in
the wage column.

= Since rating 8 corresponds to wage 10, this
information is repeated. If we change wage for tuple 1
to 9, this is update anomaly. We can not insert a tuple

for an employee unless we know her hourly rating,
which is insertion anomaly.

= If we delete all tuples with given rating, we lose the association
between rating value and wage (deletion anomaly)

60-415 Dr. C.1. Ezeife © 2008 Slide 22

11

2. Database Design and Tuning model

Functional dependencies and other integrity constraints force an

association between attributes that may lead to redundancy.

For a non-empty set of attributes X, Y in relation R, functional

dependency FD X — Y is read as X functionally determines Y and

is true if the following holds for every pair of tuples t; and t, in R.
t,. X=1t, X, then,t,. Y =t,. Y

Note that both sides of an FD contain sets of attributes

Many of the problems of redundancy can be eliminated through

decomposition of relations guided by the theories of normal forms

summarized as:

60-415 Dr. C.I. Ezeife © 2008 Slide 23

2. Database Design and Tuning model

The normal forms based on FDs are first normal form (1NF),
second (2NF), third (3NF) and Boyce-Codd normal form (BCNF)

A relation is in INF if every field contains only atomic values.
Second normal form (2NF) is historical and its concerns are

better taken care of by 3NF. A relation is in 2NF if every non-key
attribute is fully functionally dependent on the primary key.

R is in 3NF if every non-key attribute is non-transitively
dependent on the primary key.

R is in BCNF if every determinant is a candidate key and
prevents forming relations with multiple composite keys that
overlap.

A relation R is in 5NF if for every JD (join dependency) that
holds over R one of the following is true: join of Ri = R for all i,

or Thlat is, if a join of relations Ri gives back R without any loss of
atuple.

60-415 Dr. C.I1. Ezeife © 2008 Slide 24

12

3. Data Definition and Manipulation
Languages (DDL & DML): Overview of
Operations

Basic DDL and DML operations for SQL (structured query lang):
e 1. Create tables [Create Table ...]
e 2. Destroy tables [Drop Table ...]
¢ 3. Change tables [Alter Table]
e 4. Insert Data into Tables [Insert Into]
5. Delete Data from Tables [Delete from ...]
6. Update Data in Tables [Update]
. Query Tables [Select ... from ... where ...]

8. Find the structure of DB, relation, view, index, etc.[querying
catalogue with select * from tab; select * from cat; Desc Table;
etc.]

.
~

60-415 Dr. C.I. Ezeife © 2008 Slide 25

3. (DDL & DML): How To Run SQL

= Inorder to create and query database tables, user needs to connect to
SQL interpreter called Sqglplus as follows:

= 1. From Unix account, type:

>Sqlplus
>username@cs01
>password

2. To quit sqglplus, type:
> exit

3. To load and run a .sql file, type:
> @filename

4. To execute a SQL command like “Create Table ...”, type:
> Create Table student(stuid VARCHAR(20),;

** A Summary Handout of other Sqlplus commands for doing various things
is handed out in class and posted on the course web site.

60-415 Dr. C.I1. Ezeife © 2008 Slide 26

13

3. DDL & DML: Create Tables

= Example of a DDL and DML language is structured
query language (SQL).
= DDL is used to create and delete tables and views, and
to modify table structures. E.g. of an SQL instruction
for creating the table student is:
CREATE TABLE student (stuid VARCHARZ2(20),
name VARCHAR?2 (20),
gpa NUMBER(5,2),
PRIMARY KEY (stuid));

60-415 Dr. C.I. Ezeife © 2008 Slide 27

3. DDL & DML.: Destroy and Alter
Tables

To destroy a table or view, e.g., student, use:
« DROP TABLE student RESTRICT;
* or
* DROP TABLE student CASCADE;

= The RESTRICT keyword prevents the table from
being destroyed if some integrity constraints are
defined on it. The CASCADE keyword destroys both.
= To modify table structure, use:
« ALTER TABLE student
ADD COLUMN major CHAR (20);

60-415 Dr. C.I1. Ezeife © 2008 Slide 28

14

DDL & DML.: Insert, Delete, Update Data
into/from Tables

An example instruction for inserting a record into the
created student table is:

Insert into student(stuid, name, gpa) values (‘53666’,
‘Jone S’, 3.4);

= To delete the inserted tuple, use:

Delete from student s

where s.name = ‘Jone S’;

= To Update the student table, use an instruction like:
= Update student s

set s.gpa =s.gpa + 10

where s.gpa >= 3.5;

60-415 Dr. C.I. Ezeife © 2008 Slide 29

3. DDL & DML.: Querying Tables

= The DML subset of SQL is used to pose queries and to
insert, delete and modify rows of tables.

= For example, to query the student table in order to
print the ids, names and gpas of all students with gpa >
3.2, we use:
¢ SELECT s.stuid, s.name, s.gpa
FROM student s
WHERE s.gpa > 3.2;

= The basic form of an SQL query is as follows:

60-415 Dr. C.1. Ezeife © 2008 Slide 30

15

3. DDL & DML.: Querying Tables

o SELECT [DISTINCT] select-list
FROM from-list
WHERE qualification;

= from-list is a list of table names possibly followed by a
range variable.

= Select-list is a list of (expressions) column names of
tables from the from-list.

= The qualification is a Boolean combination in the form
expression op expression with possible connectives
(AND, OR, NOT)

60-415 Dr. C.I. Ezeife © 2008 Slide 31

3. DDL & DML.: Querying Tables

n These tables model sailors reserve boats world
Sailors: instance S1

Reserves: instance R1

Sailors: instance S2
60-415 Dr. C.I1. Ezeife © 2008 Slide 32

16

3. DDL & DML.: Querying Tables

= DISTINCT keyword is optional and eliminates
duplicate tuples.

= E.g., find the names of sailors who have reserved boat
number 103.

* Select S.sname
from sailors S, Reserves R
where S.sid = R.sid
And R.bid = 103;

60-415 Dr. C.I. Ezeife © 2008 Slide 33

3. DDL & DML.: Querying with
Aggregate, Set and other Operators

Aggregate Operators

SQL supports a more general version of column list
Each item in a column list can be of the form
expression AS column-name, where expression is any

arithmetic or string expression over column names and
constants.

= A column-list can also contain aggregates (sum, count,
avg, min, max).

= It supports pattern matching through the LIKE
operator, along with the use of wild-card symbols

60-415 Dr. C.I1. Ezeife © 2008 Slide 34

17

3. DDL & DML.: Querying with
Aggregate, Set and other Operators

= 9% (zero or more characters) and - (exactly one
arbitrary character).

= E.g., Find the ages of sailors whose name begins and
ends with B and has at least three characters.
 SELECT S.age
from sailors
where s.name LIKE ‘B - %B’;
= SQL supports the set operations unions, intersect and
difference under names UNION, INTERSECT, and
EXCEPT.

60-415 Dr. C.I. Ezeife © 2008 Slide 35

3. DDL & DML.: Nested Queries

= Nested Queries

= A nested query is a query that has another query
embedded within it. The embedded query is called
subquery.

= E.g., Find the names of sailors who have reserved boat
number 103.

e Select s.same
from sailors S

where s.sid IN (Select R.sid
from Reserves R
where R.bid = 103);

60-415 Dr. C.1. Ezeife © 2008 Slide 36

18

3. DDL & DML.: Nested Queries

= Can also be expressed as:

 Select S.sname
from sailors S
where Exists (Select *
from Reserves R
where R.bid = 103
And S.sid = R.sid);
The latter version is a correlated nested query
Other set comparison operators are UNIQUE, ANY, ALL.
IN and NOT IN are equivalent to =ANY and <>ALL respectively.

60-415 Dr. C.I. Ezeife © 2008 Slide 37

3. DDL & DML.: Querying with
Group By and Having clauses

= General SQL form is

« Select [Distinct] select-list
from from-list
where qualification
Group by grouping-list
Having group-qualification;

* Example query is: Find the age of the youngest
adult sailor for each rating level with at least 2 such
sailors.

60-415 Dr. C.1. Ezeife © 2008 Slide 38

3. DDL & DML.: Querying with Group By
and Having clauses

Solution is:

Select s.rating, Min(s.age) As minage
from sailors s

where s.age >=18

group by s.rating

Having count(*) > 1;

Result is:

60-415 Dr. C.I. Ezeife © 2008 Slide 39

3. DDL & DML.: Null Values

Null Values

A new sailor, Bob, may not have a rating assigned,
leaving the data value for this column unknown.
Some columns may be inapplicable to some sailors, e.g.,

column maiden-name is inapplicable to men and single
women sailors.

= SQL provides a column value for these kinds of

situations.

SQL provides a comparison operator to test if a column
value is null (IS NULL) and (IS NOT NULL).

60-415 Dr. C.I1. Ezeife © 2008 Slide 40

20

3. Querying System Catalogs

= A DBMS maintains information about every relation,
index, views that it contains which are stored in a
collection of relations called system catalog.
= System catalog has information about each relation
 its name, filename, file structure
* name and type of each of its attributes
 index name of each index on the table
« integrity constraints, number of tuples
* name and structure of the index
 for each user, accounting and authorization information. Etc.

e Select * from cat; select * from tab; Desc tablename;

are some ways to query the catalog.
60-415 Dr. C.I. Ezeife © 2008 Slide 41

3. DDL & DML- Embedded SQL [Optional
Part]

Building db applications with nice graphical user interface would
require facilities provided by general purpose langs in addition to
SQL. The use of SQL commands within a host lang program is
called embedded SQL.

= In embedded SQL, SQL statements are used wherever a stmt in
the host lang is allowed and SQL stmts are clearly marked. Eg., in
C (e.g., Oracle Pro*C), SQL stmts must be prefixed by EXEC SQL

= Any host lang variable for passing arguments into an SQL
command must be declared in SQL. Such host lang variables must
be prefixed by (:) in SQL stmts and be declared between the
commands EXEC SQL BEGIN DECLARE SECTION and EXEC
SQL END DECLARE SECTION.

60-415 Dr. C.I1. Ezeife © 2008 Slide 42

3. DDL & DML- Embedded SQL [Optional
Part]

= E.g., inembedded C, we can declare variables c-sname, c-sid, c-
rating and c-age as follows:
EXEC SQL BEGIN DECLARE SECTION

char c-sname[20];
long c-sid;
short c-rating;
float c-age;
EXEC SQL END DECLARE SECTION
The above are C variables in C data types to be read and set in an
SQL run time environment.

The SQL data types corresponding to the various C types are SQL
CHAR(20) for C’s char[20], SQL’s INTEGER for C’s long, SQL’s
SMALLINT for C’s short, SQL’s NUMBER(N, D) for C’s float.

60-415 Dr. C.I. Ezeife © 2008 Slide 43

3. DDL & DML-JDBC/ODBC [Optional
Part]

ODBC (open database connectivity) and JDBC (Java database

connectivity) also allow integration of SQL with a general purpose

programming lang.

ODBC and JDBC connect to databases through application

programming interface (API).

= ODBC and JDBC connectivity provide more portable access to
different database management systems than embedded SQL.

= With ODBC and JDBC, all interactions with a specific DBMS
occurs through a DBMS specific driver.

= Thedriver is responsible for translating ODBC or JDBC calls into
DBMS-specific calls.

= Available drivers are registered with a driver manager.

60-415 Dr. C.I1. Ezeife © 2008 Slide 44

22

3. DDL & DML- JDBC/ODBC [Optional
Part]

JDBC is a collection of Java classes and interfaces for
enabling database access from programs written in
Java lang.

= The JDBC classes and interfaces are part of the
java.sql package. Thus, all Java database applications
should include at the beginning
import java.sql.*

60-415 Dr. C.I. Ezeife © 2008 Slide 45

3. DDL & DML- Stored Procedures like
PL/SQL

A stored procedure is a program executed through a single SQL
stmt locally executed and completed within the process space of
the database server.

Once a stored procedure is registered with the db server, different
users can re-use it.

All major db systems provide ways for users to write stored
procedures in a simple general purpose lang close to SQL - e.g.,
Oracle PL/SQL.

Part B of course teaches Oracle PL/SQL in detail.

60-415 Dr. C.I1. Ezeife © 2008 Slide 46

23

3. Relational Algebra and Calculus

Two formal query langs. associated with the relational
model are relational algebra and calculus.

A relational algebra operator accepts one or 2 relation
instances as arguments and returns a relation instance
as output

Basic algebra operators are for selection, projection,
union, cross-product and difference.

There are some additional operators defined in terms
of basic operators (e.g., Joins — conditional, equijoin,
natural, outer (theta, left and right outer) joins).

60-415 Dr. C.I. Ezeife © 2008 Slide 47

3. Views

Views are tables that are defined in terms of queries over other
tables and its rows are not generally stored explicitly in the
database but computed from definition.

The view mechanism can be used to create a window on a
collection of data that are of interest to a group of users, and it
provides logical data independence since changes in the base tables
do not affect the view design.

The following query creates a view to find the names and ages of
sailors with a rating > 6, and include the dates.
 CREATE VIEW ActiveSailors(name, age, day)
AS SELECT S.name, S.age, R.day
FROM Sailors S, Reserves R
WHERE S.sname = R.sname AND S.rating > 6;

60-415 Dr. C.I1. Ezeife © 2008 Slide 48

24

4. File Organization techniques

= Datain a DBMS are stored on storage devices such as
disks and tapes.

= The file manager issues requests to disk manager to
allocate or free space for storing records in units of a
page (4KB or 8KB).

= The file manager determines the page of a requested
record and requests that this page be brought to the
buffer pool (part of memory) by the buffer manager.

= The disk composition is shown in the following figure.

60-415 Dr. C.I. Ezeife © 2008 Slide 49

4. File Organization techniques

Structure of a Disk
Disk

am Disk h E\—’ spindle
% ;— Disk block
E\\— cylinder
< > tracks
T ~4—— aplatter
Arm movement =——— L 9 rotation
60-415 Dr. C.1. Ezeife © 2008 Slide 50

25

4. File Organization techniques

The time to access a disk block is:
Seek time + Rotational delay time + Transfer time

Seek time is the time to move disk heads to the track on
which a desired block is located.

Rotational delay is the waiting time for the desired
block to rotate under the disk head.

= Transfer time is the time to actually read or write the
data in the block once the head is positioned.

= To minimize disk 1/0O time, records should be stored
such that frequently used records be placed close

together.
60-415 Dr. C.I. Ezeife © 2008 Slide 51

4. File Organization techniques

= The closest we can place two records on disk is on the
same block, or then on the same track, same cylinder or
adjacent cylinder in decreasing order of closeness.

= Pages of records are stored on disk and brought up to
memory when any record in them are requested by a
database transaction.

= Thus, the disk manager organizes a collection of
sequential records into a page.

= Higher levels of DBMS code treat a page as a collection
of records and a file of records may reside on several

pages. How can pages be organized as a file?
60-415 Dr. C.I. Ezeife © 2008 Slide 52

26

4. File Organization techniques

= The possible file structures are:

1. Heap files: keep unordered data in pages in a file
(called heap file). To support inserting, deleting a
record, creating and destroying files, there is need to
keep track of pages in a heap file using doubly
linked list of pages or a directory of pages.

e 2. Ordered files: records are stored in an order in
data pages of the file.

3. Indexes: a file of ordered records for quickly
retrieving records of the original data file.

60-415 Dr. C.I. Ezeife © 2008 Slide 53

4. Indexes

Assume we have a database file of 1 million records
with structure (student id, name, gpa), to get the
students with gpa > 4.0, we need to scan the 1 million
records. Slow approach.

= A way to speed up processing of queries is build an index on the gpa
attribute and store as an index file, which stores the records in gpa order.
An index is an auxilliary data structure that helps to find records meeting
a selection condition.
Every index has an associated search key, a collection of one or more
fields of the file we are building the index; any subset of the field can be a
search key.
Indexed file speeds up equality or range selections on the search key and
quick retrieval of records in index file is done through access methods.

60-415 Dr. C.1. Ezeife © 2008 Slide 54

27

4. Indexes

Examples of access methods (organization techniques for index files) are
B+ trees, hash-based structures

A database table may have more than one index file.

A clustered index has its ordering the same or close to the ordering of its
data records in the main database table. E.g., index on student id is
clustered while that on gpa is unclustered.

A dense index contains at least one data entry for every search key value
that appears in a record in the table.

A non-dense or sparse index contains one entry for each page of records
in the data file.

A primary index includes the primary key as its search key while a

secondary index is an index defined on a field other than the primary key.

60-415 Dr. C.I. Ezeife © 2008 Slide 55

4. Indexes

Tree-Structured Indexing
Assume we have the students file sorted on gpa,

To answer the range query “Find all students with gpa
higher than 3.0, we identify the first such student by
doing a binary search of the file and then scan the file
from that point on.

An ISAM tree is a static structure which is effective
when the file is not updated frequently.

B+ tree is a dynamic structure that adjusts to changes
(addition and deletion) in the file gracefully.

60-415 Dr. C.1. Ezeife © 2008 Slide 56

28

4. Indexes — Creating in Oracle

In Oracle, you can create an index with the general syntax:
Create [Unique|Bitmapped] index indexname

ON tablename
(Column|Col_expression[,column|col_expression ...);
Example:

Create INDEX sect-location_i

ON section(location);

A subsequent like this below will take advantage of this index by
retrieving rows faster than sequentially.

Select course-no, sect-no

from section

where location = ‘L.206’;

60-415 Dr. C.I. Ezeife © 2008 Slide 57

4. Indexes

B+ tree supports equality and range queries well

In ISAM index structure there are data pages, index
pages and overflow pages.

Each tree node is a disk page and all the data reside in
the leaf pages.

At file creation, leaf pages are allocated sequentially
and sorted on key value. Then the non-leaf pages are
allocated.

Additional pages needed because of several inserts are
allocated from an overflow area.

60-415 Dr. C.1. Ezeife © 2008 Slide 58

29

4. Indexes (ISAM)

= The basic operations of insert, delete and search are
accomplished by searching for the non-leaf node less
or equal to the search key and following that path to
a leaf page where data is inserted, deleted or
retrieved. An overflow page may need to be checked.
An ISAM tree

|10 | 15 |20% |27¢| |33 |37%| | 40* [46| | 50+ 55%| |63+ |07+ leaf

23*| | Overflow pages
60-415 Dr. C.I. Ezeife © 2008 Slide 59

4. Indexes (ISAM)

= An insert operation of record 23 causes an overflow
page since each leaf page holds only 2 records. Inserts
and deletes affect only leaf pages

= Number of disk 1/0 is equal to the number of levels of
the tree and is loge P where P is the number of
primary leaf pages and F is the fan out or number of
entries per index page. NisP * F.

= This is less than number of disk 1/O for binary search,
which is log, N or log, (P * F) . E.g., with 64 entries, 32
pages and 2 entries per page, ISAM’s disk 1/0 is 5
while binary search disk 1/O is 6.

60-415 Dr. C.1. Ezeife © 2008 Slide 60

30

4. Indexes (B+ trees)

B+ tree search structure is a balanced tree in which the
internal nodes direct the search and the leaf nodes
contain the data entries.

Leaf pages are linked using page pointers since they are not allocated
sequentially.

Sequence of leaf pages is called sequence set.

It requires a minimum occupancy of 50% at each node except the root.

If every node contains m entries and the order of the tree (a given
parameter of tree) is d, the relationship d < m < 2d is true for every node
except the root where itis 1< m < 2d.

Non-leaf nodes with m index entries contain m+1 pointers to children.
Leaf nodes contain data entries.

60-415 Dr. C.I. Ezeife © 2008 Slide 61

4. Indexes (B+ trees)

| 24¢|27+| 20| | | 33|34+ 38* |30%|

A b+ tree of height 1, order d=2

Insertion of 8 into the tree leads to a split of leftmost leaf node as well as
the split of the index page to increase the height of the tree.

Deletion of a record may cause a node to be at minimum occupancy and
entries from an adjacent sibling are then redistributed or two nodes may
need to be merged.

60-415 Dr. C.I1. Ezeife © 2008 Slide 62

31

5. Query Optimization and
Evaluation

Queries are parsed and then presented to a query optimizer which
is responsible for identifying an efficient execution plan for
evaluating the query.

The goal of a query optimizer is to find a good evaluation plan for
a given query.
A query evaluation plan consists of an extended relational algebra
tree with annotations indicating the access methods to use for each
relation and the implementation method to use for each relational
operator
Result sizes may need to be estimated and the cost of the plans
estimated.
The goal of a query optimizer is to find a good evaluation plan for
a given query.

60-415 Dr. C.I. Ezeife © 2008 Slide 63

6. Transaction Processing

Concurrency control and Recovery

A transaction is a DML statement or group of statements that
logically belong together.

The group of statements is defined by two commands:

COMMIT and ROLLBACK in conjunction with the SAVEPOINT
command.

An interleaved execution of several transactions is called a
schedule.

An execution of a user program or transaction is regarded as a
series of reads and writes of database objects.

The important properties of database transactions are ACID for
atomicity, consistency, isolation and durability.

60-415 Dr. C.I1. Ezeife © 2008 Slide 64

32

6. Transaction Processing

Assume we have two transactions T1 and T2, defined as follows:
« T1:Ry(A), W,(A), R,(C), W,(C)
* T2: Ry(B), W,(B)
A schedule for running T1 and T2 concurrently should produce
the same effect as running T1, T2.
One such schedule is:
* Ry(A), W,(A), Ry(B), W,(B) , commit(T2), R,(C), W,(C),
commit(T1)
Approaches for concurrency control include (1)strict two-phase
locking (strict 2PL), (2) 2 Phase locking, serializability and

Recoverability, (3) View Serializability, (4) Optimistic concurrency
control and (5) Timestamp-based concurrency control.

60-415 Dr. C.I. Ezeife © 2008 Slide 65

6. Crash Recovery

The recovery manager is responsible for atomicity (ensuring that
actions of uncommitted transactions are undone) and durability
(ensuring that actions of committed transactions survive system
crashes and media failures).

It keeps a log of all modifications on stable storage. The log is used
to undo the actions of aborted and incomplete transactions and to
redo the actions of committed transactions.

DATABASE SECURITY

Issues of interest in a secure database are secrecy, integrity and
availability

Secure policy and mechanisms are needed to enforce this

60-415 Dr. C.1. Ezeife © 2008 Slide 66

33

6. Database Administrator

Role of the Database Administrator (DBA) are:

< 1. Creating new accounts — granting privileges to database
users as follows:

Create User Music
identified by listen;

Grant All to Music;

e 2. Mandatory control issues: must assign security classes to
each database object and security clearance to each

authorization id in accordance with the chosen security policy.

e 3. Maintaining Audit trail: log of updates or all actions, etc.

60-415 Dr. C.I. Ezeife © 2008 Slide 67

6. Database Administrator

A privilege is a right to execute a particular type of SQL
statements. Two types exist — system and object privileges.

A system privilege or an object privilege is granted to a user with
GRANT command.

A role is a collection of privileges.

Example system privilege is right to create a table. E.g. object
privilege is that to select from an Instructor table. Object
privileges are granted for a particular object.

= To extend an object (table, index, views) privilege to another user,
you must be the object owner and should have been given this
GRANT privilege with the GRANT OPTION.

60-415 Dr. C.1. Ezeife © 2008 Slide 68

34

Part B: Oracle Database Development
(Oracle PL/SQL)

= PL/SQL in Client/Server Architecture

e Oracle applications can be built using client-server
architecture where the Oracle database resides on the server
and the program that requests data and changes on the
database resides on a client machine.

e The client program can be written in C, Java or PL/SQL

e PL/SQL is not a stand-alone programming language like C or
Java, but is part of the Oracle RDBMS.

e PL/SQL can reside in two environments — client side and
server side.

e PL/SQL blocks are processed by PL/SQL engine, a special
component of such Oracle products as Oracle server, Oracle
Forms, Oracle Reports.

e The SQL processor resides only on the Oracle server.

60-415 Dr. C.I. Ezeife © 2008 Slide 69

PL/SQL Formatting Guide

PL/SQL Formatting Guide
CASE

PL/SQL is case-insensitive [use upper case for Reserved keywords
and lower case for others].

WHITE SPACE

Use proper indentation for readability.

= NAMING CONVENTIONS

= Use appropriate prefixes to distinguish identifiers standing for

variables (eg, v_studentid), cursor (c_studentid), record
(r_studentid), table (t_studentid), exception(e_studentid), etc.

60-415 Dr. C.I1. Ezeife © 2008 Slide 70

35

Oracle PL/SQL

e PL/SQL processor sends SQL statements to the SQL processor
to process when encountered.

The PL/SQL Block Structure

e The most basic unit in PL/SQL is a block

* All PL/SQL programs are combined into blocks that are
nested within each other.

e PL/SQL blocks can be named or anonymous.

* Named blocks are used for subroutines (which are procedures,
functions and packages)

e PL/SQL block has 3 sections: declaration section (optional),
executable section (mandatory) and exception — handling
section (optional).

60-415 Dr. C.I. Ezeife © 2008 Slide 71

Part B: PL/SQL IN A WRAP (slide 1 of 6)

= PL/SQL Program or block has a type and a structure
as:

* T:PL/SQL block Type
« S: PL/SQL block Structure
= T:PL/SQL block Type

e T1: Anonymous block (e.g., sl 78)

e T2: Named block
—T2.1: Procedure (e.g., sl 156 - 165)
—T2.2: Function (e.g., sl 166 - 168)
— T2.3: Package (e.g., sl 169 —177)

60-415 Dr. C.I1. Ezeife © 2008 Slide 72

36

Part B: PL/SQL IN A WRAP (slide 2 of 6)

= S: PL/SQL block Structure
e S1: Declaration section (optional)(e.g. sl 79, 97)
— S1.1: Data types and rules (e.g., 102-103;)
— (Varchar2, char, Number, binary_integer, Date,
BOOLEAN, Long or CLOB, Rowid, %TYPE, Exception,

%ROWTYPE, CURSOR, Type Record, Type Table, and
Bfile or BLOB.

— S1.2: Substitution variable for reading from the keyboard
(e.g., sl 84 - 92)
— S1.3: Declaring Anchored Types (sl 94 - 95)
— S1.4: Declaring Record Types:
e S1.4.1. Cursors (sl 133 - 143)
e S1.4.2. Using %0ROWTYPE

e S1.4.3. Using TYPE (like struct)
60-415 Dr. C.1. Ezeife © 2008 Slide 73

Part B: PL/SQL IN A WRAP (slide 3 of 6)

e S1.5: Declaring Exceptions (sl 131-132; 144-153)
e S1.6: PI/SQL Table (arrays) (sl 204)
S2. Executable Section
e S2.1: SQL statements (sl 105 - 110)
e S2.2: Printing instruction (sl 90-92)
— DBMS_OUTPUT.PUTLINE(parameter);
e S2.3: Assignment instructions (sl 102, 116-119)
e S2.4: Decision instructions (sl 127-128; ..)
— S2.4.1: IF-THEN-ENDIF statement
— S2.4.2: IF-THEN-ELSE-ENDIF statement
— S2.4.3: IF-THEN-ELSIF----ELSE-ENDIF statement

60-415 Dr. C.I1. Ezeife © 2008 Slide 74

37

Part B: PL/SQL IN A WRAP (slide 4 of 6)

e S2.5: Repetition instructions (sl 33-143)
— 525.1: LOOP...... END LOOP; statement

— S2.5.2: FOR loop_counter IN [REVERSE] lower_limit ..
Upper_limit LOOP END LOOP; statement

— 52.5.3: CURSOR FOR LOOP statement
— 52.5.4: FOR UPDATE CURSOR statement
— S2.5.5: WHILE condition LOOP END LOOP;

e S2.6: Declaraing and Calling a function, procedure or package
(sl 156 - 177)
e S2.7: Declaring and calling a trigger (sl. 183 — 197)

60-415 Dr. C.I. Ezeife © 2008 Slide 75

Part B: PL/SQL IN A WRAP (slide 5 of 6)

» (Notel: expressions are important parts of all these
instructions and substitution variables can be used
In expressions).

* Note2: A function, procedure, or package must be
declared, compiled successfully into p-code and
stored in the database server as database object to
be called by other program units.

60-415 Dr. C.I1. Ezeife © 2008 Slide 76

38

Part B: PL/SQL IN A WRAP (slide 6 of 6)

= S3: Exception Handling Section (sl 131- 132, 144 - 153)
+ S3.1: Builtin exceptions

— (VALUE_ERROR, NO_DATA_FOUND,
TOO_MANY_ROW, ZERO_DIVIDE,
LOGIN_DEFINED, PROGRAM_ERROR,
DUP_VALUE_ON_INDEX)

» S3.2: User Defined exceptions (e.g., sl 144)

— These must be declared in the declaration part,
condition to raise them specified in the
executable section and action to take when they
occur specified in the exception handling section.

60-415 Dr. C.I. Ezeife © 2008 Slide 77

Oracle PL/SQL.: Structure of a block

Structure of an anonymous PL/SQL block is:
DECLARE
Declaration statements
BEGIN
Executable statements
EXCEPTION
Exception-handling statements
END;

60-415 Dr. C.I1. Ezeife © 2008 Slide 78

39

PL/SQL: Declaration Section

Declaration section is for definitions of PL/SQL identifiers
(variables, constants, cursors, etc)

E.g.,
DECLARE

v_first name VARCHAR2(35);
v_last name VARCHAR2(35);
v_counter NUMBER:=0;

A semicolon ends each declaration

A variable declaration has the format

identifier-name identifier-type (size);
A constant CONSTANT declaration has the format
constant-name CONSTANT -type := initial value;

60-415 Dr. C.I. Ezeife © 2008 Slide 79

PL/SQL: Executable Section

Executable section starts with BEGIN statement and
ends with END statement as in:

BEGIN
SELECT first_name, last_name
INTO v_first_name, v_last_name
FROM student
WHERE student_id = 123;
DBMS_OUTPUT.PUT_LINE
(‘Student name:’ || v_first_name || * * || v_last_name);
END;

60-415 Dr. C.1. Ezeife © 2008 Slide 80

40

PL/SQL: Executable Section

Above selects first and last names of student with id
123 from db student table into PL/SQL variables
v_first_name and v_last_name so that they can be

» An example Exception handling section for the
above block is:

EXCEPTION
WHEN NO_DATA_FOUND THEN
DBMS_OUTPUT.PUT_LINE
(“There is no student with id 123’);

60-415 Dr. C.I. Ezeife © 2008 Slide 81

printed using DBMS_OUTPUT.PUT_LINE statement.

PL/SQL: Reading Data with Substitution
variables

= Reading Data with Substitution variables
e PL/SQL cannot accept input from a user directly.

» However, sqlplus enables PL/SQL to receive input
information with substitution variables.

 Substitution variables are usually prefixed by the
ampersand (&) or double ampersand (&&)
character.

 Substitution variables cannot be used to output
values since no memory is allocated for them

60-415 Dr. C.I1. Ezeife © 2008 Slide 82

41

PL/SQL: Reading Data with Substitution
variables

= E.g., The following block prompts user for
v_student_id (the substitution variable), which it stores
as PL/SQL variable v_student_id. Then, it stores the
first and last names of the student with this student id
from student table in the database and displays the
student names as output.

60-415 Dr. C.I. Ezeife © 2008 Slide 83

PL/SQL: Reading Data with Substitution
variables

DECLARE

v_student_id NUMBER := &sv_studentid;

v_first_name VARCHAR2(35);

v_last_name VARCHARZ2(35);
BEGIN

SELECT first_name, last_name

INTO v_first_name, v_last_name
FROM student

WHERE student_id = v_student_id;

DBMS_OUTPUT.PUTLINE

(‘Student Name: “ || v_first_name || * * || v_last_name);
EXCEPTION

WHEN NO_DATA_FOUND THEN

DBMS_OUTPUT.PUTLINE (‘No such student’);
END;

60-415 Dr. C.I1. Ezeife © 2008 Slide 84

PL/SQL: Reading Data with Substitution
variables

« When a single ampersand is used in a substitution variable, the
user is prompted to enter a new value for each occurrence of
the variable.

* E.g., on use of single substitution (&) variable
BEGIN

DBMS_OUTPUT.PUT_LINE (‘Today is “ || © &sv_day’);

DBMS_OUTPUT.PUT_LINE (‘“Tomorrow is ‘|| ‘&sv_day’);
END;
= The above block produces the following output

« Enter value for sv_day: Monday

= OIld2: DBMS_OUTPUT.PUT_LINE (‘“Today is’ || ‘&sv_day’);
= New 2: DBMS_OUTPUT.PUT_LINE (‘Today is’ || ‘Monday’);

60-415 Dr. C.I. Ezeife © 2008 Slide 85

PL/SQL: Reading Data with Substitution
variables

— Enter value for sv_day: Tuesday
Old 3: DBMS_OUTPUT.PUT_LINE (‘“Tomorrow is’ || ‘&sv_day’);

New 3: DBMS_OUTPUT.PUT_LINE (‘“Tomorrow is’ ||
‘Tuesday’);

Today is Monday
Tomorrow is Tuesday
= PL/SQL procedure successfully completed.

e The program output contains statements showing how the
substitution for the substitution variables are done. (e.g.,
statements beginning with old 2, new 2, old 3, new 3)

60-415 Dr. C.1. Ezeife © 2008 Slide 86

43

PL/SQL: Reading Data with Substitution
variables

e To block the display of substitution statements, use the SET
command option before running the script as in:

SET VERIFY OFF,;

« This gives the output that excludes the 4 statements beginning
with old and new.

* When we use a substitution variable that is preceded by a
double (&&), PL/SQL processor prompts the user to enter the
value of this variable once first time used. Then, it substitutes
this value for other uses of this variable (which should be single
(&)) in the block.

60-415 Dr. C.I. Ezeife © 2008 Slide 87

PL/SQL: Reading Data with Substitution
variables

* E.g., Use of Double (&&) substitution variable.
BEGIN
DBMS_OUTPUT.PUT_LINE (‘Today is’ || ‘&&sv_day’);
DBMS_OUTPUT.PUT_LINE (‘“Tomorrow is’ || ‘&&sv_day’);
END;

e Here, user is prompted only once and if entered day is
‘Monday’, both output lines use Monday and result is like:

Today is Monday
Tomorrow is Monday
PL/SQL procedure successfully completed.

60-415 Dr. C.1. Ezeife © 2008 Slide 88

44

PL/SQL: Reading Data with Substitution
variables

It is a good practice to enclose a substitution variable in single
quotes if it is assigned to string (text) datatype as follows.

E.g., Use of string substitution variable
v_course_no VARCHARZ2(5) := ‘&sv_course_no’;

Sqlplus allows changing the substitution variable character from
(&) to a non-alphanumeric character specified using the following
SET option

SET DEFINE character

SET DEFINE *

To disable substitution variable feature, use:
SET DEFINE OFF

To enable substitution variable feature, use:
SET DEFINE ON

60-415 Dr. C.I. Ezeife © 2008 Slide 89

PL/SQL.: Displaying Output

DISPLAYING OUTPUT with DBMS_OUTPUT.PUT_LINE

The DBMS_OUTPUT.PUT_LINE is a call to procedure
PUT_LINE in the DBMS_OUTPUT package of the Oracle user
SYS

This procedure DBMS_OUTPUT.PUT_LINE writes lines to
buffer so that they can be displayed on the screen at the end of the
program.

The size of the buffer can be set to between 2000 and 1M bytes.

Before output printed on the screen can be viewed, one of the
following statements must be entered before the PL/SQL block.

SET SERVEROUTPUT ON;
or
SET SERVEROUTPUT ON SIZE 5000;

60-415 Dr. C.1. Ezeife © 2008 Slide 90

45

PL/SQL.: Displaying Output

Both statements enable the

DBMS _OUTPUT_PUTLINE statements. And while
the first statement uses default buffer size, the second
uses buffer size of 5000 byte.

SET SERVEROUTPUT OFF;

= E.g., PL/SQL code for Exercise 1 on page 48 for
computing the area of a circle given the radius as
substitution variable is next.

60-415 Dr. C.I. Ezeife © 2008 Slide 91

To disable info from being displayed on the screen, use:

PL/SQL.: Displaying Output

= Solution:

DECLARE
v_radius NUMBER := &sv_radius;

v_area NUMBER :=v_radius * v_radius * 3014;

BEGIN
DBMS_OUTPUT.PUT_LINE (‘Area of Circle with
radius’ || v_radius || ‘is’ || v_area);
END;
60-415 Dr. C.I. Ezeife © 2008 Slide 92

46

PL/SQL Programming Fundamentals

PL/SQL Programming Fundamentals

Character Types
« PL/SQL engine accepts four types of characters (letters, digits,
symbols (*, +, -, =, ...) and white space.

» Combinations of characters form one of the valid 5 lexical
units (identifiers, reserved words, delimiters, literals,
comments).

* ldentifiers begin with a letter and can be up to 30 characters
long (avoid reserved words).

* Reserved words like BEGIN, END etc are for use by PL/SQL

« Delimiters are arithmetic, comparison and logical operators
and quotation marks.

60-415 Dr. C.I. Ezeife © 2008 Slide 93

PL/SQL Programming Fundamentals

< Literals are values that are not identifiers, e.g., 150, ‘Holiday’,
FALSE.

» Comments: lines beginning with (--) are single line comments
while those lines between (/*) and (*/) are multiple line
comments.

Anchored Datatypes.

e An anchored datatype is based on the datatype of a database
object (like database attribute, e.g., student.firstname).

e Giving a PL/SQL variable, an anchored datatype that is
similar to the datatype of database attribute,
Student.first_name can be done with the following instruction:

v_name student.first_name%TYPE;
e General syntax for declaring variable of anchored type is:
<variable_name> <type attribute> % TYPE;

60-415 Dr. C.I1. Ezeife © 2008 Slide 94

47

PL/SQL Programming Fundamentals

* E.g.,
DECLARE

v_name student.first_ name % TYPE;
v_grade grade.grade_type_code % TYPE;

BEGIN

DBMS_OUTPUT.PUT_LINE (NVL(v_name, ‘No
Name’) || “ has grade of * || NVL(v_grade, ‘ no grade’);

END;

60-415 Dr. C.I. Ezeife © 2008 Slide 95

PL/SQL Programming Fundamentals

DECLARING AND INITIALIZING VARIABLES

» Each variable declared to be used by the program in
the DECLARATION section should be terminated
with a semicolon.

¢ A numeric constant variable must be assigned a
value with (:=) at declaration time and this value
cannot be changed later in the program

A constant variable during declaration includes the
keyword CONSTANT as in:

v_cookies_calorie CONSTANT NUMBER := 300;

60-415 Dr. C.1. Ezeife © 2008 Slide 96

48

PL/SQL Programming Fundamentals

Example declarations are:
DECLARE
v_Iname VARCHAR2(30)
v_regdate DATE;
v_pctincv CONSTANT NUMBER(4, 2) := 1.15;
v_counter NUMBER :=0;
V_new_cost course.crsecost % TYPE;
v_yorn BOOLEAN := TRUE;
BEGIN
NULL;
END;

60-415 Dr. C.I. Ezeife © 2008 Slide 97

EXPRESSIONS, OPERANDS AND
OPERATORS

An expression is a sequence of variables and literals, separated by
operators, for performing calculatioins and comparing data.

An expression is a combination of operands and operators.

An operand is a variable, a constant or a function call.

An operator is arithmetic (**, /, *, +, -), comparison (<, >, <>, =,
>=, <=, I= like, in, between, is null), logical (AND, OR, NOT),
string (||, like)

Parentheses can be used to enforce the order of execution of an
expression.

= General operator precedence is

e ** NOT,
e+, -, arith identity and negation, *, /, +, -, ||, =, <>, <=, <, >, like,
between, IN, IS NULL.
e AND
« OR
60-415 Dr. C.I. Ezeife © 2008 Slide 98

49

EXPRESSIONS, OPERANDS AND
OPERATORS

= E.g., expressions are:
((v_counter +5)*2) /2
(v_new_cost * v_counter) /5

= Expressions form the right sides of assignment
instructions like:

v_counter := ((v_counter +5) * 2) / 2;
V_new_cost := (v_new_cost * v_counter) / 4;

60-415 Dr. C.I. Ezeife © 2008 Slide 99

Use of Labels, Scope of Block & Variables

Use of Labels

e Labels can be used for readability and label for a block must
appear before the first line of executable code (BEGIN or
DECLARE) as follows.

<<find_stu_num>>
BEGIN

DBMS_OUTPUT.PUT_LINE(‘procedure find_stu_num has
been executed.’);

END find_stu_num;
Scope of a Block & Variables

* The scope or existence of variables defined in the declaration
section of a block is the block.

« A nested block is a block totally inside another block.

60-415 Dr. C.1. Ezeife © 2008 Slide 100

50

Scope of Block & Variables; Common Data
Types

e Visibility of a variable is the part of the program where this
variable can be used or accessed.

« Scope of exception is also the block it is defined.
Most Common Datatypes
1. VARCHAR2 (maximum_length): takes character variable
specifying maximum length of up to 3276 bytes. Maximum width
of a VARCHAR?2 database column is 2000 bytes.
2. CHAR (maximum_length): stores fixed size character with
specified MAX_length, that is possibly padded with blanks.
Maximum length that can be specified is 32767 bytes although
maximum length of a database column that can be stored with this
type is 255 bytes. Default length is set to 1 if max_length is not
specified.

60-415 Dr. C.I. Ezeife © 2008 Slide 101

Common Data Types

3. NUMBER [(precision, scale)]: stores fixed or floating-point number of
any size where precision represents number of digits and scale
determines number of digits following decimal point.

* When scale is omitted, it represents integer number
e Maximum precision is 38 decimal digits
* A negative scale causes rounding to the left of the decimal point.
* E.g., with the declarations
v_num NUMBER (6, 2) := 3.456;
v_num NUMBER (6, 3) := 3456;
v_num has 3.46 and v_numl has 3000.
* When scale is not specified, it defaults to 0 (rounding to nearest
whole number).
4. BINARY INTEGER: stores signed integer variables in binary format
for less space and more efficiency.

60-415 Dr. C.1. Ezeife © 2008 Slide 102

o1

Common Data Types

5. DATE: stores fixed_length date values from January 1, 4712 BC to December
31,4712 AD.

* When stored in database column, date values include the time of day in
seconds since midnight. The date portion defaults to midnight. Dates are
displayed according to default format.

6. BOOLEAN: stores the values TRUE and FALSE and the non-value NULL.
The values TRUE and FALSE cannot be inserted into a database column.

7. LONG: stores variable-length character strings of up to 32, 760 bytes, and can
be inserted into a LONG database column, (which has a maximum width of 2,
147,483,647 bytes.

* We cannot select a value longer than 32, 760 bytes from a LONG column
into a LONG variable.

LONG columns can store text arrays of characters, or short documents, can
be referenced in UPDATE, INSERT and (most) SELECT statements but not
in expressions, SQL function calls, or certain SQL clauses such as WHERE,
GROUP BY and CONNECT BY.
8. ROWID: stores rowids in a readable format. Internally, every Oracle database
table has a ROWID pseudo column, which stores binary values called rowids.

60-415 Dr. C.I. Ezeife © 2008 Slide 103

Managing PL/SQL Code with SQL

= Managing PL/SQL Code with SQL

* The changes to the database due to an application
session are saved into the database after a
COMMIIT is executed.

* Work within a transaction up to commit can be
ROLLED BACK (that is undone).

« A transaction is a series of SQL statements grouped
together into a logical unit by the programmer.

¢ A SAVEPOINT can be used to break down large
SQL statements into individual units easier to
manipulate.

60-415 Dr. C.1. Ezeife © 2008 Slide 104

52

Variable Initialization

Variable Initialization with SELECT INTO
e In PL/SQL, variables can be assigned values in one of 2 ways:
— During declaration with *:=’
— Assigning a value with SELECT INTO statement.

SELECT INTO Statement: The Syntax of assignment with
SELECT INTO is:

SELECT item_name
INTO variable_name

FROM table_name;

60-415 Dr. C.I. Ezeife © 2008 Slide 105

Variable Initialization

* Eg,
SET SERVEROUTPUT ON;
DECLARE
v_average_cost VARCHAR2(10);
BEGIN
SELECT To_char (Avg(cost), ‘$9, 999. 99°)
INTO v_average_cost
FROM course;

DBMS_OUTPUT.PUT_LINE(‘ The average cost of a ‘||’ course in
the CTA program is ‘|| v_average_cost);
END;

60-415 Dr. C.1. Ezeife © 2008 Slide 106

53

Variable Initialization

» Variable v_average_cost is given the datatype VARCHAR?2 because
of the function used on the data.

e The TO_CHAR function formats the cost and the number datatype is
converted to a character datatype.

« Another example of use of DML statement in PL/SQL block is:
DECLARE
V_city zipcode.city % TYPE;
BEGIN
SELECT ‘COLUMBUS’
INTO v_city
FROM dual;
UPDATE zipcode
SET city = v_city
WHERE zip = 43224;
END;

60-415 Dr. C.I. Ezeife © 2008 Slide 107

Inserting Data in PL/SQL

= DDL isnot valid in a simple PL/SQL block.
= Data can be inserted as shown in the following example.
DECLARE
v_zip zipcode.zip % TYPE;
v_user zipcode.created_by % TYPE;
v_date zipcode.created_date % TYPE;
BEGIN

SELECT 43438, USER, SYSDATE
INTO v_zip, v_user, v_date

FROM dual;
INSERT INTO zipcode

(ZIP, CREATED_BY, CREATED_DATE, MODIFIED_BY,
MODIFIED_DATE)

VALUES (v_zip, v_user, v_date, v_user, v_date);
END;

60-415 Dr. C.1. Ezeife © 2008 Slide 108

Using an Oracle Sequence

USING AN ORACLE SEQUENCE

« An Oracle sequence is a database object used to generate
unique numbers like primary keys.

e Already created sequence values in SQL statements can be
accessed with pseudo columns.

CURRVAL (for returning the sequence current value)

NEXTVAL (for incrementing the sequence and returning new
value)

« E.g., to create a sequence called ESEQ in sqglplus, we use:
CREATE SEQUENCE eseq INCREMENT BY 10;

e This sequence can be used to populate the column number
attribute of a table called Teacher as follows:

60-415 Dr. C.I. Ezeife © 2008 Slide 109

Using an Oracle Sequence

CREATE SEQUENCE ESEQ
INCREMENT BY 10;
CREATE TABLE TEACHER (col number);
BEGIN
INSERT INTO TEACHER
VALUES (ESEQ.NEXTVAL);
END;

60-415 Dr. C.1. Ezeife © 2008 Slide 110

55

Making Use of Savepoint

Making Use of SavePoint

e Atransaction is a logical unit of work consisting of a set of
SQL statements.

e A transaction would either succeed (once a COMMIT is
executed) or fail (if not successfully committed) as a unit.

e The PL/SQL block for one transaction ends with COMMIT or
ROLLBACK.

* COMMIT makes events within a transaction permanent and
releases all locks required by the transaction.

* ROLLBACK erases (undoes) events within a transaction and
releases all locks acquired by transaction.

60-415 Dr. C.I. Ezeife © 2008 Slide 111

Making Use of Savepoint

e SAVEPOINT can be used to control transaction such that SQL
statements are split into transaction units that can be
committed and rolled back as necessary.

* A COMMIT statement has the syntax:
COMMIT [WORK]J;
e The word WORK is optionally used for readability.
¢ A ROLLBACK statement has following syntax:
ROLLBACK [WORK];
e A SAVEPOINT command has the following syntax:
= SAVEPOINT name;
. The word name is the SAVEPOINT’s nhame.

60-415 Dr. C.I1. Ezeife © 2008 Slide 112

56

Making Use of Savepoint

e A program can be made to rollback to a SAVEPOINT using
the more general form of ROLLBACK instruction below:
ROLLBACK [WORK] to SAVEPOINT name;
« E.g., Page 81-82
BEGIN

INSERT INTO student

(student_id, Last_name, zip, registration_date, created_by,
created_date, modified_by, modified_date)
VALUES (student_id_seq.nextval, ‘Tashi’, 10015, *01-JAN-99’,

‘STUDENTA’, ’01-JAN-99°, ‘STUDENTA’, ’01-JAN-99");
SAVEPOINT A;

60-415 Dr. C.I. Ezeife © 2008 Slide 113

Making Use of Savepoint

INSERT INTO student

(student_id, Last_name, zip, registration_date, created_by, created_date
, modified_by, modified_date)

VALUES (student_id_seq.nextval, 'Sonam’, 10015, '01-JAN-99',
'STUDENTB"’,

'01-JAN-99', 'STUDENTB', '01-JAN-99");

SAVEPOINT B;

INSERT INTO student

(student_id, last_name, zip, registration_date, created_by, created_date
, modified_by, modified_date)

VALUES (student_id_seq.nextval, ‘Norbu*, 10015, '01-JAN-99',
'STUDENTA', '01-JAN-99', 'STUDENTB"’, '01-JAN-99");
SAVEPOINT C;

ROLLBACK TO B;

END;

60-415 Dr. C.I1. Ezeife © 2008 Slide 114

57

Making Use of Savepoint

= Anexample PL/SQL block that can contain multiple transactions
DECLARE
v_counter NUMBER;
BEGIN
v_counter :=0;
FOR i IN 1..100
LOOP
v_counter :=v_counter + 1;
IF v_counter = 10
THEN
COMMIT;
v_counter :=0;
END IF;
END LOOP;
END;

Here, when v_counter hits 10, it commits keeping 10 transactions in one

PL/SQL block.

60-415 Dr. C.I. Ezeife © 2008 Slide 115

Types of Instructions

= 1. Assignment Instructions
1.1 Using assignment operator :=
E.g., v_counter := ((v_counter + 5)) * 2)/2;
» 1.2 Using SQL statements like:
SELECT first_name, last_name
INTO v_firstname, v_lastname
FROM STUDENT
WHERE stuid = v_stud_id;
= 2. Print and Read statements
2.1 Printinstructions with
DBMS_OUTPUT.PUT_LINE asin:

60-415 Dr. C.1. Ezeife © 2008 Slide 116

58

Types of Instructions

e DBMS _OUTPUT.PUT_LINE(‘Area of Circle is’ || v_area);
e 2.2. Read from the keyboard with substitution variables as in

e.g.,
NUMBER := &sv_radius;

3. Conditional Instructions (see slides 108 to 116 for IF statement
examples)

¢ 3.1 IF-THEN statement

e 3.2 IF-THEN-ELSE statement

e 3.3. IF-ELSIF.ELSE statement

e 3.4 CASE statements: CASE form is given next.

60-415 Dr. C.I. Ezeife © 2008 Slide 117

Types of Instructions

CASE condition
WHEN expression 1 THEN statement 1;
WHEN expression 2 THEN statement 2;

WHEN expression N THEN statement N;
ELSE statement N+1;

END CASE;

60-415 Dr. C.1. Ezeife © 2008 Slide 118

59

Types of Instructions

= 4. Repetition Instructions
* 4.1 Simple Loop (LOOP END LOOP)

* 4.2 Numeric FOR LOOP (FOR loop_counter IN
[REVERSE] lower_limit .. Upper_limit
LOOP END LOOP;]

* 4.3 Variations of FOR loop used for CURSOR
(CURSOR FOR LOORP ...)

* 4.4 WHILE condition LOOP (WHILE condition
LOOP END LOOP)

60-415 Dr. C.I. Ezeife © 2008 Slide 119

Conditional Control

Conditional Control
IF Statements
An IF-THEN statement has the following structure:
IF CONDITION
THEN
STATEMENT 1;

STATEMENT N;
END IF;

60-415 Dr. C.1. Ezeife © 2008 Slide 120

60

Conditional Control

e If the CONDITION expression evaluates to TRUE, statements

1to N are executed.
e E.g., write a PL/SQL block that compares two integer values in
v_numl and v_num?2 and stores the smaller value always in

v_numl.

DECLARE

v_numl NUMBER :=5;
v_num2 NUMBER :=3;
v_temp NUMBER;

BEGIN
-- if v_num1 is greater than v_numz2, then switch their values

IF v_numl>v_num?2

60-415 Dr. C.I. Ezeife © 2008 Slide 121

Conditional Control

THEN
v_temp :=v_numi,
v_numl :=v_num2;
v_numa2 :=v_temp;
END IF;
DBMS_OUTPUT.PUT_LINE(*v_numl1="|| v_numl);

DBMS_OUTPUT.PUT_LINE(*"v_num2=" || v_numz2);
END;
= The above produces the following output
v_numl=3
v_num2=5
= PL/SQL procedure successfully completed.

60-415 Dr. C.1. Ezeife © 2008 Slide 122

61

Conditional Control

IF-THEN-ELSE STATEMENT
The structure of the IFF-THEN-ELSE statement is:
IF CONDITION
THEN
STATEMENT 1;
ELSE
STATEMENT 2;
END IF;
= STATEMENT 3;

= When CONDITOIN evaluates to TRUE, STATEMENT 1 is
executed, but if it is FALSE, STATEMENT 2 is executed. The
next statements in the program executed

60-415 Dr. C.I. Ezeife © 2008 Slide 123

Conditional Control

after the IF-THEN-ELSE statement is STATEMENT 3. E.g, Use of IF-
THEN-ELSE statement is shown next.

DECLARE
v_num NUMBER := &sv_user_num;
BEGIN
-- test if provided number is even
IF MOD (v_num, 2) =0
THEN
DBMS_OUTPUT.PUT_LINE (v_num || “is even’);
ELSE
DBMS_OUTPUT.PUT_LINE (v_num || “is odd’);
END IF;
DBMS_OUTPUT.PUT_LINE (‘Done’);
END;

60-415 Dr. C.I1. Ezeife © 2008 Slide 124

62

NULL Condition

= A NULL condition may arise if one of the compared variables has
no value, for example:

DECLARE
v_numl NUMBER :=0
v_num2 NUMBER;

BEGIN
IFv_numl=v_num?2
THEN
DBMS_OUTPUT.PUT_LINE(‘They are equal’);
ELSE
DBMS_OUTPUT.PUT_LINE(‘They are not equal’);
END IF;
END;
60-415 Dr. C.1. Ezeife © 2008 Slide 125

NULL Condition

Note that v_num2 has no value leading to a NULL condition that
evaluates to NULL and treated as false in this case.

Use of Some Functions (Page 95), eg.

TO_DATE, TO_CHAR, RTRIM

v_date DATE := TO_DATE(‘&sv_user_date’, ‘DD-MM-YY?);
v_day := RTRIM(TO_CHAR(v_date, ‘DAY");

= In the above instructions, the function TO_CHAR returns the day

of the week with v_date padded with blanks since this function
always returns 9 bytes.

= Next, the function RTRIM is used to remove trailing spaces.

60-415 Dr. C.1. Ezeife © 2008 Slide 126

63

ELSIF STATEMENT

ELSIF statements
An Elsif statement has the following structure
IF CONDITION 1
THEN
STATEMENT 1
ELSIF CONDITION 2
THEN
STATEMENTZ2;
ELSIF CONDITION 3
THEN
STATEMENT 3

ELSE

STATEMENT N;
END IF;

60-415 Dr. C.I. Ezeife © 2008 Slide 127

Condition Control

Only one of statements 1 to N is executed depending on which of
conditions 1 to N evaluates to TRUE. E.g.,

DECLARE
v_num NUMBER := &sv_num;
BEGIN
IFv_num<0
THEN
DBMS_OUTPUT.PUT_LINE (v_num || ‘is a negative number’);
ELSIFv_num=0

THEN
DBMS_OUTPUT.PUT_LINE (v_num || ‘is equal to zero’);
ELSE
DBMS_OUTPUT.PUT_LINE (v_num || ‘is a positive number’);
END IF;
END;
60-415 Dr. C.I. Ezeife © 2008 Slide 128

64

Exception Handling

Exception Handling and Builtin Exception

< Exception handling section in a PL/SQL block specifies what
action to take when an exception error occurs.

* Two types of exceptions exist — builtin and user-defined
exceptions

e Errors that occur in a program are either compilation or
runtime errors. Exceptions are defined mostly for runtime
errors.

e Compilation errors are due to language syntax violation and
are also called syntax errors.

= E.g,v_numl=v_numl/v_num2;

60-415 Dr. C.I. Ezeife © 2008 Slide 129

Exception Handling

Will generate syntax error because assignment operator is (:=) and

not (=). Statement should then be changed to following and re-

compiled:

. v_numl:=v_numl/v_num2;

e Assume v_numl has an initial value of 5 while v_num2 has a
value of 0. Running this statement in a PL/SQL block leads to
a runtime error because an illegal operation of dividing by
zero has occurred.

e Compilation and runtime errors may cause the program to not
successfully complete.

< Exception handling section is used to produce informative
message when a runtime exception occurs. It also makes the
program end successfully.

60-415 Dr. C.1. Ezeife © 2008 Slide 130

65

Exception Handling

Exceptions:
 VALUE_ERROR: This is raised when there is a conversion or size
mismatch error. Eg, v_.num := SQRT(v_num1l); if v_numl has a
negative value, the SQRT function cannot accept it, raising a
VALUE_ERROR.
Usage:
EXCEPTION
WHEN VALUE_ERROR THEN
DBMS_OUTPUT.PUT_LINE(*Value Error Occurs’);
NO_DATA_FOUND: raised when a select into statement, which makes no
calls to group functions such as SUM or COUNT, does not return any
rows. [Note that if the select makes a call to a group function like count, if
nothing is found, it returns 0, and thus there is no need to raise a
NO_DATA_FOUND exception in that case].
TOO_MANY_ROWS: raised when a SELECT INTO statement returns
more than one row [It normally should return only one row].

60-415 Dr. C.I. Ezeife © 2008 Slide 131

Exception Handling

ZERO_DIVIDE: raised when a division by zero is performed.
LOGIN_DEFINED: raised when a user is trying to log on to
Oracle with invalid username and password.
PROGRAM_ERROR: raised when the PL/SQL program has an
internal problem.

DUP_VALUE_ON_INDEX: raised when a program tries to store
a duplicate value in the columns that have unique index defined
on them. E.g., inserting values for course #, section # for course
60-415, section 1 that already exists and has a unique index
defined on it.

60-415 Dr. C.1. Ezeife © 2008 Slide 132

66

cursors

= Example use of Cursor
DECLARE
v_sid student.student_id%TYPE
CURSOR c_student IS
SELECT student id
FROM student
WHERE student_id < 110;
BEGIN
OPEN c_student;
LOOP
FETCH c_student INTO v_sid;
EXIT WHEN c_student % NOTFOUND;
DBMS_OUTPUT.PUT_LINE(‘STUDENT ID:’ || v_sid);

60-415 Dr. C.I. Ezeife © 2008 Slide 133

cursors

END LOOP;
CLOSE c_student;
EXCEPTION
WHEN OTHERS
THEN
IF c_student % ISOPEN
THEN
CLOSE c_student;
END IF;

END;

60-415 Dr. C.1. Ezeife © 2008 Slide 134

67

cursors

Using Cursor For LOOPS and Nesting Cursors
Cursor FOR LOOP statement opens, fetches, and
closes the cursor implicitly.

The cursor FOR LOOP specifies a sequence of
statements to be repeated once for each row returned
by the cursor.

= Use the cursor FOR LOORP if you need to FETCH and
PROCESS each and every record from a cursor.

60-415 Dr. C.I. Ezeife © 2008 Slide 135

cursors

For example, assume the existence of a table called table_log with
one column.

DECLARE
Cursor c_student IS
SELECT student_id, last_name, first_name
FROM student
WHERE student_id < 110;
BEGIN
FOR r_student IN ¢_student
LOOP
INSERT INTO table_log
VALUES (r_student.last_name);
END LOOP;
END;

60-415 Dr. C.1. Ezeife © 2008 Slide 136

68

cursors

= Cursors can be nested inside each other
= Example nested cursor with a single child cursor.
DECLARE
v_zip zipcode.zip % TYPE;
CURSOR c_zip IS
SELECT zip, city, state
FROM zipcode
WHERE state = ‘CT’;
CURSOR c_student IS
SELECT first_name, last_ name
FROM student
WHERE zip = v_zip;

60-415 Dr. C.I. Ezeife © 2008 Slide 137

cursors

BEGIN

FOR r_zip IN c_zip

LOOP
V_zip :=r_zip.zip;
DBMS_OUTPUT.PUT_LINE(CHR(10));
DBMS_OUTPUT.PUT_LINE(*Students living in’

||Ir_zip.city);
FOR r_student IN ¢_student
LOOP
DBMS_OUTPUT.PUT_LINE(r_student.first_name || * * ||

r_student.last_name);
END LOOP;
END LOORP;
END;
60-415 Dr. C.1. Ezeife © 2008 Slide 138

69

cursors

USING PARAMETERS WITH CURSORS AND FOR UPDATE
CURSORS

A cursor can be declared with parameters to enable it generate a
more specific result set and make itself more reusable.

E.g., create a cursor that works for only a set of values.
CURSOR c_zip (p_state IN zipcode.state % TYPE)
IS
SELECT zip, city, state
FROM ZIPCODE
WHERE state = p_state;

60-415 Dr. C.I. Ezeife © 2008 Slide 139

cursors

A cursor declared to take a parameter must be called with a value
for that parameter.

The ¢_zip cursor is called as follows:
OPEN c_zip (parameter_value);
OPEN c_zip (‘NY’);

Using a FOR UPDATE CURSOR

The cursor FOR UPDATE clause is only used with a cursor when
you want to update tables in the database.

This entails simply adding FOR UPDATE to the end of the cursor
definition.

Using the FOR UPDATE has the effect of locking the rows that
have been identified in the active set.

60-415 Dr. C.1. Ezeife © 2008 Slide 140

70

cursors

= If we want to lock only one of multiple items being selected, add:
FOR UPDATE OF <item_name>
E.g.,
DECLARE
CURSOR c_course IS
SELECT course_no, cost
FROM course FOR UPDATE;
BEGIN
FOR r_course IN c_course
LOOP
IF r_course.cost < 2500
THEN

60-415 Dr. C.I. Ezeife © 2008 Slide 141

cursors

UPDATE course
SET crsecost = r_course.cost + 10
WHERE course_no = r_course.course_no;
END IF;
END LOOP;
END;
- WHERE CURRENT OF CLAUSE

= WHERE CURRENT OF <cursor_name> can be used
to update the most recently fetched row as in:

60-415 Dr. C.I1. Ezeife © 2008 Slide 142

cursors

DECLARE
V_zip zipcode.zip % TYPE;
CURSOR c_student IS
SELECT student_id, first_name, last_name, zip, phone
FROM student
FOR UPDATE;
BEGIN
FOR r_stud_zip IN c_student
LOOP
DBMS_OUTPUT.PUT_LINE(r_stud_zip.student_id);
UPDATE student
SET phone ='718" || SUBSTR(phone, 4)
WHERE CURRENT OF c_student;
END LOOP;

END;

60-415 Dr. C.I. Ezeife © 2008 Slide 143

User-Defined Exceptions

User-Defined Exceptions

Exceptions can be defined by programmer and must
first be declared with the following syntax:

DECLARE
Exception_name EXCEPTION;

The executable statements of a user declared exception
are specified in the exception-handling section of the
block.

E.g., use of user defined exception

60-415 Dr. C.I1. Ezeife © 2008 Slide 144

72

User-Defined Exceptions

DECLARE
e_invalid_id EXCEPTION;
BEGIN
WHEN e_invalid_id
THEN
DBMS_OUTPUT.PUT_LINE(“A negative id is not allowed’);
END;

= User defined exceptions have to be raised explicitly by defining
what conditions should cause them to be triggered.

= How is given below:

60-415 Dr. C.I. Ezeife © 2008 Slide 145

User-Defined Exceptions

DECLARE
Exception_name EXCEPTION;
BEGIN
IF CONDITION
THEN
RAISE exception_name;
ELSE

END IF;
EXCEPTION
WHEN exception_name
THEN
ERROR-PROCESSING STATEMENTS;
END;

60-415 Dr. C.1. Ezeife © 2008 Slide 146

73

User-Defined Exceptions

Exception Propagation

The rules governing how exceptions are raised in
declaration and exception-handling sections are called
Exception Propagation.

When a runtime error occurs in the declaration or
exception handling section, the exception handling
section of this block is not able to catch it.

In a program with nested PL/SQL blocks, when a
runtime error occurs in the declaration section of the
inner block, the exception immediately propagates to
the enclosing outer block.

60-415 Dr. C.I. Ezeife © 2008 Slide 147

User-Defined Exceptions

Exception: Advanced Concepts
Raise_Application_Error

Raise_Application_Error is used to assign an exception number
and message to a user_defined exception.

The syntax of the use of this procedure is:

RAISE_APPLICATOIN_ERROR(error_number,
error_message);

or

RAISE_APPLICATION_ERROR(error_number, error_message,
keep_errors);

E.g.,

60-415 Dr. C.1. Ezeife © 2008 Slide 148

74

User-Defined Exceptions

SET SERVEROUTPUT ON;

DECLARE

v_student_id NUMBER := &sv_student _id;
v_total_courses NUMBER;

e_invalid_id EXCEPTION;

BEGIN
IF v_student_id <0
THEN
RAISE e_invalid_id;
ELSE
SELECT count(*)
INTO v_total_courses
FROM enroliment

60-415 Dr. C.I. Ezeife © 2008 Slide 149

User-Defined Exceptions

WHERE student_id = v_student_id;

DBMS_OUTPUT.PUT_LINE("The student is registered
for " || v_total_courses || * Courses');

END IF;
END;
EXCEPTION
WHEN e_invalid_id
THEN
DBMS_OUTPUT.PUT_LINE('The entered id is
invalid®);
END;
60-415 Dr. C.1. Ezeife © 2008 Slide 150

User-Defined Exceptions

EXCEPTION_INIT_PRAGMA
The EXCEPTION_INIT PRAGMA

is used to associate an Oracle error number with a name of a user-
defined error so that a handler may be written for it.

The EXCEPTION_INIT pragma appears in the declaration
section as:

DECLARE
exception_name EXCEPTION;

PRAGMA EXCEPTION_INIT(exception_name,
error_code);

= The user_defined exception has to be declared before the
EXCEPTION_INIT pragma that uses it.

60-415 Dr. C.I. Ezeife © 2008 Slide 151

User-Defined Exceptions

SQLCODE and SQLERRM

Oracle exception handler OTHERS can trap all Oracle errors.
However, it is hard to know which error occurred if OTHER is
used to trap it.

Two built-in functions SQLCODE and SQLERRM can be used
with the OTHERS exception handler to return the error number
and message respectively.

= SQLERRM returns a message that is less than or equal to 512
bytes, while SQLCODE generally returns a negative error
number.

= Example

60-415 Dr. C.1. Ezeife © 2008 Slide 152

76

User-Defined Exceptions

DECLARE
v_zip VARCHARZ2(5) := '&sv_zip';
v_city VARCHAR2(15);
v_state CHAR(2);
v_err_code NUMBER;
v_err_msg VARCHAR2(200);
BEGIN
SELECT city, state
INTO v_city, v_state
FROM zipcode
WHERE zip = v_zip;
DBMS_OUTPUT.PUT_LINE(v_city || * * || v_state);
EXCEPTION
WHEN OTHERS
THEN
v_err_code :=SQLCODE;
v_err_msg := SUBSTR(SQLERRM, 1, 200);
DBMS_OUTPUT.PUT_LINE('Error code: '|| v_err_code);

DBMS_OUTPUT.PUT_LINE('Error message : '|| v_err_msg);
END;

60-415 Dr. C.I. Ezeife © 2008 Slide 153

Procedures

SQLCODE, however returns a 0 if it is referenced outside the
exception section, it returns +1 for user_defined exceptions and
100 for NO_DATA_FOUND exception.

PROCEDURES

Procedures allow structuring a program into modules (distinct
subsolutions)

= Each module performs a specific task that contributes toward the
final program goal.

= Modular code stored on database server is called a database
object or subprogram that is available to other program units for
repeated use.

= To save code into the database, it needs to be compiled into p-code
and stored in database server.

60-415 Dr. C.1. Ezeife © 2008 Slide 154

77

Procedures

A PL/SQL module is a complete logical unit of work
and four types exist as:

anonymous blocks

procedures

functions, and

= packages

= modular codes are more usable and manageable.

60-415 Dr. C.I. Ezeife © 2008 Slide 155

Procedures

= 1. ANONYMOUS BLOCKS
e These have no names and no parameters.

e They are not stored in the database as they cannot be called by
other blocks. All examples before now are anonymous blocks.
2. PROCEDURES
* A procedure may have 0 or more parameters and must have a
name. The syntax of a procedure is:
CREATE OR REPLACE PROCEDURE
name [(parameterl, parameter2, ...)]
AS IS [local declarations]
BEGIN
Executable statements
[EXCEPTION exception handlers]

END [name];

60-415 Dr. C.1. Ezeife © 2008 Slide 156

e Consists of Declaration, Execution and optional Exception parts.

78

Procedures

= A procedure consists of (1) the header [everything
before the AS or IS keyword used interchangeably], (2)
the body [everything after the AS or IS keyword].

= The word REPLACE is optional but if not used,
changing procedure code will entail dropping and re-
creating.

- E.g,

60-415 Dr. C.I. Ezeife © 2008 Slide 157

Procedures

CREATE OR REPLACE PROCEDURE Discount
AS
CURSOR c¢_group_discount
IS
SELECT distinct s.course_no, c.description
FROM section s, enrollment e, course ¢
WHERE s.section_id = e.section_id
AND c.course_no = s.course_no

GROUP BY s.course_no, c.description, e.section_id,
s.section_id

HAVING COUNT(*) >= 8;

60-415 Dr. C.1. Ezeife © 2008 Slide 158

79

Procedures

BEGIN
FOR r_group_discount IN c_group_discount
LOOP
UPDATE course
SET cost = cost * .95
WHERE course_no = r_group_discount.course_no;

DBMS_OUTPUT.PUT_LINE (‘A 5% discount has been
given to’ || r_group_discount.course_no || “ |

r_group_discount.description);
END LOOP;
END;

60-415 Dr. C.I. Ezeife © 2008 Slide 159

Procedures

To have the procedure update the database, a
COMMIIT needs to be issued after running the
procedure (after END). It can also be placed after the
END LOOP statement.

= A procedure can become invalid when the table it is
based on is deleted or changed.

= To re_compile an invalid procedure, use:
= ALTER procedure procedure_name compile;

60-415 Dr. C.1. Ezeife © 2008 Slide 160

80

Procedures

PROCEDURES AND DATA DICTIONARY

Data dictionary provides information on stored procedures in
either

e« USER_OBJECTS view (information about objects), or
e USER_SOURCE view (source code text)

Data dictionary also has an ALL_ and DBA _ version of these
views.

PASSING PARAMETERS IN AND OUT OF PROCEDURES

Parameters are used to pass values to and from calling
procedures to the server.

Parameters are available in 3 modes as IN, OUT, and INOUT.
Parameter mode specifies whether it is:

60-415 Dr. C.I. Ezeife © 2008 Slide 161

Procedures

» IN: an input parameter that simply passes a value to the procedure
for read only and this parameter cannot be changed by the
procedure.

* OUT: an output parameter that passes result back from the
procedure

* INOUT: both input and output parameter for passing value in and
sending result back.

Example Procedure with Parameters
CREATE OR REPLACE

PROCEDURE FIND_NAME(ID IN NUMBER, LNAME OUT
VARCHAR?2,

FNAME OUT VARCHAR?2) AS
BEGIN
SELECT last_name, first_name

INTO LNAME, FNAME
FROM student

WHERE student_id = ID;

60-415 Dr. C.1. Ezeife © 2008 Slide 162

81

Procedures

EXCEPTION
WHEN OTHERS
THEN
DBMS_OUTPUT.PUT_LINE('
Student id not found *);

END FIND_NAME;

¢ In the example, the parameters ID and LNAME, FNAME in
the procedure header are formal parameters

Formal parameters are place holders for actual data values passed
in or out with actual parameters during procedure call.

60-415 Dr. C.I. Ezeife © 2008 Slide 163

Procedures

Formal parameters do not require datatype constraints
like size, e.g.,
VARCHARZ2(60) is stated as VARCHAR2.

When matching actual and formal parameters, use
positional notation or named notation.

Named notation associates formal parameter to its
actual value during procedure call explicitly using the
format: (formal parameter => actual parameter).

Calling a Stored Procedure

The procedure find_name defined above can be called
in another anonymous block

60-415 Dr. C.1. Ezeife © 2008 Slide 164

82

Procedures

as:
DECLARE
ID student.student_id%TYPE;
v_local_fname student.first_ name%TYPE;
v_local_Iname student.last hame%TYPE;
BEGIN
ID :=250;
find_name(ID, v_local_Iname, v_local_fname);
DBMS_OUTPUT.PUT_LINE('Student " || ID || " is

‘|Iv_local_fname || * * || v_local_Iname);
END;
60-415 Dr. C.I. Ezeife © 2008 Slide 165
Functions

= FUNCTIONS
= Function is a PL/SQL procedure that returns a single value.
= Function definition structure is:
CREATE [OR REPLACE] FUNCTION
function_name (parameter list)
RETURN datatype
IS
BEGIN
<body>
RETURN (return_value);
END;
In a function, there should be a RETURN statement for each exception
Function parameters can be of IN, OUT or INOUT types.

60-415 Dr. C.1. Ezeife © 2008 Slide 166

83

Functions

E.g.,
CREATE OR REPLACE FUNCTION
Show_description(i_course_no NUMBER)
RETURN VARCHAR2
AS
v_description VARCHAR2(50);
BEGIN
SELECT description
INTO v_description
FROM course
WHERE course_no =i_course_no;
RETURN v_description;

60-415 Dr. C.I. Ezeife © 2008 Slide 167

Functions

EXCEPTION
WHEN NO_DATA_FOUND
THEN
RETURN (“The cursor is not in the database’);

WHEN OTHERS
THEN

RETURN (‘Error in running show_description’);
END;

The function declared above can be invoked in the SELECT
statement below:

60-415 Dr. C.1. Ezeife © 2008 Slide 168

Packages

SELECT course_no, show_description(course_no)

FROM course;

PACKAGES
A collection of PL/SQL objects grouped together as a logical unit
under one package name is called a package.
Packages include procedures, functions, cursors, declarations,
types and variables.
First call to a package causes loading the package in memory,
while subsequent calls save compilation and loading time.
Packages encourage top down design and improve on information
hiding and security of code.
A package consists of Specification and Body, which may be
compiled separately.

60-415 Dr. C.I. Ezeife © 2008 Slide 169

Packages

= Package Specification contains declaration information
about objects in the package (procedures, functions
and not their codes, global/public variables). All
objects in a package specification are public objects.

= Private Procedures/Functions are not in the package
specification but coded in its body.

CREATE OR REPLACE PACKAGE
manage_students
AS

60-415 Dr. C.1. Ezeife © 2008 Slide 170

85

Packages

PROCEDURE FIND_NAME

(1D IN NUMBER, LNAME OUT VARCHAR?2,
FNAME OUT VARCHAR?2);

FUNCTION id_is_good(i_student_id NUMBER)

RETURN BOOLEAN;
END manage_students;

= An example package specification consisting of a
procedure and a function is given above.

60-415 Dr. C.I. Ezeife © 2008 Slide 171

Package Body

Package Body

The package body contains actual executable code of
the objects described in the package specification
Package body may contain additional code for private
objects not declared in the specification of the package.
= The headers of the cursor and modules and their
definitions in the package specification should match
exactly.

= Elements declared in the specification can be
referenced in the body and should not be re-declared.

60-415 Dr. C.I1. Ezeife © 2008 Slide 172

86

Package Body

Package elements can be referenced outside the package using the
notation:

package _name.element

Elements referenced inside the body of the package do not need to
be qualified.

The package body of the above specification is:
CREATE OR REPLACE PACKAGE BODY manage_students
AS
PROCEDURE FIND_NAME
(ID IN NUMBER,
LNAME OUT student.last_name % TYPE,
FNAME OUT student.first_ name % TYPE)

IS

60-415 Dr. C.I. Ezeife © 2008 Slide 173

Package Body

BEGIN

SELECT first_name, last_name
INTO o_fname, o_Iname
FROM student
WHERE student_id = ID;
EXCEPTION

WHEN OTHER

THEN

DBMS_OUTPUT.PUT_LINE(‘Error in finding
student id:’|| ID);

END find_sname;

60-415 Dr. C.I1. Ezeife © 2008 Slide 174

87

Package Body

FUNCTION id_is_good
(i_student_id NUMBER)
RETURN BOOLEAN
IS
v_id_cnt number;
BEGIN
SELECT COUNT(*)
INTO v_id_cnt
FROM student
WHERE student_id = i_student_id;
RETURN v_id_cnt=1;
EXCEPTION
WHEN OTHERS
THEN
RETURN FALSE;
END id_is_good;
END manage_students;

60-415 Dr. C.I. Ezeife © 2008 Slide 175

Calling Stored Packages

CALLING STORED PACKAGES

= The following anonymous block shows how elements of
manage_student package are called by other blocks.

DECLARE
v_first_name student.first_name % TYPE;
v_last_name student.last_name % TYPE;
BEGIN
IF manage_students.id_is_good (& v_id)
THEN
manage_students.find_sname

60-415 Dr. C.1. Ezeife © 2008 Slide 176

Calling Stored Packages

(&&v_id, v_first_name, v_last_name);
DBMS_OUTPUT.PUT_LINE(‘Student No’ || && v_id || “is’ ||
v_last_name || *;” || v_first_name);

ELSE

DBMS_OUTPUT.PUT_LINE(‘Student ID’ || &&
v_id || “is not in the database.”);

END IF;
END;
Find out why actual parameter v_id is passed with & and &&
Type the above code in a file and run the script in a sqlplus session
The package body manage_students is compiled into the database.

60-415 Dr. C.I. Ezeife © 2008 Slide 177

Stored Code

Functions in packages need to meet additional restrictions in order
to be used in a SELECT statement (must be row functions and
using only SQL datatypes, and have no DML (insert, update,
delete), have certain level of purity achieved with PRAGMA
RESTRICT_REFERENCES, p 332, 358-361, 366-368).

Getting Stored Code Information from the Data Dictionary

1. DESC USER_ERRORS

[used to determine details of a compilation error]

2.SHO ERR

[displays the line number the error occurred in USER_SOURCE
view]

3. DESC <packagename>

To query the data dictionary to determine all stored objects in the
current schema of the database including the current status of the
stored code, use:

60-415 Dr. C.1. Ezeife © 2008 Slide 178

89

Stored Code

SELECT OBJECT_TYPE, OBJECT_NAME, STATUS
FROM USER_OBJECTS
WHERE OBJECT_TYPE IN

(‘FUNCTION’, ‘PROCEDURE’, ‘PACKAGE’,
‘PACKAGE_BODY”)
ORDER BY OBJECT_TYPE;

4. We can retrieve information from USER_ERRORS view with
SELECT line || */* || position “LINE/COL”, TEXT “ERROR”
FROM user_errors
WHERE name = ‘FORCE_ERROR’;

5. DESC USER_DEPENDENCIES
[used to analyze impact of table changes]

6. SELECT referenced_name

FROM user_dependencies

WHERE name = ‘SCHOOL_API’;

The above lists all objects referenced in the package.

60-415 Dr. C.I. Ezeife © 2008 Slide 179

Stored Code

7. DEPTREE is an Oracle utility that shows which objects are
dependent on a given object, but DBA access is needed to use this
utility [see page 365 for details]

8. What is purity level of a function in a package?

Purity level of a function describes the extent to which the
function is free of side effects (altering public values also used by
other functions)

Available Purity levels are

e WNDS (write no database state) or does not change any
database tables

* WNPS (write no package state) or does not alter any package
variables

* RNPS (reads no package state)
* RNDS (reads no database state or table)

60-415 Dr. C.1. Ezeife © 2008 Slide 180

90

Stored Code

= To assert Purity Level, use
PRAGMA RESTRICT_REFERENCES
(function_name, WNDS[, WNPS][,RNDS][,RNPS));
= 10. With the Purity level set as:
PRAGMA RESTRICT_REFERENCES (school_api, WNDS, WNPS);

= Inside the package specification, any update instruction will result
in a purity level violation error.

= Only the WNDS level is mandatory and we need a separate
pragma statement for each packaged function used in an SQL
statement.

= The pragma must come after the function declaration in the
package specification

60-415 Dr. C.I. Ezeife © 2008 Slide 181

Overloading Modules

OVERLOADING MODULES

When we overload modules, we give two or more modules the
same name.

The parameter lists of the modules should differ enough to have
the versions distinguishable.

Modules can be overloaded in the following 3 contexts.
in a local module in the same PL/SQL block

= ina package specification

= inapackage body.

= [see page 359-361]

= E.g., the following two procedures cannot be overloaded.
= PROCEDURE calc_total (reg_in IN CHAR);

= PROCEDURE calc_total (reg_in IN VARCHAR?2);

60-415 Dr. C.1. Ezeife © 2008 Slide 182

91

Triggers

TRIGGERS

A database trigger is a named PL/SQL block stored in a database
and executed when a triggering event occurs.

Executing a trigger is called firing a trigger.

A triggering event isa DML (INSERT, UPDATE, or DELETE)
statement executed against a database table.

A trigger can fire before or after a triggering event

For example, a trigger can be defined to fire before an INSERT
statement on the STUDENT table and it fires each time before you
insert a row in the STUDENT table.

60-415 Dr. C.I. Ezeife © 2008 Slide 183

Triggers

The general syntax for creating a trigger is:

CREATE [OR REPLACE] TRIGGER trigger_name {BEFORE |
AFTER}

Triggering_event ON table-name [FOR EACH ROW]
[WHEN condition]
DECLARE
Declaration statements
BEGIN
Executable statements
EXCEPTION
Exception-handling statements
END;

60-415 Dr. C.1. Ezeife © 2008 Slide 184

92

Triggers

Dropping a table also drops all triggers on the table.

Triggers can be used to enforce complex business rules
not handled with integrity constraints.

Maintaining security rules

= Automatically generating values for derived columns
Collecting statistical information on table access.

= Preventing invalid transactions

= For auditing

= A trigger may not issue a COMMIT, SAVEPOINT or
ROLLBACK statement.

60-415 Dr. C.I. Ezeife © 2008 Slide 185

Triggers

= Any function or procedure called by a trigger may not
issue a transactional control statement (COMMIT,
SAVEPOINT, ROLLBACK)

= Datatype LONG and LONG RAW cannot be used in a
trigger, E.g.,
CREATE OR REPLACE TRIGGER student_bi
BEFORE INSERT ON student
FOR EACH ROW
DECLARE

60-415 Dr. C.1. Ezeife © 2008 Slide 186

93

Triggers

v_student_id STUDENT.STUDENT_ID % TYPE;
BEGIN
SELECT STUDENT _ID_SEQ.NEXTVAL
INTO v_student_id
FROM dual;
:NEW.student _id :=v_student id;
:NEW.created_by := USER;
:NEW.created date := SYSDATE;
:NEW.modified_by := USER;
:NEW.modified_date := SYSDATE;
END;

60-415 Dr. C.I. Ezeife © 2008 Slide 187

Triggers

The above trigger fires before each INSERT statement on the
student table.

The pseudo-record :NEW accesses a row currently being
processed.

The :NEW record is a type TRIGGERING_TABLE % TYPE and
in this case, it is of type STUDENT % TYPE and members
(attributes) of this record are accessed using the dot notation (eg,
:NEW.student_id).

Once the above trigger is used to populate the record with
student_id, user and creation dates, the attributes left to insert
values in this record would be last and first names, zip and
registration date.

Thus, the shorter version of INSERT used is to accomplish this is:

60-415 Dr. C.1. Ezeife © 2008 Slide 188

94

Triggers

INSERT INTO student (first_name, last_name, zip,
registration_date)

VALUES (‘John’, ‘Smith’, ‘O0914°, SYSDATE);
BEFORE triggers should be used

When the trigger provides values for derived columns

before an INSERT or UPDATE statement is
completed.

When the trigger determines whether an INSERT,
UPDATE or DELETE statement should be allowed to
complete. (E.g., determining if an inserted ZIP is
valid)

60-415 Dr. C.I. Ezeife © 2008 Slide 189

Triggers

AFTER TRIGGERS

Example: the statistics table with structure statistics (Table_Name,
Transaction_Name, Transaction_user, Transaction_Date);

A trigger on the Instructor table, which fires after an UPDATE or
INSERT statement is:

CREATE OR REPLACE TRIGGER instructor_aud
BEFORE UPDATE OR DELETE ON INSTRUCTOR
DECLARE

v_type VARCHARZ2(10);
BEGIN

IF UPDATING

THEN
v_type := ‘UPDATE’;

60-415 Dr. C.1. Ezeife © 2008 Slide 190

95

Triggers

ELSEIF DELETING

THEN

v_type := ‘DELETE’;
END IF;
UPDATE statistics

SET transaction_user = USER
transaction_date = SYSDATE
WHERE table_name = ‘INSTRUCTOR’
AND transaction_name = v_type;
IF SQL % NOTFOUND
THEN
INSERT INTO statistics
VALUES (* INSTRUCTOR’, v_type, USER, SYSDATE);
END IF;
END;

60-415 Dr. C.I. Ezeife © 2008 Slide 191

Triggers

Note that the functions UPDATING and DELETING
are Boolean.

This trigger updates or inserts a record in the statistics
table when an UPDATE or DELETE operation against
the instructor table occurs.

Once trigger is created on the instructor table, any
UPDATE or DELETE causes modification of old
record or creating of new records, in the statistics.

After triggers should be used when

a trigger should be fired after a DML statement is
executed.

60-415 Dr. C.1. Ezeife © 2008 Slide 192

96

Triggers

= When a trigger performs actions not specified in a
BEFORE trigger.

= Consider the following UPDATE statement.
UPDATE student
SET zip = ‘01247
WHERE zip = ‘02189’;

= The value “01247” of the ZIP column is a new value
and trigger would reference it as :NEW.ZIP. The value
“02189” in the ZIP column is the previous value and is
referenced as :OLD.ZIP.

60-415 Dr. C.I. Ezeife © 2008 Slide 193

Triggers

:OLD is not defined for INSERT statements and :NEW
is not defined for DELETE statements.

= These pseudo variables are referenced in the condition
of a WHEN statement without : as in:

CREATE TRIGGER student_au

BEFORE UPDATE ON STUDENT

FOR EACH ROW

WHEN (NVL(NEW.ZIP, *) <> OLD.ZIP)
Trigger Body

60-415 Dr. C.1. Ezeife © 2008 Slide 194

97

Types of Triggers

TYPES OF TRIGGERS
Row Triggers
A row trigger is defined with a statement including FOR EACH ROW as in
CREATE OR REPLACE TRIGGER course_au
AFTER UPDATE ON COURSE
FOR EACH ROW
A row trigger fires as many times as there are rows affected by the trigger.
Statement trigger
A statement trigger does not include FOR EACH ROW in its definition, E.g.,
CREATE OR REPLACE TRIGGER enrollment_ad
AFTER DELETE ON ENROLLMENT

60-415 Dr. C.I. Ezeife © 2008 Slide 195

Types of Triggers

The trigger fires once after a DELETE statement is
issued against the enrollment table.

= Statement triggers are used for actions that do not
depend on individual records.
« INSTEAD OF TRIGGERS

= An instead of trigger is a row trigger that is defined on
views to fire instead of the DML statement.

60-415 Dr. C.1. Ezeife © 2008 Slide 196

98

Mutating Table Issues/Trigger Restrictions

MUTATING TABLE ISSUES

A mutating table is a table having a DML statement issued against
it. For atrigger, it is the table on which this trigger is defined.

A constraining table is a table read from, for a referential integrity
constraint.

TRIGGER SQL Statement Restrictions
An SQL statement may not read or modify a mutating table.

An SQL statement may not modify columns of constraining table
having primary, foreign, or unique constraints defined on them.

60-415 Dr. C.I. Ezeife © 2008 Slide 197

PL/SQL Tables

PL/SQL Tables

PL/SQL tables are PL/SQL arrays and DML
statements cannot be issued on them.

PL/SQL tables exist in memory only and not in
database.

Declaration of PL/SQL table

To declare PL/SQL table,

Define the table structure using TYPE statement.
Declare the actual table.

E.g., declaration of PL/SQL table

60-415 Dr. C.1. Ezeife © 2008 Slide 198

99

PL/SQL Tables

DECLARE
TYPE LnameType IS TABLE OF
--Table structure definition
Student.last_ name % TYPE
INDEX BY BINARY_INTEGER;
--Create the actual table
Slname LnameType;
liIname LnameType;
BEGIN
NULL;

60-415 Dr. C.I. Ezeife © 2008 Slide 199

PL/SQL Tables

Referencing and Modifying PL/SQL Table Rows

A particular table row is referenced as:

<table_name> (<index_value>)

The datatype of the index value is compatible with BINARY_INTEGER
datatype and we assign values to a row using the := operator.

= E.g.
SET SERVEROUTPUT ON
DECLARE
CURSOR c_slname IS
SELECT last_name, student_id, ROWNUM
FROM student
WHERE student_id < 110
ORDER BY last_name;

60-415 Dr. C.1. Ezeife © 2008 Slide 200

100

PL/SQL Tables

TYPE type_Iname_tab IS TABLE OF
student.last_name % TYPE
INDEX BY BINARY_INTEGER;
tab_slname type_Iname_tab;
v_slname_counter NUMBER:=0;

BEGIN

FOR r_slname IN c¢_slname
LOOP

v_slname_counter :=v_slname_counter + 1;

tab_slname(v_slname_counter):=r_slname.last_name;
END LOOP;

60-415 Dr. C.I. Ezeife © 2008 Slide 201

PL/SQL Tables

FOR i_slname IN 1..v_slname_counter
LOOP

DBMS _OUTPUT.PUT_LINE(‘Hereisa
last name:’ || Tab_slname(i_slname));

END LOOP;
END;

60-415 Dr. C.1. Ezeife © 2008 Slide 202

101

PL/SQL Attributes

PL/SQL Table Attributes

Attributes used to gain information on a PL/SQL table are:
1. DELETE - deletes rows in a table

2. EXISTS - returns TRUE if specified entry exists in table.
3. COUNT- returns number of rows in table.

4. FIRST - returns the index of the first row in table.

5. LAST - returns the index of the last row in table.

6. NEXT - returns the index of the next row in table.

7. PRIOR - returns index to previous row in table.

60-415 Dr. C.I. Ezeife © 2008 Slide 203

PL/SQL Attributes

Syntax of Use of Table Attributes
PL/SQL table attributes are used with the following syntax
<table_name>. <attribute>

E.g., with a table name t_student, we can assign the row count of
this table to variable v_count as follows:

v_count := t_student.count;
t_student.delete deletes all rows from the t_student table.

t_student.delete(15) deletes only the 15th row. Also
t_student.exists(100) will work on the 100th row.

Thus, for some attributes, the syntax involes specifying which rows
as:

<table_name>.<attribute> (<index number>[, <index humber>])

60-415 Dr. C.1. Ezeife © 2008 Slide 204

102

Part C: Oracle Forms

Software needed
Oracle Developer 6.0 or higher (our case, Oracle 10g)

Oracle Developer is Oracle’s application development tool suite
containing components like Oracle Forms

Oracle 10g server: This is the Oracle’s RDBMS [There is Oracle
Personal Edition or Oracle Enterprise Edition]

SQLPLUS

Windows 2000 or higher or Unix
Access to www.

Book website :
http://www.phptr.com/phptrinteractive/
http://www.phptr.com/motivala

60-415 Dr. C.I. Ezeife © 2008 Slide 205

Oracle Forms

Knowledge or Background Requirements
- Should be familiar with:
Relational Database Design

SQL DDL and DML [for manipulating tables,
constraints, sequences etc]

PL/SQL procedures including [Local variables,
conditional logic and cursors, etc.]

May need to be able to configure Windows Registry so
that Oracle Forms can properly locate all files you
create.

60-415 Dr. C.1. Ezeife © 2008 Slide 206

103

Part C: ORACLE FORMS IN A WRAP
(slide 1 of 13)

» Oracle Developer suite software has about 20 individual
components including Oracle Forms and Reports.

= Oracle Forms topics necessary to master the designand
implementation of a database application with nice graphical user
interface are summarized into categories A to E with references to
full discussions in the course notes slides as follows:

= A: Main Concepts: [Events, Triggers and Items], Oracle Forms

Files (Running Forms), Master-Detail Forms

» Al: Events, Triggers and Items: Forms applications are event

driven because they respond to events.
1. An Event is a user or system action
Example user action is clicking a button and example system
action is checking that an entered course id being registered
for, exists.

60-415 Dr. C.I. Ezeife © 2008 Slide 207

Part C: ORACLE FORMS IN A WRAP
(slide 2 of 13)

2. Triggers are code objects that respond (or fire) in response to
events. (sl 275 - 292)

— Example WHEN-BUTTON-PRESSED trigger [the programmer
writes PL/SQL code inide the trigger to say what to do when
button is pressed, e.g., display message to indicate name of user.]

— Triggers are classified by:

Post event triggers and Key triggers.

* (2)Function: Queries triggers, Validation triggers, transactional
triggers, Key triggers.

— Triggers make use of available Forms built-ins (sl 275 - 292)

— Forms Built-ins fall into one of 3 categories (1. Get Built-ins, 2.
Set Built-in and 3. Find Built-ins).

60-415 Dr. C.1. Ezeife © 2008 Slide 208

* (1)Name: When event triggers, On event triggers, Pre event triggers,

104

Part C: ORACLE FORMS IN A WRAP
(slide 3 of 13)

— 3. ITEMS: Users interact with Forms application through
items. (see section B of Forms in Wrap).

— Example items are push buttons, text items, display items,
check boxes, radio buttons, list items.

— Items present information from database (data items) or
are control (non-base table items).

— An example data items shows a student’s name and an
example control item gives the number of students enroled
in a course section.

e A2: Oracle Forms Files (Compilation and Running)(sl 250-251)

— Forms Builder creates files saved as .fmb and creates .fmx
files after compilation.

60-415 Dr. C.I. Ezeife © 2008 Slide 209

Part C: ORACLE FORMS IN A WRAP
(slide 5 of 13) : Running from Home PC

From Home PC

= 1. Create a Tunnel for the Oracle Listener through ssh client as:
In SSH Secure Shell, select Edit “Settings from the pull down menu.
Then select Tunneling from the list on the left

* Add new Outgoing Tunnel with dialog as shown below:

unmel -
© Display Mame: CS01 Oracle
Tupe: TCP hd
, Listen Part 1521 o
¥ Allow Local Connections Only
3 C |
Destination Host: |cedbl-vip. newes. uwindsor, il
DestnatonPort i1 M

» The 'Destination Host' should be csdbl-vip.newcs.uwindsor.ca

* Click OK. Create an ssh connection to luna.cs.uwindsor.ca in the
normal way and login before using the tunnel.

60-415 Dr. C.1. Ezeife © 2008 Slide 210

105

Part C: ORACLE FORMS IN A WRAP
(slide 6 of 13) : Running from Home PC

* Now you can start the database client application on your PC (as detailed in
step 2 below) and open a connection to local host port 1521 which will be
automatically forwarded to the Oracle server in the School of Computer
Science. you may have to modify the tnsnames.ora file on your PC as follows:

CS01 =
(DESCRIPTION =

(ADDRESS_LIST =

(ADDRESS = (PROTOCOL = TCP)(HOST localhost)(PORT = 1521))

)
(CONNECT _DATA =

(SERVICE_NAME = cs01)
(INSTANCE_NAME = cs011)

60-415 Dr. C.I. Ezeife © 2008 Slide 211

Part C: ORACLE FORMS IN A WRAP
(slide 7 of 13) : Running from Home PC

2. From Windows start Menu, Find Oracle Forms
through Oracle Developer Suite/ Forms Developer /
Start OC4J Instance.

[Note: the OC4J Instance has to be running for your
forms application to run well and when you are done,
this instance can be shut down with Shutdown OC4J
Instance.]

= 3. Now, launch the Forms Builder through Developer
Suite/ Forms Developer/ Forms Builder.

4. When Done, shut down the OC4J through Developer
suite/ Forms Developer / Shutdown OC4J Instance.

60-415 Dr. C.1. Ezeife © 2008 Slide 212

106

Part C: ORACLE FORMS IN A WRAP
(slide 8 of 13)

e A3: Master-Detail Forms (sl 266-269)

— Master-Detail forms are used to implement primary-
foreign key relationship between two tables.

— They are created with the data block wizard, where the
primary key items are always in the master block, while
the foreign key items are in the detail block.

B. Mandatory Forms Objects (Physical or Logical)
e B1: Physical Interface Objects are
— (1) Items (e.g., buttons, text items) (sl 270-275)

— (2)Canvases (items must be placed on a cavase to be seen)
(sl 310-322).

— (3) Windows (physical containers of canvases) (sl 310-322)

60-415 Dr. C.I. Ezeife © 2008 Slide 213

Part C: ORACLE FORMS IN A WRAP
(slide 9 of 13)

« B2: Logical Interface Objects (do not have physical
properties).
— (4) Blocks (blocks are logical containers of items)
(sl. 240-249, 255-259).

— (5) Modules (Forms: logical containers of all
objects) sl. 237-247).

e C. Objects Owned by a Form and Used by a Form
(sl 216, 230-239)

60-415 Dr. C.I1. Ezeife © 2008 Slide 214

107

Part C: ORACLE FORMS IN A WRAP
(slide 10 of 13)

1.Forms
-ModuleName
1.1 Triggers
1.2Alerts
1.3Attached Libraries
1.4Data Blocks
-DataBlockName
1.4.1 Triggers
1.4.2 Items
1.4.3 Relations
1.5Canvases
-CanvasName
1.5.1 Graphics
1.6 Editors
17LOVs
1.8 Object Graphics
1.9 Parameters
1.10 Popup Menus
1.11 Program Units
1.12 Property Classes
1.13 Record Groups
1.14 Reports
1.15 Visual attributes
1.16 Windows
2.Menus
3.PL/SQL Libraries
4. Object Libraries
5. Built-in Packages
6. Database Objects

60-415 Dr. C.I. Ezeife © 2008 Slide 215

Part C: ORACLE FORMS IN A WRAP
(slide 11 of 13)

D. Tools for Creating and Manipulating Forms Objects

» D1: Data Block and Layout Wizards (for creating a block and
assigning its items to a canvas) (sl. 240-249)

e D2: Three Main Development Tools
— 1. Object Navigator (sl. 252 — 257)
— 2. Property Palette (sl. 260 — 263)
— 3. The Layout Editor (sl. 264 — 265)
» D3: Menu Editor (sl 369 — 377)

— Used for building menus in Form Builder. First menus are
built using Forms Builder and assigned to forms using
menu module property.

60-415 Dr. C.1. Ezeife © 2008 Slide 216

108

Part C: ORACLE FORMS IN A WRAP
(slide 12 of 13)

= E: Other Forms Objects and Modules Used by Form (sl 270 — 272)
E1l: LOVs (sl. 293 — 302) and ALERTS (sl 303 — 309)
e E2: Visual Attributes and Property Classes (sl 306-308)
— Visual attribute object contains all properties that
determine font and color (sl. 328 — 3331).
— Property classes contain all properties in a property class
not just font and color.
E3: OBJECT GROUPS AND OBJECT LIBRARIES (sl 332-
333)

— An object group is an object within a Forms module, while
an object library is a module unto itself.

60-415 Dr. C.I. Ezeife © 2008 Slide 217

Part C: ORACLE FORMS IN A WRAP
(slide 13 of 13)

* E4: PROGRAM UNITS, PL/SQL Libraries (sl. 335-341)

— Program units can be PL/SQL packages, procedures, or functions
and can accept parameters and return values.

— PL/SQL libraries are used for storing program units so that the
program units can be used by many forms in an application. The
library files are saved as .pll files and attached to needed forms.

» Eb5: Database Objects (sl. 342 — 345)

— These are PL/SQL packages, procedures and functions stored in
the database server. Forms modules can also call these PL/SQL
stored objects as they do PL/SQL objects stored in the attached
libraries.

» E6: Parameters and Built-in Packages (sl. 353 — 367)

— Values can be passed to called forms through global variables or
parameter list. The object navigator can be used to create
parameters.

60-415 Dr. C.1. Ezeife © 2008 Slide 218

109

Part C: ORACLE FORMS IN A WRAP
(slide 11 of 11)

= | E7: Oracle Forms and Oracle Reports (sl. 358 — 367)

* Oracle Report modules can be run by themselves
using Report Runtime environment or called from
form.

* RUN_PRODUCT built-in or its later versions like
RUN_REPORT_OBJECT can be used to call any of
the three types of Oracle Developer modules Forms,
reports, graphics.

= E8: MENUS (sl. 369 — 377)

* Menus allow implementation of custom
functionalities and security features for applications.

60-415 Dr. C.I. Ezeife © 2008 Slide 219

Windows Registry [Optional Part]

The Windows Reqistry

Windows Registry is a database maintained by Windows OS[95/98
and NT]

Windows Registry contains configuration information about your
computer, the hardware it uses and the software it runs.

We are interested in knowing how Oracle Forms uses the Registry
Oracle Forms and other Oracle Developer modules use the
Registry to find where Oracle environment variables are stored.
Other OS version (not Windows 95/98 and NT) may use other
methods for managing environment variables.

60-415 Dr. C.1. Ezeife © 2008 Slide 220

110

Windows Registry [Optional Part]

Editing Windows Registry
- To Edit Windows Registry with Register Editor, do:

From Start Menu, select the RUN option to open the Run dialog
window,

type:

regedit
On the Registry Editor GUI, do:
Expand the HKEY_LOCAL_MACHINE folder to see subfolders

Expand the SOFTWARE node and scroll down to see folder
ORACLE [do not expand] on the left pane.

Scroll down on the right pane until you see FORMS60-PATH (a
Forms environment variable containing a lot of directories used by
FORMS)

60-415 Dr. C.I. Ezeife © 2008 Slide 221

Windows Registry [Optional Part]

For Example:

An application has an example that runs one form from another
using the command:

OPEN_FORM(‘STUDENT");
This command refers to the STUDENT module name without
specifying the directory path where this file STUDENT.fmx will be
found. This is because FORMS would look for all such modules in
the Registry director FORMS60_PATH.
TO EDIT REGISTRY DO:
Double-click the FORMS60_PATH to open the Edit String dialog.

Using the cursor keys, navigate to the very front of the string. [Do
not delete entries already there].

60-415 Dr. C.1. Ezeife © 2008 Slide 222

111

Windows Registry [Optional Part]

Type the following at the beginning of the string to
enable Forms to reference modules stored in
C:\guest\forms\exercises;

[must include the semi-colon to separate entries]
Click OK button.

60-415 Dr. C.I. Ezeife © 2008 Slide 223

Windows Registry [Optional Part]

REPORTS60_PATH

The REPORTS60_PATH Registry value is the environment variable that
stores directory paths that Oracle Reports uses.

We shall be calling Oracle Reports from Forms and will need to adjust the
REPORTS60_PATH as well.

To adjust REPORTS60_PATH, do:

* Double-click the REPORTS60_PATH to open Edit String dialog

* Repeat steps 2-4 above.
REGISTRY ADVANTAGES
= Alternative to Registry is explicit specification of paths in applications
developed to have for example:

OPEN_FORM(‘c:\applications\forms\modules\student.fmx’);

This will force all users of the application to maintain this same directory
structure.

60-415 Dr. C.1. Ezeife © 2008 Slide 224

112

Concepts and Objects

= Oracle Forms is part of a larger product called Oracle
Developer with close to 20 individual components:- (
Oracle Forms, Oracle Reports, Oracle Graphics etc)
supported by subcomponents and utilities (e.g., project
managers, debuggers, database schema builder etc)).

60-415 Dr. C.I. Ezeife © 2008 Slide 225

Events and Triggers

Oracle Forms application are event-driven (application responds

to events like user action or system action).

User actions like clicking a button, tabbing from one item to

another and opening or closing a window are called interface

driven.

= Events drive Forms applications and the programmer can respond
to every event that occurs with a piece of code.

= The code objects that respond to events are called triggers.

= One or more triggers may fire when an event occurs.

= E.g., to quit an application on windows, user would click on the

close button at the top right corner of the window and this is an

event.

60-415 Dr. C.1. Ezeife © 2008 Slide 226

113

ITEMS

In response to the “Close_Window” event, Forms fires the
WHEN_WINDOW_CLOSED trigger.

The programmer writes code inside the trigger to tell the
application what to do (e.g., flash a message reminding user to save
work etc).

ITEMS
The Form interface consists of items.

Example items are Buttons (push buttons), text fields (called text
items or display items in Forms), check boxes and radio groups,
list items.

Items are used to present information from the database (base-
table or data items) or to act as controls (non-base-table or control
items).

60-415 Dr. C.I. Ezeife © 2008 Slide 227

ITEMS

Most item types like display items are used as data or control
items.

E.g. a display item that presents information taken directly from
the database, such as student’s name or address is a data item
because it is based on a column in the database.

However, a display item to show the number of students enrolled
in a certain section is a control item since its value must be
calculated rather than retrieved from the database.

Assume the database has a STUDENT table with an attribute for
ZIP, there is also a ZIPCODE table that holds all valid zipcodes.

You have a base item in form called ZIP for the column of table
STUDENT.

60-415 Dr. C.1. Ezeife © 2008 Slide 228

114

EVENTS, TRIGGERS AND ITEMS
WORKING TOGETHER

When the user enters or changes values in the ZIP item in the
form, we want the value validated by checking that it exists in the
ZIPCODE table.

To set up the form for this validation requires the following
sequence of actions.

User changes the ZIP items value

User presses TAB key

The above interface event causes a number of internal processing
events, one of which is validate item event.

The validate item event fires the WHEN_VALIDATE_ITEM
trigger

The code in the WHEN_VALIDATE_ITEM trigger validates the value in
ZIP.

This series of occurrences represents the essence of a Forms application.
60-415 Dr. C.1. Ezeife © 2008 Slide 229

Mandatory Forms Objects

The five mandatory Forms objects are:
e (1) items (2) canvases (3) windows (4) blocks and (5) modules
- While items, canvases and windows are physical interface
objects, blocks and modules are logical container objects.
1. ITEMS
< Items are interface objects (buttons, text items, list items, radio

group, check boxes) that allow Forms users to interact with
Forms applications.

< Items are defined by their properties including physical
attributes such as Height, Width, X Position and Y position,
etc; examples of data attributes are Column Name, Primary
Key, Insert Allowed etc.

60-415 Dr. C.1. Ezeife © 2008 Slide 230

115

Mandatory Forms Objects

e The look, feel and behavior of an item are changed by
adjusting properties.

e Properties are accessed through a window called Property
Palette.

« Properties can be adjusted either during design or at run-time.
e At design, item properties can be changed by;
e (1). clicking the property palette and adjusting properties, or

e (2). Using the Layout editor, a graphical WYSIWYG tool that
lets you position and size screen objects by dragging and
dropping.

e To change properties at run time requires using code within
the form, eg, using a trigger code to change background colour
property of an item if the item’s value is negative.

60-415 Dr. C.I. Ezeife © 2008 Slide 231

Canvases

An item type can be determined in one of three ways:

(i) By looking at the Item Type Property in the Property Palette.
(ii) By looking at the item itself in the Layout Editor.

(iii) By looking at the icon to the left of the items name in the
object navigator.

e There are 15 item types in Forms and the 6 most important
types are display item, text item, radio group, list item, check
box, push button..

2. CANVASES

< Items need to be positioned on canvases to be seen by users.
Thus, a Forms Canvas is the surface on which you position,
size and color different objects.

e The layout editor tool in Form Builder presents a WYSIWYG
view of canvas and its items.

60-415 Dr. C.1. Ezeife © 2008 Slide 232

116

Canvases

 Layout, positioning, coloring and so on are done in
the Layout Editor.

» Canvases like items have properties that can be
viewed and changed through the property palette or
at run-time.

* Non-mandatory graphical objects called frames are
contained in canvases. A frame can hold a group of
items and adjusting the frame properties would
adjust properties of all its items.

* Fig 1.3, p13 has a canvas in the Layout Editor with
two frames and items.

60-415 Dr. C.I. Ezeife © 2008 Slide 233

Windows/ Blocks

3. WINDOWS

* Windows are physical containers of canvases and window’s
properties can also be changed at design or run-time.

e Form’s windows resemble Microsoft Windows and can be
opened and closed manually or programmatically by the
application.

4. BASE-TABLE BLOCKS AND NON-BASE TABLE BLOCKS

e Canvases are physical containers of items, while blocks are
logical containers of items.

» Base-table blocks must contain at least one item that is based
on a column in a database table or view.

60-415 Dr. C.1. Ezeife © 2008 Slide 234

117

Windows/ Blocks

e E.g. If we create a block based on the STUDENT table, at least
one of its items must be based on a column in the STUDENT
table.

* Not all items in a base-table block have to be based on columns
in the table.

e E.g. Fig 1.4, P15 shows an INSTRUCTOR BLOCK which has
most attributes in the INSTRUCTOR table, but includes
additional non-table attributes like CITY and STATE.

< Blocks can also be based on an Oracle stored procedure
(advanced topic).

* Non-Base-table blocks are not based on any database objects
but contain non-base-table items like buttons.

60-415 Dr. C.I. Ezeife © 2008 Slide 235

Blocks

 Blocks are logical and do not have physical
properties like X position, Y position, Height, Width
etc.

* E.g. a Student Form has only one block that is based
on the STUDENT table and includes all attributes of
this table. The form has 2 windows (Student and
Record History). Some of the items on the block are
on a canvas in the student window, while the rest of
the items are on a canvas in the Record History
window.

60-415 Dr. C.1. Ezeife © 2008 Slide 236

118

Modules

MODULES
* Modules are referred to simply as “forms”.

* They are logical containers of all the objects in a
form.

* Fig 1.5, P16 of book shows physical objects
contained within a forms module called
COURSE.fmb.

» A typical application is made up of a group of
modules (tens or hundreds of modules).

60-415 Dr. C.I. Ezeife © 2008 Slide 237

RELATIONSHIP BETWEEN
MANDATORY FORMS OBJECTS

 Blocks contain items; items can be positioned on
canvases and windows contain canvases.

* Items can be logically contained in one block, but
physically positioned across multiple canvases and
windows.

60-415 Dr. C.1. Ezeife © 2008 Slide 238

119

Objects owned or contained by a form and

10. Popup Menus
11. Program Units

12. Property Classes
13. Record Groups
14. Reports

15. Visual Attributes

Instances
Object Instance
1. Trigger ON_CLEAR_DETAILS
WHEN_NEW_FORM_INSTANCE
2. Alerts DEMO_OBJECTS
3. Attached Libraries -
4. Data Blocks COURSE SECTION
5. Canvases COURSE_SECTION
6. Editors -
7.LOVS -
8. Object Groups
9. Parameters -

CHECK_PACKAGE_FAILURE
CLEAR_ALL_MASTER_DETAIL
TABLE_ITEM_PROMPT_ALLIGMENT

16. WindeWs415 Dr. C.1. Ezeife © 2008 SHYRSE_MNEORMATION

The Data Block and Layout Wizards

= The Data block and layout wizards allow you to quickly
create a block and assign its items to a canvas.

= The Data Block Wizard is first used to create a block,
followed with creation of canvas and frame using the
layout wizard.

= Each screen in a wizard is called a page.

60-415 Dr. C.1. Ezeife © 2008 Slide 240

120

The Data Block and Layout Wizards

To use the Data Block Wizard do:

= Set the environment through the following steps.

* Open the Form Builder.

* From the main menu select File|New|Form to create
a new form.

* From the main menu, select File|Connect to connect
to the database.

* From the Main Menu, select Tools|Data Block
Wizard to open the Data Block Wizard.

60-415 Dr. C.I. Ezeife © 2008 Slide 241

The Data Block and Layout Wizards

The Data Block Wizard has three pages.
1. Type page
2. Table page
3. Finish page
= 1. Type Page
= -For selecting database object for block.
- First choose base Table or View field or click the Browse button
for the table name from a list.
e To select columns, move them from the Available columns
text list to the Database items text list.

 This can be done by using the arrow buttons positioned
between the two text lists. Or

» Double-clicking individual items.
e Multiple items can also be selected and moved.

60-415 Dr. C.1. Ezeife © 2008 Slide 242

121

The Data Block and Layout Wizards

Although not all attributes need to be moved, selecting primary and
foreign key attributes for the block is always encouraged.

-Check Enforce data integrity for the block.
-Click Next button to take to FINISH PAGE.
FINISH PAGE

-To move on to the Layout Wizard, select Create the Block and then call
the Layout Wizard radio button and click Finish.

THE LAYOUT WIZARD
-The Layout Wizard has six pages:
* 1. Canvas page
e 2. Data Block page
e 3. Items page
e 4. Style page
« 5. Records page
e 6. Finish page

60-415 Dr. C.I. Ezeife © 2008 Slide 243

THE LAYOUT WIZARD

1. Canvas Page

= You can make selections from the List items

= Choose the Canvas [New canvas Existing Canvas Name]

. Choose the canvas type[Content or Tab]

. Choose tab page[Enabled when type is Tab & list shows]
-Next button takes the wizard to Data block page.

2. Data Block Page

. -The tasks to perform here are:
(i) Select the items to be displayed [like in the data block wizard move
items from the Available items list to the Displayed Item List].

. (ii) Order the Items

[The Layout Wizard will lay the items onto the screen in the order they
appear in the Displayed Items text list. To reorder the items, drag and
drop to get in proper positions]

60-415 Dr. C.I1. Ezeife © 2008 Slide 244

122

THE LAYOUT WIZARD

(ii) Select the items type.

[set the type for each item by selecting the items in the Displayed
items list and changing its type using the Item type drop-down
list].

-Next button takes you to Items page.

. Items Page

= Two tasks performed here are:

= Adjusting the prompt values.

= Adjusting the Height and Width values.

= This is done by positioning the cursor on the value we like to
change and editing it.

= -Next button takes it to style page.

60-415 Dr. C.I. Ezeife © 2008 Slide 245

THE LAYOUT WIZARD

4, Style Page
. Two styles to choose from after laying out the items are:
. Form style
. Tabular style
. -Next button advances it to Record page.
5. Records Page
-The four tasks to perform are:
(i) Choose a Frame Title.
(ii)Indicate the number of Records Displayed.
(iii)Set the Distance Between Records.
(iv)Include a scrollbar
-Next button advances it to finish page.
6. Finish Page

-click the Finish button, this causes the Layout Wizard to complete and
canvas displayed in the Layout Editor.

60-415 Dr. C.1. Ezeife © 2008 Slide 246

123

SAVE YOUR FORM

-From the main menu, select File|Save. Type a Test.fmb file.

-You can now edit the form manually using the Layout Editor and Property Palette
or the Wizards again by re-entering them.

Name 6 ways to access the Data Block Wizard

* From the Main Menu, select Tools|Data Block Wizard.

* In the Object Navigator double-lick the Data Blocks node. (This will only work
for the first block of each module).

+ Inthe Object Navigator, select the Data Blocks node and click the create
button. The create button has a green plus sign as its icon.

« In the object Navigator, select the Data Blocks node and right-click. Select
Data Block Wizard.

« In the Layout Editor, click the Data Block Wizard button. The Data Block
Wizard button is situated in the middle of the Layout Editor’s horizontal
toolbar. It has a gray cylinder and a magic ward as its icon.

« On the Form Builder welcome dialog in the section labeled Designing, select
use the Data Block Wizard, and click the OK button.

60-415 Dr. C.I. Ezeife © 2008 Slide 247

ADDING NEW ITEMS TO BLOCK AND
CANVAS

ADDING NEW ITEMS TO BLOCK AND CANVAS

It is important to have the proper block or one of its
items selected in the object Navigator in order to re-
enter the Data Block Wizard.

You can add new items to a Block by re-entering the
Data Block Wizard. However, this action will not add
the items to the canvas or its frame.

To add new items to the canvas, you need to reenter the
Layout Wizard.

60-415 Dr. C.1. Ezeife © 2008 Slide 248

124

REMOVING ITEMS FROM BLOCK
AND CANVAS

-The Data Block does not allow you to remove items from a block.

-Items can be removed simply by selecting them in the Object
Navigator or

Layout Editor and then deleting them manually by clicking the
DELETE key.

-Frames are graphical objects belonging to canvases that make it
easier to control layout of multiple groups of items. When layout
wizard positions items on canvas, it lays them out within frames.
-For example in Master Detail Forms we can have forms that will
allow us to have two groups of items on a single canvas. One of
those groups is laid out in form style, while the other is laid out in
tabular style. Each group of items will be in a frame. Having two
frames lets you re-enter the layout wizard for each frame
individually

60-415 Dr. C.I. Ezeife © 2008 Slide 249

Compiling and Running Oracle Forms
Files

Oracle Forms Files
= -Form Builder creates binary files which have .fmb extension.

= -Compilation of .fmb files creates executable files with .fmx
extension.

= - The .fmx files are run and delivered to users as executables.

= - while the binary .fmb files are platform independent as they can
be edited and complied on Windows or Unix platform, the
executable .fmx are platform dependent.

COMPILING
= -the .fmb files can be compiled into .fmx files in form builder.
= -To compile select Program|Compile Module

= -Compilation can also be done outside the Form Builder with a
utility tool called Form Compiler that is installed with Form
Builder.

60-415 Dr. C.1. Ezeife © 2008 Slide 250

125

Compiling and Running Form Files

RUNNING FORMS

-Forms can be run directly in Form Builder or outside Form Builder with
a utility tool called Forms Runtime.

-To run, click Run Form Client|Server button. It has a traffic light icon.
-If the form module compiles successfully, the Form compiler will simply
close. You confirm the compilation by looking for the .fmx file in the file
system.

-If there are any errors during compilation, they will be displayed in a
Forms Compilation Error window and written to a text file with .err
extension.

-A running form can be in one of three modes: Normal, Enter Query, or
Fetch mode.

-When a form first opens, the default behavior is for it to be in Normal
mode, which means it is capable of accepting new records or updating
existing ones.

60-415 Dr. C.I. Ezeife © 2008 Slide 251

The Oracle Forms development
environment

-In Enter Query mode, form is set to accept a query by example.

-You can get out of Enter Query mode and back to Normal mode
by clicking the Cancel Query button on the toolbar .

The Development Environment

-The Oracle Forms development environment has three main tools
namely:

(1) Object Navigator
(2)Property Palette
(3)Layout Editor

60-415 Dr. C.1. Ezeife © 2008 Slide 252

126

The Object Navigator

1. Object Navigator

-The object navigator presents hierarchical view of all
the objects in a form.

-1t organizes these objects by node and lets us expand
or collapse nodes.

= -Objects can be created, named, deleted, moved and
manipulated within object navigator.

= -The object navigator vertical toolbar shows the object
hierarchy as :

60-415 Dr. C.I. Ezeife © 2008 Slide 253

The Object Navigator

1.Forms
-ModuleName
1.1 Triggers
1.2Alerts
1.3Attached Libraries
1.4Data Blocks

-DataBlockName

1.4.1 Triggers

1.4.2 Items

1.4.3 Relations
1.5Canvases

-CanvasName

1.5.1 Graphics

1.6 Editors
1.7LOVs
1.8 Object Graphics
1.9 Parameters
1.10 Popup Menus
1.11 Program Units
1.12 Property Classes
1.13 Record Groups
1.14 Reports
1.15 Visual attributes
1.16 Windows

2.Menus

3.PL/SQL Libraries

4. Object Libraries

5. Built-in Packages

6. Database Objects

60-415 Dr. C.1. Ezeife © 2008 Slide 254

127

Object Navigator with Nodes

Object Navigator with Nodes

-Here, Data Blocks and Canvases nodes are expanded to reveal their
objects.

-The highest nodes in the object hierarchy are Forms, Menu, PL/SQL
Libraries, Object Libraries, Built-ins and Database Objects.

-The Database Object node lets you view and edit database objects.
-To open form do:
Go to Main Menu and select File|Open

-A small plus sign (+) to the left of a node like Alerts for form means that
the form has this object. However, empty box beside a node (e.g LOV)
means it does not have it.

-There are three states for objects in the Navigator: deselected, selected
and name-editable.

-W;1en you create objects, Forms gives them a default name (objects name
+#

60-415 Dr. C.I. Ezeife © 2008 Slide 255

To create a block manually

-To create a block manually do:
1. Select the Data Blocks node in the Object Navigator.
2. Click the create button

3. Select Build a new data block manually and click the
OK button.

4. Select the block created and name it CONTROL.

-When a form is running, the user can navigate
through the form by tabbing from item to item.

-Forms default navigation order is based on how items
are positioned in the object navigator.

60-415 Dr. C.1. Ezeife © 2008 Slide 256

128

The object Navigator’s Data Block

= E.g. The object Navigator’s Data Block for a form is:
= Data Block

? Zipcode
Triggers

- Items
O STATE
O CITY
O zIP
Relations

60-415 Dr. C.I. Ezeife © 2008 Slide 257

The Layout Editor’s Data Block

However, in the Layout Editor, the order of the State, City and
Zip items are different as [Zip, City, State].

-This means that when the form is run and the user tabs from text
item to text items, navigation will be in the order in objects
navigation which is STATE-CITY-ZIP.

-You can control the navigation order by dragging items and
blocks up and down in the object navigation by writing triggers.
-Items created in the object navigator are not visible until their
canvas property is set in the property palette including their X and
Y positions on the canvas.

By default, the object navigator creates new items as text items,
but to set to any other type, we can change the properties
accordingly.

60-415 Dr. C.1. Ezeife © 2008 Slide 258

129

Object Navigator

Whenever we paste or create objects in the object navigator, they
are positioned directly below the object that is currently selected.
-1f you have multiple forms open at one time, it is essential to get
proper focus on a specific form you want to work with (i.e. you
want to run, close, compile, save etc).

-To put the focus of the Form Builder on a certain form in the
Object Navigator, select any object within that forms module.
-Stored Program Units, PL/SQL Libraries Tables, Views and
Types are objects that are visible to the programmer.

-Tables views and columns are “read only”. However, the
Database Objects Node is a handy way to examine the contents of
database tables and views. It shows table, view and column names
as well as data types and lengths.

60-415 Dr. C.I. Ezeife © 2008 Slide 259

Editing PL/SQL object through the Form
Builder

You can create and edit stored PL/SQL object through the Form
Builder by selecting the Trigger node of the object and clicking the
object navigator’s create button. This opens the database trigger
editor and you can set the trigger type and write its code.

-We can also write PL/SQL stored procedure packages and
functions through the Form Builder.

-Be careful not to drop needed PL/SQL objects from the database
through Form Builder (?).

The Property Palette

-The look, feel and behavior of an object can be defined by its
properties through the property palette.

-The properties displayed in the property palette are shown as:

60-415 Dr. C.1. Ezeife © 2008 Slide 260

130

The Property Palette

The Property Palette

1. General Name STUDENT_ID
2. Item Type Text Item
Subclass Information
Comments Help Block Topic
3. Functional
Enabled Yes
Justification Start
Implementation class
Multi-Line No
Wrap Style Word
Case Restriction Mixed
Conceal Data No
Keep Cursor Position No
Automatic Skip No
Popup Menu <Null>
Navigation
Keyboard Navigatable Yes
Previous Navigation Items <Null>
Next Navigation Item <Null>
Data
Data Type Number
Maximum Length 9
Fixed Length No
Item Type) .
60-415 Dr. C.I. Ezeife © 2008 Slide 261

The Property Palette

Any changes made to the object’s property through the property palette
are visible immediately on the layout editor. Also, object properties
changed graphically on the layout editor are changed as well on their
property palette.

- Properties of a selected group of objects can also be change at once.
Properties.
-Item’s Bevel property changes the appearance of the item’s border.

-The help system has a lot of details for explaining property restrictions
for using a property programmatically.

-When you changed properties of an item, the small icons to the left of the
property names change from small dots to small green squares.

- Not all properties are available for mass changes (e.g. Name and
Subclass Property can not be mass changed).

60-415 Dr. C.1. Ezeife © 2008 Slide 262

131

ACCESSING THE PROPERTY
PALETTE FROM THE FORM BUILDER

FIVE WAYS TO ACCESS THE PROPERTY
PALETTE FROM THE FORM BUILDER

From the Main Menu, select Tools|Property Palette.

In the object navigator, select the objects whose
properties you want to see and right click.

In the object navigator, double-click on the icon on the
left of the object whose properties you would like to see
(this does not work for canvasses).

In the Layout editor, select the object whose properties
you would want to see.

Press F4.

60-415 Dr. C.I. Ezeife © 2008 Slide 263

The Layout Editor

The Layout Editor

-The Layout editor allows you to visually position, arrange, size and color
objects.

While all objects (logical or physical) can be created in the object
navigator you can only create physical objects on the layout editor that
can appear on a canvas.

-Physical objects that can appear on a canvas include items, other
canvases and graphics.

-Graphics include frames and any other non-item objects like rectangles,
circles, lines and static text.

-The layout editor has three toolbars that provide utility, formatting and
create functions. They are called respectively utility, formatting and
Vertical Toolbars [Fig3.7, P94].

1. Utility Toolbar: allows you to open save, and run forms as well as cut
and paste etc. It also allows you to coordinate canvases and block being
worked on and gain access to the wizards.

60-415 Dr. C.1. Ezeife © 2008 Slide 264

132

The Layout Editor

2. Formatting Toolbars: For formatting, positioning and
arranging text.

3. Vertical Toolbar or tool Palette: Lets you select, rotate and
reshape objects, create graphic objects, create items and color
objects.

For graphical objects such as items, stacked canvases and frames,
it is common to use the Layout Editor for creation in order to
position and size the object.

-The upper left-hand corner of an object indicates its position. If
the X position and Y position properties are set to 10,10 the
object’s upper left-hand corner is at the coordinates 10,10. This is
true for items, frames, canvases, windows and other graphical
objects.

60-415 Dr. C.I. Ezeife © 2008 Slide 265

Master — Detail Forms

Master — Detail Forms

-Master-Detail Forms allow us to create a form that is based on multiple
base table blocks and establish a relationship between them.

-The relationship allows us to issue a query in the master block, which
causes the form to issue a corresponding query in the detail block.
-The master and detail blocks are created using wizards. This
automatically creates an object called a relation.

-To change the behavior of the form, we adjust the properties of the
relation object.

-The relation object hold the join condition that relates the master and
detail blocks. The relation object also has some triggers and program
units written by Form Builder associated with them.

60-415 Dr. C.1. Ezeife © 2008 Slide 266

133

Master-Detail Forms

-Master-Detail Forms is used to implement relationships like
primary-foreign key relationship that may exist between two
database tables.

-When creating the first block in a form the wizard prompts you
with master-detail pages and asks if there is already another block
in the form.

-When you create the detail block, the wizard asks if you want to
create a relation object for establishing the join condition between
two blocks and managing the coordination of their records.
-Checking the Auto-join data blocks causes the wizard to write the
join condition.

-1f Auto-Join data blocks is not checked, then you would use the
Detail Item and Master Item poplists to create the join condition
yourself.

60-415 Dr. C.I. Ezeife © 2008 Slide 267

Master-Detail Forms

To create the join condition yourself, you would select the items
that make up the logical joins and the wizard would use those
items to write the relation objects join condition.

-The Master block always contains the relation object even though
the wizards create the relation object during the creation of the
detail block.

-When the Form Builder issues a query in the Master block, it
needs to return corresponding rows to the detail block. This
ensures that querying a record in the master block, brings back
corresponding records to the detail block.

-E.g. STUDENT and ENROLLMENT

tables have a primary —foreign key relationship between them that
tells for each student record the 0 to many enroliment records
that exist.

60-415 Dr. C.1. Ezeife © 2008 Slide 268

134

Master-Detail Forms

-The STUDENT items make the master block laid out
in form style, while the ENROLLMENT items are in
the detail block laid out in Tabular style. E.g. Fig 4.1,
P109

-A master-detail form is used to establish and display a
one-to-many (primary-key-to-foreign key) relationship

between blocks.

-The primary key items are always in the master block

and the foreign key items are always in the detail block.

60-415 Dr. C.I. Ezeife © 2008 Slide 269

ITEMS

ITEMS

1. Text Items

-are mostly, database items based on database table columns. These can
be created with data block wizard. There are also non-database text items.
2. Display Items

-Display database or non-database items not directly based on database
columns but results of calculations or values of other tables. E.g. display
items are time, date, database name etc.

-For an item to be visible at runtime, it should be assigned to a canvas that
is visible in a window.

-When the canvas property of an item is set to Null, it is a null-canvas
item (used as variables that can be referenced by PL/SQL).

-Null canvas items properties cannot be configured and they are not
visible in the Layout Editor.

60-415 Dr. C.1. Ezeife © 2008 Slide 270

135

ITEMS

The Visibility property of an Item defaults to Yes but can be set to
No to keep the item from not being visible when the form runs
although it is always visible through the layout editor.

-Having an item’s Enabled Property set to No will allow values of
the items to be displayed but prevent editing or updating those
values.

-1t is wise to adjust the item’s Data Type property to match the
data type of its base column.

-Forms can make use of database sequences by setting the initial
value property of an Item with the following syntax:

:SEQUENCE.sequence_name.NEXTVAL

60-415 Dr. C.I. Ezeife © 2008 Slide 271

Items

-Format mask lets you display information in a format different
from that stored in the database.
-The Database Item property informs that this item is based on a
column in the database. pp140-141.
e.g. formula written by programmer for a display item (seats-left)
after setting calculating mode to formula and writing the following
expressions in the formula property:

:SECTION.CAPACITY - :SECTION.NO_OF_ENROLL
-The default value of this property is set by the Number of Records
Displayed Property. The Query Array Size property of the block
decides how many records are fetched from the database at a time.

60-415 Dr. C.1. Ezeife © 2008 Slide 272

136

Buttons, Lists, Items, Radio Groups and
Check Boxes

Setting the Query All Records property to Yes
overrides the Query Array Size property and is useful
for computing averages correctly.

3. Buttons, Lists, Items, Radio Groups and Check
Boxes

-Other Forms items in addition to text and display
items are:

= (i)Images, sounds, Active X Controls, and
= (i)Buttons, List items, radio groups, check boxes, etc.

= -The list of items in (ii) with text and display items are
the most common item types.

60-415 Dr. C.I. Ezeife © 2008 Slide 273

Buttons, Lists, Items, Radio Groups and
Check Boxes

Buttons

= -Creating and positioning buttons in Forms is easy, what is challenging is
writing the code that goes behind the button.

= -Each button has a WHEN-BUTTON-PRESSED trigger associated with it
so that it can respond to the Button Pressed event.

-You can use the help system to locate Forms built-in to place behind your
buttons.

LIST ITEMS, RADIO GROUPS AND CHECK BOXES
-These items present the user with a number of choices.

= LISTITEMS
-These can serve as either database or non-database items.
RADIO GROUPS

-These are small circles and selection of one radio button deselects the
previously selected button in the radio group items.

60-415 Dr. C.I1. Ezeife © 2008 Slide 274

137

Buttons, Lists, Items, Radio Groups and
Check Boxes

CHECK BOXES
-Theses are useful for storing Yes/No, True/False, and On/Off-type values.

-The label property positions text on the button itself. Button also has
prompt property that positions text somewhere next to the items.

-Always, use labels for buttons.

-Every list element must have a corresponding list item value.
-The list elements dialog boxes lets you set both of these values.
BUTTON TRIGGERS & BUILT-INS

-The triggers to create for corresponding to the event of a user clicking a
button is:

WHEN-BUTTON-PRESSED trigger
-The built-in to be used to exit the form is:
EXIT_FORM built-in.

60-415 Dr. C.I. Ezeife © 2008 Slide 275

Triggers

-The built-in for saving changes to database is:

COMMIT_FORM built-in
-The WHEN_CHECKBOX_CHANGED trigger is available for check box.
TRIGGERS
-A trigger contains PL/SQL code that responds to Forms events.
-Oracle Forms and Oracle database both use PL/SQL programming language to
store and retrieve data and present them in a GUI interface.
-'Ik')l_'iggers are always attached to other objects and have the same scope as their
objects.
-Triggers can be attached to items, block, or forms. WHEN_BUTTON_PRESSED
trigger attached to a button item has item scope as it fires only when this item is
accessed. The same trigger if placed on a CONTROL block with a set of buttons,
will have a block scope If the trigger is set at block level.
CATEGORIES OF TRIGGERS

-Forms help system categorize triggers either (1) by name or (2) by function.

60-415 Dr. C.1. Ezeife © 2008 Slide 276

138

Categorizing Triggers by Name

-There are 5 named trigger categories. The first word in a trigger’s name
tells how it will affect Forms default processing and when it will fire
relative to Forms default processing.

When event triggers which augment Forms Processing

On event triggers, which replace default processing

Pre event triggers, which fire just before a When event or On event
Post event triggers, which fire just after a When event or an On event
Key triggers, which fire when a user presses a certain key.

-For example, a trigger to the commit Transaction event which fires each
time a form inserts a record could be the ON_INSERT, PRE_INSERT or
POST_INSERT triggers depending on whether we want to override
Forms default action, own logic before or after default action.

60-415 Dr. C.I. Ezeife © 2008 Slide 277

Categorizing Triggers By Function

-Triggers can be categorized by the functions to which they are
related.

-AWHEN_BUTTON_PRESSED trigger is an interface event
triggers. ON_INSERT and PRE_INSERT TRIGGERS ARE
Transactional triggers.

-Some Trigger categories are:
1. Query triggers which respond to events regarding queries

= 2. Validation triggers, which respond to events regarding the
validation of items and records.

= 3. Transactional triggers, which respond to events regarding
inserting, updating and committing of records.

= 4. Key triggers, which respond to key press events.
= -Each trigger falls into both a named and a functional category.

60-415 Dr. C.1. Ezeife © 2008 Slide 278

139

Triggers

The WHEN_VALIDATE_ITEM code body would look like: [Note
that there is also a DECLARE section]

BEGIN
SELECT city, state
INTO :STUDENT.CITY, :STUDENT.STATE
FROM Zipcode
WHERE zip =:STUDENT.ZIP;
EXECUTION
WHEN NO_DATA_FOUND THEN
MESSAGE (‘Zipcode does not exist in Zipcode table’);
RAISE FORM_TRIGGER_FAILURE;
End;

60-415 Dr. C.I. Ezeife © 2008 Slide 279

Triggers

Whenever we want to refer to an item and its block in an SQL
statement in a trigger, we use the following syntax:

:block.item

-The STUDENT.EXIT button’s WHEN_BUTTON_PRESSED
trigger code is:

EXIT_FORM;

This is a built-in and even though there are no BEGIN or END
statements listed, it is PL/SQL.

If there is nothing to declare in the DECLARE statement, it is not
mandatory that you include a BEGIN and an END STATEMENT.

60-415 Dr. C.1. Ezeife © 2008 Slide 280

140

Triggers

1. Query Triggers.

These triggers are used to make one or more of the base-table
items more meaningful e.g using a trigger to fetch course
description that is displayed with section id in the section block.

\Validation Triggers.

—Two Validation triggers commonly used in Forms are
WHEN_VALIDATE_ITEM and WHEN_VALIDATE_RECORD.

-An example trigger CODE from WHEN_VALIDATE_ITEM for
an application where section cost is never more than 15,000 is :

If SECTION.COST > 5000 then
MESSAGE (‘Course cost must be less than $5,0007);
RAISE FORM_TRIGGER_FAILURE;

END IF;

N

60-415 Dr. C.I. Ezeife © 2008 Slide 281

Triggers

3. Transactional Triggers

—These are used to augment or replace Forms default transaction
processing.

-E.g. are ON_POPULATE_DETAILS and
_ON_CHECK_DELETE_MASTER, PRE_CHANGE,
POST_FORMS_COMMIT, POST_DATABASE_COMMIT, etc.

4. KEY TRIGGERS

-These fire whenever a user presses a corresponding key on the key-
board. E.g KEY_DOWN trigger. Key trigger can be used if you want to
change or replace default key processing.

= -Another key trigger is KEY_DELREC written whenever primary-
foreign key constraints exist in the database that correspond to one of
the items in the block.

-E.g. use of a trigger key.
DO_KEY(‘EXIT_FORM’);
= -The code for PRE_INSERT triggers is:

60-415 Dr. C.1. Ezeife © 2008 Slide 282

141

Triggers

DECLARE
v-block VARCHAR(30);
v_username VARCHAR(30);
v_date date;

BEGIN
v_username:=GET_APPLICATION_PROPERTY(USERNAME);
v_date:= SYSDATE;
v_block:= :SYSTEM.CURSOR_BLOCK,;

COPY/(v_date,v_block||’.CREATED_DATFE’);

COPY (v_username,v_block|.CREATED_BY");

COPY/(v_date,v_block|’.MODIFIED_DATE’);

COPY (v_username,v_block|.MODIFIED_BY’);

END;

-PL/SQL editor is used for writing and debugging codes.

60-415 Dr. C.I. Ezeife © 2008 Slide 283

Triggers

If there is a mistake in the code, the PL/SQL editor provides a
gray area below the trigger code that lists error messages.

-A trigger can issue the command RAISE
FORM_TRIGGER_FAILURE if data value is invalid.
-FORM_TRIGGER_FAILURE is a predefined, built-in Forms
exception, which is used to halt forms processing when an error
occurs.

-FORM_TRIGGER_FAILURE can be used by any Forms
PL/SQL object but not a database PL/SQL object.

-GET_APPLICATION_PROPERTY built-in can be used to get
user’s name.

60-415 Dr. C.1. Ezeife © 2008 Slide 284

142

Triggers

-System variables hold internal information about the
form. SYSTEM.CURSOR_BLOCK holds the value of
the current navigation block.

-The COPY built-in copies a value to somewhere else.

-In the above code the value being passed to the copy
built-in is a value and a block.item name.

-The code for a PRE-UPDATE trigger is:

60-415 Dr. C.I. Ezeife © 2008 Slide 285

Triggers

DECLARE
v_block VARCHARZ2(30);
v-username VARCAHR2(30);
v_date DATE;

BEGIN
v_username:=GET_APPLICATION_PROPERTY (USERNA
ME);
v_date:=SYSDATE;
v_block:=SYSTEM.CURSOR_BLOCK;
COPY/(v_date,v_block ||”.MODIFIED_DATE’);
COPY (v_username,v_block||”.MODIFIED_BY’);

End;

60-415 Dr. C.1. Ezeife © 2008 Slide 286

143

Triggers/Built_ins

-DO_KEY(‘EXECUTE_QUERY");

This DO_KEY built-in fires the key trigger associated with the built-in,
which is KEY_EXEQRY trigger.

-DO_KEY(‘COMMIT_FORM);
will fire the KEY_COMMIT trigger.
-DO_KEY(‘ENTER_QUERY?);

will fire KEY_ENTQRY trigger
FORMS BUILT-INS

-Forms Built-ins are set of PL/SQL functions and procedures that
perform standard application functions. E.g. EXIT_FORM and
COMMIT_FORM.

-Use of Built-ins without parameters

EXIT_FORM,;

EXIT_FORM Built-in with parameter to specify what the form should do
when it exists is:

60-415 Dr. C.I. Ezeife © 2008 Slide 287

Built_ins

EXIT_FORM(‘DO_COMMIT™);

-There are hundreds of built-ins in Oracle Forms and a
comprehensive list and their functions and uses are provided by
the Forms online help system.

1.GET_BUILT_INS

-A number of built-in are defined with the word “GET_"An
example is GET_APPLICATION_PROPERTY. It can be used as:
:COURSE.CREATED_BY:=GET_APPLICATION_PROPERTY/(
USERNAME);

-Other GET _built-ins exit for getting properties of Forms objects
like items, blocks, canvases and so on.

60-415 Dr. C.1. Ezeife © 2008 Slide 288

144

Built_ins

2. SET-BUILT_INS

-These are built-ins prefixed with the word SET . Eg.

SET_BLOCK_PROPERTY can be used to set properties of a

block at run time.

-The following two statements set the ORDER BY and the

WHERE clauses for a block called SECTION.

= SET_BLOCK_PROPERTY(‘SECTION’,DEFAULT_WHERE,’I
NSTRUCTOR_ID=101");

= SET_BLOCK_PROPERTY(‘SECTION’,ORDER_BY,’SECTION
_ID);

= -There are SET_built-ins for other objects in Forms like windows,

items, canvases etc.

60-415 Dr. C.I. Ezeife © 2008 Slide 289

Built_

= 3. FIND-BUILT-INS

= -E.g. FIND_BLOCK for getting the Block id. To get an object’s id, we use
one of the FIND_built-ins. -The code involving use of FIND_built-in is.

DECLARE
v_block_id BLOCK;
BEGIN
v_block_id:=FIND_BLOCK(‘SECTION’);
SET_BLOCK_PROPERTY/(v_block_id,DEFAULT_WHERE, INSTRU
CT R_ID=101");
SET_BLOCK_PROPRETY(v_block_id, ORDER_BY,’SECTION_ID’);
END;
-Other GET_BUILT_INS are:

GET_ITEM_PROPERTY,GET_CANVAS_PROPERTY, and
GET_BLOCK_PROPERTY.

60-415 Dr. C.1. Ezeife © 2008 Slide 290

145

Built_ins

To size the window MAINWIN to 200,200, do:
SET_WINDOW_PROPERTY (‘MAINWIN’, WINDOW_SIZE, 200,200);
-Other SET_BUILTINS are:
SET_CANVAS_PROPERTY, SET_BLOCK_PROPERTY etc.
-The syntax for the built-in is:
SET_WINDOW_PROPERTY (object name, property, value);
-where object is a VARCHAR2 parameter in quotes, the data type of value depends
on property.
[:)It'ils important to consult help files for appropriate syntax and parameters for
uilt-ins.
-Vgriables to hold the IDs of items would be of type ITEM, blocks of type BLOCK
and so on.

-You are unable to use restricted built-ins like GO-ITEM, GO-BLOCK on
navigational triggers like PRE_RECORD, PRE_TEXT_ITEM, POST_BLOCK,
POST_QUERY etc.

-A use of GO_ITEM Built-in is:
GO_ITEM (‘ZIPCODE.CITY’);

60-415 Dr. C.I. Ezeife © 2008 Slide 291

Built_ins

-To prevent the error message like:
FRM-410528 CANNOT Find Window. Invalidld

from showing when a built-in accesses an object that does not exist, it is wise to write the
trigger so it can alert you or the user to the absence of an object. -Eg.

DECLARE
v_form_name VARCHAR2(50);
v_window_id WINDOW;
BEGIN
v_form_name:=GET_APPLICATION_PROPERTY (CURRENT_FORM_NAME);
v_window_id:=FIND _WINDOW(‘MAINWIN’);
IF ID_NULL(v_window_id) THEN
M_ESSA)GE(‘MAINTAIN does not exist. Error in WHEN-NEW-FROM-INSTANCE
trigger’);
RAISE FORM_TRIGGER_FAILURE;
END_IF;
SET_WINDOW_PROPERTY (v_window_id, TITLE, “This is form ||v_form_name);
END

60-415 Dr. C.1. Ezeife © 2008 Slide 292

146

LOVS AND ALERTS

LOVS AND ALERTS

-Lists of value (LOVSs) and alerts are visual objects with which
users can interact.

-They are different from items because they appear in their own
windows and not positioned on a canvas.

-An LOV is used to present a list of values from which a user can
choose to populate items on a form.

-Lovs can be created manually or with a wizard.
-Alerts are used to present an important message to the user.

-Alerts have buttons through which the user can respond to
message being displayed.

60-415 Dr. C.I. Ezeife © 2008 Slide 293

LOVS AND ALERTS

LOVs serve a number of purposes, like making data entry easier
and ensuring data validity.

-LOVs are usually assigned/attached to text items. E.g. an LOV
attached to SECTION_ID displays a list of available sections of a
course with their descriptions.

-It is also possible to configure an LOV so that it is not attached to
a specific item and is available no matter where the user has
navigated.

-All LOVs are based on a Form’s object called record group,
which are logical objects never displayed to the user.

-A second group is similar to a database table and stores an array
of values in a column and row format.

60-415 Dr. C.1. Ezeife © 2008 Slide 294

147

LOVS AND ALERTS

A record group can be based on a query or a set of static values.

-The example sections LOV was based on a record group that
contained the following query:

SELECT s.section_id, c.course_no, c.description
FROM section s, course ¢

WHERE c.course_no=s.course_no

ORDER BY section_id;

-LOV wizard can be used to create and configure an LOV. The
wizard is also used to create the record group that serves as the
source of the LOV.

-There are different methods for displaying LOVs.

60-415 Dr. C.I. Ezeife © 2008 Slide 295

The LOV WIZARD

The LOV WIZARD

-You can access the LOV wizard by selecting Tools|LOV wizard
from the Main Menu or by right clicking on any object in the
Object Navigator.

-To re-enter the LOV wizard for an existing LOV, right click on
the LOV you wish to edit.

-Any object and property created with the wizards can always be
adjusted manually using

Form Builder.
-The LOV wizard has 9 pages namely.
1. Source Page

-LOV wizard only creates record groups based on queries; it
cannot define static record groups.

60-415 Dr. C.1. Ezeife © 2008 Slide 296

148

The LOV WIZARD

On the source page, the wizard will create a record group object
along with the LOV object.

-The next few wizard pages will define properties for the record
group.
2. SQL QUERY PAGE

-The wizard takes the query you wrote here and stores for its
record groups property, the Record Group Query property.

-With the Build SQL Query button, it opens the Query Builder for
building SQL statements.

-SQL statements can also simply be typed or imported.

-You can confirm that the SQL written is correct by clicking the
check syntax button.

60-415 Dr. C.I. Ezeife © 2008 Slide 297

The LOV WIZARD

Remember not to put a semi-colon after the query as the wizard
returns an Invalid Character, Invalid SQL Statement error.

3. COLUMN SELECTION PAGE

-On this page, the wizard populates new LOV’s column mapping
properties property. This property has multiple values that are
displayed and configured in the LOV Column Mapping dialog.

-1t defines which columns will be displayed, each column’s return
item and the width and title of the LOV column.

4. COLUMN DISPLAY PAGE

-The wizard will continue to populate the LOV’s column mapping
properties property.

60-415 Dr. C.1. Ezeife © 2008 Slide 298

149

The LOV WIZARD

The Return value field specifies which of the LOV columns and their
subsequent values should be used to populate items on the form.

-The Look Up Return items button presents a list of available items that
can serve as return items.

5. ADVANCED OPTIONS PAGE

-The wizard sets the Record Group Fetch size property for the record
group here. It also sets the Automatic Refresh Property for the LOV. It
can also set the Filter Before Display Property for the LOV for reducing
the number of fetched records due to a filter criteria.

6. ITEMS PAGE

-So far, we have created a record group and configured an LOV. We need
to attach the LOV to a form item like STUDENT.ZIP item.

-on this page, the wizard will set the List of values property for the Form
items.

60-415 Dr. C.I. Ezeife © 2008 Slide 299

The LOV WIZARD

-The LOV has some built-in features, for working with them.
-The type of Forms item for displaying LOV is a button

-LIST_VALUES is a built-in used to display LOVs. It will work
only if there is an LOV attached to the current item.

-The cursor must be in an item that has LOV attached to it for
LIST_VALUES to work.

-Setting the SHOW_LIST button’s mouse navigator property to
No prevents the cursor from making SHOW _LIST Button the
current item so that LIST_VALUES built-in opens LOV.

-thus the user cannot open LOV with enter key but with mouse.

60-415 Dr. C.1. Ezeife © 2008 Slide 300

150

The LOV WIZARD

-We can change this by coding the WHEN_BUTTON _PRESSED trigger
as:

GO_ITEM(*STUDENT.ZIP’);
LIST_VALUES;

-The GO_ITEM built-in causes the form to navigate to the
STUDENT.ZIP item so that the LIST_VALUES built-in works well.

-We can also replace the code in the WHEN_BUTTON_PRESSED trigger
in the Object Navigator(right click to get PL|SQL editor). New code is:

DECLARE
V_lov Boolean;
BEGIN
V_lov:=SHOW_LOV(‘ZIP_LIST’);
END;

-The SHOW_LOV built-in is used to display LOV’s but it does not
require LOV to be attached to an item.

60-415 Dr. C.I. Ezeife © 2008 Slide 301

The LOV WIZARD

The SHOW_L OV is also a Boolean function that returns TRUE if
user picks a value from the LOV and FALSE if they press the
LOV’s cancel button.

-To code WHEN_BUTTON_PRESSED trigger to display
messages depending on whether the user selects a value from the
LOV the code is:

DECLARE
v_lov Boolean;
BEGIN
IF NOT SHOW_LOV (‘ZIP_LIST’) THEN
MESSAGE (‘The user cancelled the LOV?);
ELSE MESSAGE (‘The user selected from the LOV’);
END IF;
END;

60-415 Dr. C.1. Ezeife © 2008 Slide 302

151

Alerts

Alerts are windows that contain messages and buttons.

- The MESSAGE built-in was used to send messages
to the user in previous chapters but there was no way
for the user to respond to the message and the message
may not be seen by the user.

= - Alerts are centrally placed and need to be
responded to, by the user.

- Alerts can have up to three buttons.
- Eg. Alert with three buttons is:

60-415 Dr. C.I. Ezeife © 2008 Slide 303

Alerts

A Zip code does not exist

‘Re-enter H List | | Cancel

CREATING ALERTS

Alerts are created and configured using the object Navigator
and property palette. An alert is a separate window that is not
positioned on a canvas. It is not visible in the Layout Editor
at design-time. The only way to see an alert is at runtime.

60-415 Dr. C.1. Ezeife © 2008 Slide 304

152

Alerts

DISPLAY ALERTS

= Todisplay an alert, use the following built_in
SHOW_ALERT (‘ALERT_NAME");

= SHOW_ALERT is a function that returns a number
To display an alert called ALERTL, the code is :
DECLARE
v_alert_button NUMBER;

BEGIN
v_alert_button := SHOW_ALERT (‘ALERTY);
END:;
60-415 Dr. C.l. Ezeife © 2008 Slide 305
Alerts
The code for the three-button alert is like:
DECLARE
v_alert_button NUMBER,;
BEGIN

v_alert_button := SHOW_ALERT (‘ALERTL’);

IF v_alert_button = ALTER_BUTTON1 THEN
code for Re-enter another value

ELSE IF v_alert button = ALTER_BUTTON2 THEN
code to display LOV of zipcode

ELSE IF v_alert button = ALTER_BUTTON3 THEN
code for cancel

END IF;

END;

60-415 Dr. C.1. Ezeife © 2008 Slide 306

153

Alerts

The constants ALERT_BUTTON1, ALERT_BUTTON?2,
ALERT_BUTTONS3 correspond to buttons in the alert

FIND_ALERT built_in can be used to get the alert’s object ID.

Alerts are displayed in standard size and cannot be re-sized or re-
positioned.

Alerts buttons are only displayed if they have a label.

Alert is displayed in a modal window where the users cannot leave
the window until they exit it.

The three Alert styles are Stop, Caution and Note.

SET_ALERT_PROPERTY built_in can be used to set the title of
the alert and the alert’s message text programmatically.

60-415 Dr. C.I. Ezeife © 2008 Slide 307

Alerts

DECLARE
v_alert_id ALERT;
v_alert_button NUMBER,;
BEGIN
v_alert_id := FIND_ALERT (‘EXIT_ALERT");
SET_ALERT_PROPERTY (v_alert_id, TITLE, ‘Warning’);

SET_ALERT_PROPERTY (v_alert_id,
ALERT_MESSAGE_TEXT, “‘Are you sure you want to
exit the form?’);

V_alert_buttons := SHOW_ALERT(v_alert_id);

60-415 Dr. C.1. Ezeife © 2008 Slide 308

154

Alerts

To get the alert to show when the user presses the Exit button on
the tool bar and the ZIPCODE.EXIT button, we use a KEY_EXIT
trigger to show the alert.

Moving alert to KEY_EXIT trigger will have the effect of showing

the alert whenever the user pressed the EXIT key on the key

board.

To get the alert to show when the user clicks the Exit button on the

canvas, we change the WHEN_BUTTON_PRESSED trigger to
DO_KEY (‘EXIT_FORM’);

This means, when the user clicks the button, it fires the

KEY_EXIT trigger as well.

60-415 Dr. C.I. Ezeife © 2008 Slide 309

Canvases and Windows

CANVASES AND WINDOWS
A canvas and its items must be assigned to a window to be visible
A window must contain at least one canvas to be visible

A single form can contain multiple instances of both canvases and
windows

WINDOWS

Windows are Forms physical object with properties that
determine their size and position.

Under functional property category, they have a series of window-
specific properties that determine whether the window can be
minimized, resized, closed, etc.

Two types of windows available are: 1.document and 2.dialog.

A third style of windows called multiple document interface (MDI)
window exists.

60-415 Dr. C.1. Ezeife © 2008 Slide 310

155

Canvases and Windows

The MDI window serves as a parent window to all of the other
windows in a form.

Figure 8.2, pg 264 shows example of the three window styles.

Document windows are completely contained by the parent MDI
window, while the dialog window can be moved completely outside
of the MDI boundaries.

Windows has modal property that helps determine how and when
the user can leave the window.

Navigation cannot leave a modal window until the user has
completed the task (e.g, select one in LOV or cancel) called for.
Modeless windows allow the user the convenience of switching
from one window to another.

While MDI windows are modeless, document and dialog windows
are modal.

60-415 Dr. C.I. Ezeife © 2008 Slide 311

Displaying Windows

DISPLAYING WINDOWS

SHOW_WINDOW is a window _specific built_in that can be used
to open all types of windows.

E.g., a window named MAINWIN can be opened with statement:
SHOW_WINDOW (‘MAINWIN®);

A window can also be opened by navigating to an item in the
window or to a block that contains an item in the window.

Using built_ins to navigate to an item can open/display canvases
and windows

E.g., the following code in a trigger:
GO_ITEM (‘BLOCKL.ITEMY");
causes the canvas and window that ITEML1 is on, to be displayed.

60-415 Dr. C.1. Ezeife © 2008 Slide 312

156

CANVASES

There are four types of canvases.

1. Content Canvas: The most common canvas type since every window
must have one of this as its main canvas.

2. Stacked Canvases
3. Toolbar Canvases
4. Tabbed Canvases

Fig 8.3, page 266 shows an example Canvas. A Canvas is composed of
Canvas view (or viewport) and other parts including the frame.

The viewport is the area of the canvas that is visible to the user.
The size of the Canvas and its viewport are determined by properties.

The Canvas viewport is smaller rectangle surrounded by thin black line
enclosing the items and the frame

The Canvas is the larger rectangular area ending where the surface of the
Layout editor appears to have raised dots.

60-415 Dr. C.I. Ezeife © 2008 Slide 313

Canvases

Some items can be placed outside the viewport, making
them initially not visible, but as the user scrolls or
navigates the form, the viewport can move to expose
different parts of the Canvas.

DIPLAYING CANVASES

A Canvas could be opened or displayed using the
GO_ITEM and SHOW_VIEW built_ins as:

GO_ITEM (‘BLOCKL.ITEML);
SHOW_VIEW(‘CANVASL’);
Here, ITEML is assumed placed on CANVASL1 as

navigating to an item on a Canvas, displays the Canvas.

60-415 Dr. C.1. Ezeife © 2008 Slide 314

157

WINDOWS AND CANVASES

Although document windows are contained one in one on MDI
window for simple application, they can be configured to be open
simultaneously in applications with multiple document windows so
that users can toggle back and forth between them.

The MDI window is not visible in the object navigator and through
property palette. But its properties can be adjusted with code
using the SET_WINDOW_PROPERTY built_in.

The MDI is only available on Windows platform, but the
PRE_FORM trigger can be used to set properties for the MDI
window for Height, Width, and Title.

E.g., the statements in the PRE_FORM trigger should look like:

SET_WINDOW_PROPERTY (FORMS_MDI_WINDOW,
WIDTH, 550);

FORMS_MDI_WINDOW is a Forms constant for referring to this
window as it is not possible to refer to MDI window in single

60-415 Dr. C.I. Ezeife © 2008 Slide 315

CONTENT CANVASES AND WINDOWS

guotes or with an object ID.
HIDE_WINDOW built_in explicitly closes a window.
A Canvas must be assigned to a window to be visible.

A stacked Canvas must always be stacked on a content Canvas to
be visible. Thus, both Canvases are assigned to the same window.

Canvases can be assigned to a window at run time through code.
The properties that govern the size of the Canvas are under
Physical category (Height and Width).

The properties that govern the size of the viewport are under
Viewport Category (Viewport Height and Viewport Width).
While content Canvases have viewports, they do not have
properties to set the size of their Viewports.

60-415 Dr. C.1. Ezeife © 2008 Slide 316

158

CONTENT CANVASES AND WINDOWS

The size of a content Canvas’ Viewport is the same as the size of
the window it occupies.

E.g., if the Content Canvas for WINDOW1 is CANVAS1 and
WINDOW1’s Height and Width properties are set to 200,200,
then, this will be the size of CANVAS1’s Viewport.

The size of a Content Canvas’s viewport are set by

 Setting the Height and Width properties of the window it is
assigned to.

e Adjusting it visually with Layout editor.
The object Navigator is the best tool for creating Content Canvas.

It is possible to assign two Content Canvases to the same window
but only one can be visible at a time.

60-415 Dr. C.I. Ezeife © 2008 Slide 317

CONTENT CANVASES AND WINDOWS

= Navigational built_ins (eg. GO_ITEM) or explicit
built_ins (eg. SHOW_CANVAS) can be used to switch
between Canvases.

= You can have many instances of the Layout Editor
open making it easier for comparing Canvases. Canvas
list item on the Layout editor is Utility toolbar and can
also be used to toggle between Canvases.

60-415 Dr. C.1. Ezeife © 2008 Slide 318

159

STACKED CANVASES

Stacked canvases are never the sole Canvas in a window.

They are stacked on top of other Canvases and partially or
Completely obscuring those canvases when displayed at run-time.

To stack a stacked Canvas, we define their positions relative to the
Content Canvas.

Stacked Canvases have Height and Width properties as well as
Viewport sizes and position.

= The Viewport is positioned:
 Relative to the stacked Canvas itself
« Relative to the Content Canvas it is stacked upon.

= The Viewport X position on Canvas and Viewport Y position on
Canvas properties determine where the viewport will be placed on
the stacked canvas itself.

60-415 Dr. C.I. Ezeife © 2008 Slide 319

STACKED CANVASES

Stacked Canvases can be used to simulate scrolling views for items

being displayed in tabular fashion but they are too many to

comfortably fit on a normal size Canvas.

Stacked Canvas can be created with object navigator, Layout

editor or Layout Wizard although Layout editor is the best tool for

creating it.

= The View/Stacked Views feature lets you view the size and position
of the stacked Canvas on their content canvases.

= GET_VIEW_PROPERTY is a built_in that returns TRUE if the

canvas is visible and FALSE otherwise. Usage is :

= Variable := GET_VIEW_PROPERTY (‘Canvasname’,VISIBLE);

60-415 Dr. C.1. Ezeife © 2008 Slide 320

160

TOOLBAR CANVASES

GO_BLOCK built_in is similar to GO_ITEM built_in as it forces
navigation to the first item in the block being referenced.

A toolbar Canvas positions toolbar items either horizontally along

the top of a window or vertically along the left-hand edge of the

window.

Unlike other Canvas types, toolbar Canvases can be assigned to

the MDI window.

You must create a group of items to place on a toolbar. Eg. the

utility toolbar in the Layout Editor includes two list items.

= Typical Toolbar have iconic labels to make toolbar buttons typical,
adjust the iconic property.

= To quickly position all of the buttons next to each other, with the
Layout Editor feature:

= Arrange | Align Obijects, Stack Horizontally

60-415 Dr. C.I. Ezeife © 2008 Slide 321

TOOLBAR CANVASES

Multiple horizontal toolbars are common

The &SMARTBAR value in the Menu Module property assigns a
menu toolbar also known as Smart bar to the default Forms menu

The default settings (menu and smart bar) can be overridden with
your own menus.

Use the following statements for buttons:
SAVE_DO_KEY (‘COMMIT_FORM’);
EXIT_DO_KEY(‘EXIT_FORM’);
ENTER_QUERY_DO_KEY(‘ENTER_QUERY");
EXECUTE_QUERY_DO _KEY(‘EXECUTE_QUERY");
CANCEL_QUERY_DO_KEY(‘EXIT_FORM");

60-415 Dr. C.1. Ezeife © 2008 Slide 322

161

REUSABLE OBJECTS

The EXIT_FORM and ENTER_QUERY buttons should not be
enabled when in Enter Query Mode.

The CANCEL_QUERY button should be disabled when the form
is not in Enter Query Mode.

REUSABLE OBJECTS

= Copy or Subclass feature can be used to create one object based on
another object.

= Subclass feature though creates a duplicate object and maintains a
link between the source version and the subclassed version.

= The subclassed version inherits all of the properties of the source
object and all of its changes.

60-415 Dr. C.I. Ezeife © 2008 Slide 323

REUSABLE OBJECTS

The subclassed TOOLBAR does not have to remain an exact
duplicate of the source.

Properties of the subclass not inherited can be changed and
inherited properties can be overridden.

Any Forms object can be subclassed. Eg. by subclassing a block,
you are subclassing its items and triggers.

= IF you subclass a canvas, its frames and other graphic objects are
subclassed as well.

= To subclass objects in Forms do:

= Drag the source object from its Form and drop it in the target
Form.

= Select subclass when prompted by an alert.

60-415 Dr. C.1. Ezeife © 2008 Slide 324

162

REUSABLE OBJECTS

Subclassed objects are indicated by a red arrow over their icon in
the object navigator.

To learn about the source of the subclassed object you look at the
subclassed object’s Subclass Information property.

The object Name list shows the name of the source object.

The module list item shows the name of the forms module that the
source object belongs to.

There is a small black check next to all of the properties that are
being inherited.

The following 4 icons indicate if and how the property has been
changed or inherited.

60-415 Dr. C.I. Ezeife © 2008 Slide 325

REUSABLE OBJECTS

1. The small circle indicates that the property value
has not been changed from its default value.

2. The green box property indicates that this property
has been changed from its default value.

3. The black check mark property indicates that the
value in this property is being inherited from a source
object, a visual attribute or a property class.

4. The black check mark with a red x property
indicates that this property’s value was inherited, but
that the inheritance has been overridden by a change
made at the object level.

60-415 Dr. C.1. Ezeife © 2008 Slide 326

163

ADVANTAGES OF SUBCLASS FEATURE

Imagine an application with 50 forms each of which
needs a PRE-FORM trigger. IF you subclass these 50
triggers from a source object, you would be able to edit
and change all 50 simply by changing the source object.

We can also use Subclass Information property to
make an existing object, a subclassed version of a
source object.

The form that holds the source object must be open
when we perform Subclassing.

60-415 Dr. C.I. Ezeife © 2008 Slide 327

VISUAL ATTRIBUTES AND PROPERTY
CLASSES

Visual attribute object contains all properties that determine font
and color.

Visual attributes can be applied to physical objects like items,
frames, canvases, windows, LOVSs and alerts. They cannot be
applied to logical objects like blocks or record groups since those
objects have no color or font properties.

Property classes have a few more features than visual attributes
that make them more powerful.

1. Not just font and color but all properties can be included in a
property class.

2. Property classes do not have to be in the same form as the
objects they are applied to.

60-415 Dr. C.1. Ezeife © 2008 Slide 328

164

VISUAL ATTRIBUTES AND PROPERTY
CLASSES

3. Property classes can have triggers attached to them.

While Visual objects have a standard set of properties that cannot
be changed, property classes have no standard properties.

Thus property classes can include properties from the Functional,
Database, Record, and other property categories.

Since a property class can include any property, its use is not
limited to the physical objects as is the case with visual attributes.
A property class can be applied to any object including logical
objects like blocks, record groups and triggers.

A property class can be created by

1. Selecting a set of properties to be included (eg. X Position,
Width, Height, Background color, Foreground color for canvas)
in the property palette, click the property class button on the
property palette’s toolbar.

60-415 Dr. C.I. Ezeife © 2008 Slide 329

Property Class

2. You can also create the property class in the object navigator
and copy and paste the properties from the source item into
property class.

These are 3 values for Visual Attribute Type Property:

1. Common: for text and display items, canvases, windows, and
LOVs [applies to item & prompt].

2. Prompt: for only the prompt property of an item and overrides
properties set by type Common.

3. Title: which applies to frame titles.

You cannot apply a property class to more than one object at a
time

To add properties to a property class use Create button on the
Property Palette’s toolbar and select from the list.

60-415 Dr. C.1. Ezeife © 2008 Slide 330

165

HOW CAN VISUAL ATTRIBUTES BE
CREATED?

To create Visual attributes
Open form
Locate Visual Attributes node in the object navigator

and create a visual attribute. Name it test_item. Set the
Font Name property and Foreground property.

By setting an item’s Visual attribute property to that of
a named Visual attributes like test_item, the visual
properties are inherited but not Subclassed.

60-415 Dr. C.I. Ezeife © 2008 Slide 331

OBJECT GROUPS AND OBJECT
LIBRARIES

An object group is an object within a forms module,
while an object library is a module unto itself.

Object groups are logical containers that are only
visible in the object navigator.

Eg. Object group is TOOLBAR object group consisting
of:

« TOOLBAR BLOCK

« TOOLBAR CANVAS

« TOOLBAR_MODULE property class
« MAINWIN WINDOW

60-415 Dr. C.1. Ezeife © 2008 Slide 332

166

OBJECT LIBRARIES

An object library is a module stored in a separate file that can be
opened and configured in the Form Builder.

Library files have .olb extension

You can open object library modules in the LIBRARY window,
view their objects and copy or Subclass their object into forms
modules.

An extensive object library called Stndrd20.olb has been installed
with Oracle Developer, which you can use. It can be found in

\ORACLE_HOME\tools\devdemo60\demo\forms\stndrd20.olb

Object libraries hold actual instances of objects not just pointers to
them.

Obiject libraries should contain source objects not their subclasses.

To edit or change an object in an object library copy the object
into a form, edit and drag it back to object library.

60-415 Dr. C.I. Ezeife © 2008 Slide 333

TEMPLATE FORMS/REUSABLE CODE
(TRIGGERS)

TEMPLATE FORMS

Sometimes, we may want to create new forms that already contain
a standard set of objects.

When you want to create a new form based on a template form,
select

FILE/NEW/FORM Using Template from the Main Menu.

When you base a form on a template, the Form Builder remember
the form so that you do not accidentally overwrite the template.
REUSABLE CODE (TRIGGERS)

Program units are Forms objects that allow for reusing trigger
codes. Eg. You can create a single program unit that all of the
WHEN_VALIDATE_ITEM triggers in a form can reuse.

We can store the program unit in a PL/SQL library module so that
triggers in other forms modules can reuse it.

60-415 Dr. C.1. Ezeife © 2008 Slide 334

167

PROGRAM UNITS

Program units can be PL/SQL packages, procedures, or functions and can
accept parameters and return values.

Eg. We can create a DISPLAY_CANVAS code as a program unit that can
be called by many triggers. The code for the program units is :

PROCEDURE DISPLAY_CANVAS IS
BEGIN
SHOW_VIEW (‘CANVAS_1’);

END;
Each trigger would then call it with:
DISPLAY_CANVAS;
The code is in a central location and accessed by other triggers and
program units in the form.
The above program unit can be changed to a more flexible version that
accepts parameters as

60-415 Dr. C.I. Ezeife © 2008 Slide 335

PROGRAM UNITS

PROCEDURE DISPLAY_CANVAS (P_CANVAS-NAME
VARCHAR?2) IS

BEGIN
SHOW_VIEW(P_CANVAS_NAME)
END;
. ;I;o call the new program unit, the trigger or calling program unit
as
DISPLAY_CANVAS(‘CANVAS_3");
= Program unit can be created using object navigator.

= Program unit can be subclassed to other forms or stored in the
object library to increase its re-usability.

= You can call a forms level packaged PL/SQL object the same way
you would if it were stored in the database by prefixing the name
of the program unit with the name of the package.

60-415 Dr. C.1. Ezeife © 2008 Slide 336

168

PL/SQL Libraries

PL/SQL LIBRARIES

PL/SQL Libraries are used to store program units when the
program units will be used by most or all of the forms in an
application.

PL/SQL libraries are not forms modules.

They are separate modules that can be created, edited, and
compiled in the Form Builder.

Before a form can execute the objects in a PL/SQL Library, the
Library must be attached to the form using the object navigator.
PL/SQL Library modules are saved in two files formats .pll files
containing the source and executable codes of the library and .pIx
files containing only the executable code.

Once a Library is saved as a .pll file, you can attach it to as many
forms as necessary.

60-415 Dr. C.I. Ezeife © 2008 Slide 337

PL/SQL Libraries

When you attach a PL/SQL Library to a form, the Library and its
code are not stored within the form, but the form knows that
Library exists and can reference its subprograms.

Direct references to bind variables use the item name which may
also be a System variable as is:

v_student_id :=: STUDENT.STUDENT _ID;
and
v_item :=: SYSTEM.CURSOR_ITEM;

PL/SQL Library would not compile if it contains direct references
to bind variables.

To make references to bind variables in Library code, we need to
do so, indirectly using the copy and NAME_IN built_ins as in :

60-415 Dr. C.1. Ezeife © 2008 Slide 338

169

PL/SQL Libraries

COPY (v_date; ‘COURSE.CREATED_DATE);

This statement copies v_date into the
COURSE.CREATED_DATE item but the item name is being
referenced indirectly.

NAME_IN built_in allows indirect reference to bind variables
with return of their values. E.g.,

v_item := NAME_IN(*:SYSTEM.CURSOR_ITEM’);

CREATION AND ADDITION OF PROGRAM UNITS TO
PL/SQL LIBRARY

We can create new program units directly within the PL/SQL
library using the object navigator’s Create button.

You can also add an existing program unit to a PL/SQL Library
by dragging and dropping it.

60-415 Dr. C.I. Ezeife © 2008 Slide 339

PL/SQL Libraries

Two ways to compile a .pll module from within the Form Builder
are:

Use CTRL/T
From the main menu select Program/Compile Module

This compiles all of the PL/SQL objects in the PL/SQL Library.
You can also use one of the compilation options under the

Program heading in Main Menu (Compile and Compile Selection).

The compile option has two further options (Compile Incremental
and ALL)

Compile Incremental Compiles all PL/SQL objects that have
changed since last compilation

Compile ALL compiles all objects in current module.
Compile Selection compiles the currently selected PL/SQL object.

60-415 Dr. C.1. Ezeife © 2008 Slide 340

170

PL/SQL Libraries

These compilation options apply to forms modules as well as PL/SQL
Library modules.

To attach a .pll Library to a form do:

Select the Attached Libraries node and click Create. The Attach dialog
opens.

The Attach dialog allows you search the file system, the database or both
for the PL/SQL Library. You cannot drag a PL/SQL Library in the
Object Navigator and drop it on a form.

Whenever Forms has to reference objects or code stored in other modules,
it uses the Windows Registry to locate the module. Thus, there is no need
for hard-coding path to find them.

As soon as we save changes to the common.pll Library, the changes are
available to any form to which the PL/SQL library is attached.

Other forms that have this PL/SQL library attached do not have to be
opened or recompiled to benefit from the changes.

60-415 Dr. C.I. Ezeife © 2008 Slide 341

Stored PL/SQL Database Objects

The PL/SQL Library is a separate module

By keeping the object group and object library up-to-date, all of
the forms, including template forms that have subclassed versions
of the object group file will inherit the changes.

We need to attach the .pll library to the forms that have subclassed
versions of the objects (e.g., triggers).

STORED PL/SQL Database OBJECTS

Forms modules can call PL/SQL objects stored in the database as
they do PL/SQL objects stored in attached libraries.

Database stored packages, procedures and Functions can be called
from a Forms application and can be passed parameters.

60-415 Dr. C.1. Ezeife © 2008 Slide 342

171

Stored PL/SQL Database Objects

The syntax for calling stored PL/SQL object is the same as that for
calling a program unit in a form.
E.g., to call a stored PL/SQL procedure called
DELETE_STUDENT and pass a value in a variable, use in forms
application code:

DELETE_STUDENT (v_student-id);
Forms will look for a PL/SQL object named DELETE_STUDENT
and execute the first instance that it finds.
First, Forms will search the forms module for a program unit
named DELETE_STUDENT. If it does not find one, it will search
any attached libraries. If it does not find one there, either, it will
then search the database.

60-415 Dr. C.I. Ezeife © 2008 Slide 343

Stored PL/SQL Database Objects

= Data-intensive objects are better stored in the database
and can be used by both Forms and non-Forms
applications.

= PL/SQL objects that successfully Compile and run in
the database can also compile and run in the Forms if
they do not have Forms specific statements like
built_ins, or bind variables.

= PL/SQL objects can be moved back and forth between
the database and a Forms application by dragging and
dropping the objects in the object Navigator from the
forms module to the Database Objects node.

60-415 Dr. C.1. Ezeife © 2008 Slide 344

172

CREATING STORED DATABASE

= To make a function / procedure a stored database
function / object, in Object Navigator, we can drag the
function/procedure from the program Units node to the
Database Objects node.

= You need to have the eg. STUDENT Schema node
expanded to see Stored Program Units node beneath it.
The function is then stored in the database as one of the
objects owned by STUDENT.

60-415 Dr. C.I. Ezeife © 2008 Slide 345

MULTIPLE -FORM APPLICATIONS
CALLING ONE FORM FROM ANOTHER

Three built_ins are used to call one form from another.

1. OPEN_FORM

2. CALL_FORM

3.NEW_FORM

The statement for opening a form called Course looks like:
OPEN_FORM (‘COURSE’);

Since the full path is not included in the OPEN_FORM statement,
the FORMS Runtime will look for the COURSE.fmx file in the
paths listed in the Registry.

Including full path makes the application less portable.

The form name is a mandatory parameter. But, each of the three
built_ins can accept other parameters that can affect the behavior
and state of the calling form and called form.

The built_ins also alter the behavior of the calling and called form.

60-415 Dr. C.1. Ezeife © 2008 Slide 346

173

MULTIPLE -FORM APPLICATIONS
CALLING ONE FORM FROM ANOTHER

Assume the calling form is FORM_A and the called form is
FORM_B.

OPEN_FORM (‘FORM_B’);
This call has the effect of opening FORM_B and FORM_A will

remain active and accessible such that the user can navigate
between both forms.

CALL_FORM(‘FORM_B");
Has the effect of opening FORM_B in modal form, such that the

user is not able to leave FORM_B until it has been exited or closed.

FORM_A may be visible but none of its items will be accessible.
NEW_FORM(‘FORM_B’);
This closes FORM_A but opens FORM_B.

60-415 Dr. C.I. Ezeife © 2008 Slide 347

MULTIPLE -FORM APPLICATIONS
CALLING ONE FORM FROM ANOTHER

The EXIT_FORM built_in exits and closes the current form. The
CLOSE_FORM built_in exits and closes a form but requires a
form name as a parameter.

CLOSE_FORM(‘FORM_B);
PASSING VALUES TO CALLED FORMS
Values can be passed to called form through
e Global variables.
e Parameter lists.

Global variables are user_defined variables that are visible to all
objects in a Forms session.

Thus, any PL/SQL object within a single form or multiform
application can reference the value of a global variable.

60-415 Dr. C.1. Ezeife © 2008 Slide 348

174

MULTIPLE -FORM APPLICATIONS
CALLING ONE FORM FROM ANOTHER

An example declaration of a global variable is:
:global.username := GET_APPLICATION_PROPERTY(USER_NAME);

You could reference the value of :global.username in any PL/SQL object
within FORM_B (the called form).

If FORM_C and FORM_D were open as well, then, they could also
reference

:global.username and see the same value.

To create parameters list in FORM_A (the calling form), you use the
following built_in

v_plist_id := CREATE_PARAMETER_LIST(“forms_params’);

v_plist_id is a local variable that would have been declared in the PL/SQL
block. forms_params is the name of the parameter list being created; its
object ID is being stored in v_plist_id.

Once you have created the parameter list you add parameter and their
values to it.

ADD_PARAMETER (v_plist_id,”P_1’, text_parameter, v_value);

60-415 Dr. C.I. Ezeife © 2008 Slide 349

MULTIPLE -FORM APPLICATIONS
CALLING ONE FORM FROM ANOTHER

v_plist_id tells the ADD_PARAMETER built_in which parameter
list to work with. P_1 is the name of the parameter being added to
the list; text_parameter indicates the type of parameter. When
passing parameters from form to form, they must be defined as
text_parameters. v_value is the value being assigned to P_1.

The parameters in the called Form (FORM_B) must be the same
names as their corresponding actual parameters in the calling
form (FORM_A).

Thus, in the above example, we should use the object navigator to
create a parameter also called P_1.

Called forms need to be compiled so that calling forms can run
them.

60-415 Dr. C.1. Ezeife © 2008 Slide 350

175

MULTIPLE -FORM APPLICATIONS
CALLING ONE FORM FROM ANOTHER

The CALL_FORM, OPEN_FORM, and NEW_FORM built_ins
will only run .fmx (executable) files and not .fmb (form files).

If forms are open, you can navigate from one to the other with the
statement

GO_FORM (‘FORMNAME?);

The GO_FORM built_in is passed a name or object ID to open a
specific form.

Two other built_ins for navigating from form to form and their
syntax is as follows:

NEXT_FORM;
and
PREVIOUS_FORM;
They navigate in the order the forms were opened.

60-415 Dr. C.I. Ezeife © 2008 Slide 351

MULTIPLE -FORM APPLICATIONS
CALLING ONE FORM FROM ANOTHER

The MDI toolbar works for both forms. We must
explicitly exit each form.

= The OPEN_FORM built_in can accept as many as five
parameters although we are not allowed to include all
of the parameters as FORMS uses default values for
each parameter.

This rule applies to other built_ins that accept
parameters.

« The ADD_ENROLLMENTS unit code is:

60-415 Dr. C.1. Ezeife © 2008 Slide 352

176

MULTIPLE -FORM APPLICATIONS
CALLING ONE FORM FROM ANOTHER

I — T
PROCEDURE ADD_ENROLLMENTS IS

v_plist_id PARAMLIST;
v_where VARCHAR2(50);
BEGIN

v_where := ‘STUDENT_ID =’||:STUDENT.STUDENT_ID;
V_plist_id := CREATE_PARAMETER_LIST(‘forms_params’);
ADD_PARAMETER(v_plist_id,’"P_1’, TEXT_PARAMETER,v_where);
COMMIT_FORM;
CALL_FORM(‘EX11_02’, NO HIDE, NO_REPLACE, NO_QUERY_ONLY,
v_plist_id);
END;
The code for WHEN_NEW_FORM_INSTANCE is :
DECLARED
v_where VARCHAR2(100);
BEGIN
IF:PARAMETER.P_1 IS NOT NULL THEN
v_where := :PARAMETER.P_1;
SET_BLOCK_PROPERTY(‘STUDENT’, ‘DEFAULT_WHERE, v_where);
EXECUTE_QUERY;
GO_BLOCK (‘ENROLLMENT?);
END IF;
END;

60-415 Dr. C.I. Ezeife © 2008 Slide 353

MULTIPLE -FORM APPLICATIONS
CALLING ONE FORM FROM ANOTHER

Format of the Form built_ins are

OPEN_FORM (‘Formname’, ACTIVATE, NO_SESSION,
NO_SHARE_LIBRARY_DATA, parameter_list_name’);

NEW_FORM (formname, rollbackmode, querymode, datamode,
parameterlist);

CALL_FORM (formname, display, switthmenu, querymode,
datamode, parameterlist);

If parameter list exists and the value is not null, we can use the
built_in DESTROY_PARAMETER_LIST to destroy the
parameter list as in:

v_plist_id := GET_PARAMETER_LIST(‘forms_params’);

IF NOT ID_NULL (v_list_id) THEN
DESTROY_PARAMETER_LIST(v_list_id);

END IF;

60-415 Dr. C.1. Ezeife © 2008 Slide 354

177

MULTIPLE -FORM APPLICATIONS
CALLING ONE FORM FROM ANOTHER

Segment like the above is used to destroy a parameter list before
creating a new one as may be needed in a loop.

For example, in the code below, the parameter list is being used to
pass a WHERE clause from one form to another.

New code for ADD_ENROLLMENTS is

PROCEDURE ADD_ENROLLMENTS IS

v_plist_id PARAMLIST;

v_where ~ VARCHAR2(50);

BEGIN
V_plist_id := GET_PARAMETER_LIST(‘forms_params’);
IF NOT ID_NULL (v_list_id) THEN
DESTROY_PARAMETER_LIST(v_plist_id);

END IF;

60-415 Dr. C.I. Ezeife © 2008 Slide 355

MULTIPLE -FORM APPLICATIONS
CALLING ONE FORM FROM ANOTHER

v_where := ‘STUDENT_ID ="||:STUDENT.STUDENT.ID;
v_plist_id := CREATE_PARAMETER_LIST(‘forms_params’);

ADD_PARAMETER (v_plist_id, ’P_1’, TEXT PARAMETER,
v_where);
COMMIT_FORM;
CALL_FORM(‘EX11_02’, NO_HIDE,
NO_REPLACE,NO_QUERY_ONLY, v_plist_id);
END;
To create a parameter in form using object navigator do;

Select the parameters node and click Create button. The parameter
should be named.

Parameters are referred to, by the
:PARAMETER.PARAMETER_NAME syntax.

Parameters lists are not visible across forms and you are not required to
make any reference to the list itself in the called form.

60-415 Dr. C.1. Ezeife © 2008 Slide 356

178

MULTIPLE -FORM APPLICATIONS
CALLING ONE FORM FROM ANOTHER

The parameter in called form is an object in the form that can be

referenced by any trigger or PL/SQL object in the forms module.

If you reference the parameter in an attached PL/SQL Library,

you must do so indirectly with the NAME_IN built_ins as:
NAME_IN(‘PARAMETER.P_1");

In the example above, the calling form is passing a WHERE clause

to the called form, setting the WHERE clause for a block in the

called form, and then executing a query.

The POST built_in applies changes to the database but does not

commit them. These changes can then be committed or rolled back
later.

60-415 Dr. C.I. Ezeife © 2008 Slide 357

ORACLE FORM AND ORACLE
REPORTS

Oracle Forms and Oracle Reports products have been tightly integrated
so that forms modules can use built_in to call reports modules and pass
parameters to them.

RUNNING ORACLE REPORTS FROM FORMS

The Report Builder is used to design and build reports modules. It has a
similar interface to the Form Builder with object navigator, property
palette, layout editor and PL/SQL editor.

Reports modules can be run by themselves using Reports Runtime or
called from forms.

RUN_PRODUCT

RUN_PRODUCT built_in can be used to call any of the three types of
Oracle Developer modules: forms, reports, graphics.

A report can be called from a trigger or program unit with only one single
statement with the following syntax:

RUN_PRODUCT (product, module, commode, execommaode, location,
parameter_list, display);

60-415 Dr. C.1. Ezeife © 2008 Slide 358

179

ORACLE FORM AND ORACLE
REPORTS

Eg. a call to run a report called COURSE looks like:
RUN_PRODUCT (REPORTS, ‘COURSE’, ASYNCHRONOUS,
RUNTIME, FILESYSTEM, ‘NULL’,NULL);

A tighter and less flexible built_in for calling only Oracle Report is
RUN_REPORT_OBJECT.

Information on use is available on help system.

Report modules have .rdf extensions.

The Commode parameter determines whether or not the user
should be able to return to the calling module before the called
module has been exited. ASYNCHRONOUS setting for Commode
means can navigate back and forth between modules, while
SYNCHRONOUS means must exit the called module (eg. report in
this case) before returning to calling module.

60-415 Dr. C.I. Ezeife © 2008 Slide 359

ORACLE FORM AND ORACLE
REPORTS

The execmode parameter is set to RUNTIME above but could
have been set to BATCH. BATCH mode sends the report results to
a file or printer and does not allow it to be viewed on the screen.

The location parameter indicates where the Reports Runtime
should look for the module to be run. Modules are stored in the
filesystem or database.

With the above Call, the location is set to filesystem but we have
not included the full path with the report name. Thus, the Reports
Runtime will search the directories indicated in the Windows
Registry for the report file.

The sixth parameter in the RUN_PRODUCT statement is for the
parameter list that form is passing to report. ‘NULL’ (in single
quotes) indicate there are no parameters being passed.

60-415 Dr. C.1. Ezeife © 2008 Slide 360

180

ORACLE FORM AND ORACLE
REPORTS

The last parameter is the display parameter, which requires a
value only if RUN_PRODUCT is being used to call on Oracle
graphics module. This parameter is set to NULL (without single
quotes).

CREATING A REPORT

To create a report, we open a form in Form Builder. Then, use the
Reports node in the object based on an existing report.

In the new Report dialog, select use Existing Report File radio
button and enter the name of the reports module in the Filesave
field.

If you were to select Create New Report File, the Form Builder
would launch the Report Builder to create a new reports module.

60-415 Dr. C.I. Ezeife © 2008 Slide 361

ORACLE FORM AND ORACLE
REPORTS

On the other hand, the RUN_REPORT_OBJECT built_in does
not accept parameters like commode, execmode, etc. They can be
set using the properties for the report object.

The report object has additional properties for other
SYSTEM.PARAMETERS like Destination name and Destination
Format.

Destination Name and Format can also be set using the
RUN_PRODUCT built_in but not set using properties. They
would have to be added to a parameter list.

The code for the WHEN_BUTTON_PRESSED trigger looks like
the following in order to open the report with
RUN_REPORT_OBJECT built_in.

60-415 Dr. C.1. Ezeife © 2008 Slide 362

181

ORACLE FORM AND ORACLE
REPORTS

DECLARE
v_repobj_id REPORT_OBJECT;
v_repins_id VARCHARZ2(100);
BEGIN

v_repobj_id := FIND_REPORT_OBJECT(‘STUDENT’);
v_repins_id := RUN_REPORT_OBJECT(v_repobj_id);
END;
FIND_REPORT_OBJECT built_in returns the object ID of the report
object.
RUN_REPORT_OBJECT runs the report and returns a value (a unique
ID for this job).
= Eg. REPORT_OBJECT_STATUS(v_repins_id);
returns a VARCHAR? value, indicating whether this job has finished, is
cancelled or still running.

60-415 Dr. C.I. Ezeife © 2008 Slide 363

ORACLE FORM AND ORACLE
REPORTS

For more details, see the online help for Oracle Reports.

The following statement shows the passing report object ID and 1D
or name of a parameter list.

v_repins_id := RUN_REPORT_OBJECT (v_repobj_id,
v_plist_id);

= The properties of the report object at runtime could be set with the
= SET_REPORT_OBJECT built_in.

= PASSING PARAMETERS TO REPORTS

= - To pass parameters to Reports do:

= 1. Create a parameter list in a form

= 2. Add parameters to it

= 3. Pass it to the called reports module

60-415 Dr. C.1. Ezeife © 2008 Slide 364

182

ORACLE FORM AND ORACLE
REPORTS

Both the RUN_PRODUCT_OBJECT and RUN_PRODUCT built_ins
accept parameter list names or parameter list object 1Ds.

- Eg. assume we had created a parameter list and stored its object ID in a
variable called v_plist_id, to call a report named SECTIONS, we use:
RUN_PRODUCT (REPORTS,”SECTIONS’, ASYNCHRONOUS,
RUNTIME, FILESYSTEM, v_plist_id, NULL);

OR
v_repobj_id := FIND_REPORT_OBJECT(‘SECTIONS’);
v_repins_id := RUN_REPORT_OBJECT (v_repins_id, v_plist_id);
For the report to accept the parameter, it should be created in the Report
Builder at design_time.

Similar to CALL_FORM requirements for passing parameters between
forms, if a parameter called ‘P_1" had been defined in the reports module
at design_time, the ADD_PARAMETER statement in the forms module
would look like the following:

ADD_PARAMETER(v_plist_id,"P_1’, text_parameter, v_value);

60-415 Dr. C.I. Ezeife © 2008 Slide 365

PARAMETERS IN REPORTS MODULES

P_1is a user parameter in the reports module because the
programmer defined it. There is a standard set of system
parameters pre_defined by the system (eg. DESNAME and
DESTYPE).

Reports by default, displays user defined Form parameter like P_1
on its result. When not described report can be forced to not
display user defined parameter like P_1 with the following:
ADD_PARAMETER (v_plist_id, ‘PARAMFORM’,
text_parameter, ‘NO”);

= Example

= Open the form EX12_01.fmb in Form Builder

= The name of the parameter is STUDENTL report is P_1.

60-415 Dr. C.1. Ezeife © 2008 Slide 366

183

PARAMETERS IN REPORTS MODULES

The code for creating a parameter list and adding the current
STUDENT_ID to the list as a parameter is:

DECLARE
v_plist_id PARAMLIST,;
BEGIN
v_plist_id := GET_PARAMETER_LIST (‘rep_params’);
IF NOT ID_NULL (v_plist_id) THEN
DESTROY_PARAMETER_LIST(v_plist_id);
END IF;
v_plist_id := CREATE_PARAMETER_LIST(‘rep_params’);

ADD PARAMETER(v_plist_id, ‘P_1’, text_parameter,
:STUDENT.STUDENT_ID);
ADD PARAMETER(v_plist_id, ‘PARAMFORM’, text_parameter,
‘NO):

END;

60-415 Dr. C.I. Ezeife © 2008 Slide 367

PARAMETERS IN REPORTS MODULES

Note that the above includes code segments to destroy the
parameter list if it already exists and to add a parameter to
suppress the reports module’s parameter form.

To call STUDENTL report, the code is in the form trigger:
RUN_PRODUCT (REPORTS, ‘STUDENTL’,
ASYNCHRONOUS, RUNTIME, FILESYSTEM, v_plist_id,
NULL);

To call STUDENT report in the form using
RUN_PRODUCT_OBJECT built_in instead, modify the code
above with the following.

DECLARE

60-415 Dr. C.1. Ezeife © 2008 Slide 368

184

Forms Menus

v_repobj_id REPORT_OBJECT;
v_repins_id VARCHAR2(100);
BEGIN

v_repobj_id := FIND_REPORT_OBJECT(STUDENTL);

v_repins_id := RUN_REPORT_OBJECT(v_repins_id, v_plist_id);

END;
FORMS MENUS
Rather than run our forms with default menus with basic functionalities
for editing, navigation, querying and so on, we can create our own custom
menus that provide more functionalities.
We can also use menu modules to implement security features that control
access to the application.

60-415 Dr. C.I. Ezeife © 2008 Slide 369

MENU MODULES

Menu modules and their objects can be created in the Form Builder.
The 4 main components of a menu module are:

1. The menu module

2. The main menu

3. Individual menus

4. Menu items

The menu module itself, like a forms module, is not visible to the user. It is
the logical container object that owns all of the other menu objects.

Eg. Fig-13.1, pg 422.\

The main menu is the horizontal bar across the top that contains the
labels INDIVIDUAL_MENU_1, INDIVIDUAL_MENU_2, and Window.

Each of these labels is an individual menu that contains a group of menu
items.

The menu items are the most important objects in the menu module
because they are what the users select to initiate actions.

60-415 Dr. C.1. Ezeife © 2008 Slide 370

185

MENU ITEMS

MENU ITEMS

There are 5 types of menu items: plain, magic, check, radio, and
separator.

Plain menu items display text labels and have PL/SQL behind them.

Eg. a plain menu item labeled Save might have the following code behind
it:

DO_KEY (‘COMMIT_FORM’);

Magic items are the most convenient items because they already have code
associated with them. They can be used to perform functions common to
most applications.

Eg. a magic item of type Copy has the Code for copying text already
associated with it.

At design time, we indicate that a certain menu item should be a magic
item and Forms will associate the proper Code with it.

60-415 Dr. C.I. Ezeife © 2008 Slide 371

CREATING AND CONFIGURING
MENU MODULES

CREATING AND CONFIGURING MENU MODULES

Form Builder provides Menu Editor for creating and defining
menus. Menu editor is a better tool for menu’s than object
navigator.

ATTACHING MENU MODULES TO FORMS

For a menu to be visible and accessible to the user, it must be
attached to a forms module.

Menu modules have binary formats (.mmb files) and executable
formats (.mmx files).

When a menu is attached to a form, and the form is run, The
Forms Runtime searches for and executes the .mmx version of the
menu module.

You must explicitly compile a menu module using CTRL/T before
using it.

60-415 Dr. C.1. Ezeife © 2008 Slide 372

186

CREATING MENUS AND MENU ITEMS

It is important to re-compile the menu module prior to each test or
an order version of .mmx may be used by the Form Buillder.

CREATING MENUS AND MENU ITEMS

]Qpen a form (eg. EX13_01.fmb) in Form Builder and Run the
orm.

The second individual menu is Edit. Its menu items are Cut, Copy,
Paste, Error and Display List.

Cut, Copy, and Paste are magic items. Error and Display List are
plain menu items with codes behind them.

Default menu is attached to every newly created form and cannot
be edited directly. E.g., you cannot make changes to a menu
module called DEFAULT.mmb in Form Builder.

You must either use DEFAULT as is, or attach a different menu
module to the form.

60-415 Dr. C.I. Ezeife © 2008 Slide 373

CREATING MENUS AND MENU ITEMS

You can reuse some features within DEFAULT through access to a menu
module called menudef.mmb that is installed along with Oracle Developer
and can be found in the directory
\ORACLE_HOME\DEVDEM60\DEMO\FORMS

DEFAULT MENU FORM

It is common to attach a functionless form to a menu to serve as a Starting
point or Splash screen. It can contain a simple message or an image to
introduce the application. It can also contain functional items like buttons
or display items.

Even though not used, block and item are part of the form.

It is common to attach a menu to a form that is always opened first by the
user.

In the object navigator, the objects created automatically are: Main
Menu, MENU1, and individual MENU called ITEM2. In the Menu
Editor, there is an individual menu labeled New Item.

How is the Menu Item Created?

60-415 Dr. C.1. Ezeife © 2008 Slide 374

187

MENU SECURITY

Click the Create Down button on the Menu Editor’s toolbar.

Hot keys can be set for the labels of the menu items as well so that the user
can press the key (eg. for S for Save or X for Exit).

If you want the hot key for Exit to be “x” , you write the label as :
E&xit

To make the menu item Exit a magic item that quits the application set its
Menu Item Type property to Magic and its Magic Item property to Quit.

MENU SECURITY

You can grant and restrict access to individual menus and menu items
through a single menu system.

The menu security system is integrated with the database and we can base
menu item access on database roles.

Eg. In the database, we have created two roles:
e STUDENT_USERS
 OFFICE_USERS

60-415 Dr. C.I. Ezeife © 2008 Slide 375

MENU SECURITY

Various users are assigned to each role. While STUDENT_USERS
can only query the course and SECTION tables, OFFICE_USERS
can perform all DML operations.

When creating the menu modules, you can set properties for the
menu items so that STUDENT_USERS role can only access the
menu items that calls the course and section master detail form.
You would use the same properties to indicate that the
OFFICE_USERS role will be able to access all menu items in the
application.

STEPS FOR CONFIGURING MENU SECURITY

Indicate which database roles have access to the menu module.

For each individual menu item, indicate whether or not the roles
specified in / should be granted access.

60-415 Dr. C.1. Ezeife © 2008 Slide 376

188

MENU SECURITY

To practice menu security, we need to create some
sample database users and roles.

Build Forms schema objects and grant the sample
database users access to them.

= Go over exercises on pp 436-444 for practice.

60-415 Dr. C.I. Ezeife © 2008 Slide 377

Run Scripts to create sample database users and roles.

189

