
Comp 4150 Dr. C.I. Ezeife © 2024 Slide 1

Comp-4150: Advanced and Practical

Database Systems (Part B: Oracle PL/SQL)

Dr. C.I. Ezeife

School of Computer Science,

University of Windsor, Canada.

Email: cezeife@uwindsor.ca

Database Server

Databases, SQL,

Sqlplus,PL/SQL

…

Database client Application

Query database, triggers, PL/SQL,..

:DB APPLICATION BUILDING

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 2

Course Part B (Oracle PL/SQL)

Objectives

 Broad Course Objective

 - Components of a database management system

 - Acquire database development skills necessary for building real life database
applications with Oracle DBMS.

 Reference Materials

• C.I Ezeife, Custom Course Ware, Course Notes for Comp 4150, Project
Using Selected Tools: Advanced and Practical Database Systems (with
Oracle PL/SQL and Front End Tools), University of Windsor, Fall
2024.

• Main Course Book is Elmasri & Navathe, 7th edition, 2016

• Benjamin Resenzweig and Elena Rakhimov, “Oracle PL/SQL by
Example”, Pearson, edition 5, 2015, ISBN 978-0-13-379678-0

• Ben Forta, SQL in 10 Minutes a Day, Sams Teach Yourself, 2020, 5th

edition, Print ISBN: 9780135182796, 0135182794, eText ISBN:

9780135182864, 0135182867

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 3

Course Objectives

 Companion web site:

http://www.oracle.com

(can download SQL Developer) for running PL/SQL

codes. PL/SQL codes can also be run interactively with

Oracle SQL*Plus.

http://www.oracle.com/

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 4

Course Objectives

 Part B: Oracle Database Development with Oracle PL/SQL

– Oracle PL/SQL summary

 Part C: Database Development (GUI) (on a separate slide notes)

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 5

Hardware and Software Requirements

 Software Requirements/ Running Environment

1. Oracle DB Server (e.g., Oracle 11g or a higher version)

2. SQL Developer

3. Sqlplus

4. Access to WWW

5. Windows OS (e.g., Windows 10) and / or Unix/Linus OS

 Hardware Requirements

1. A Personal Computer (e.g., 1 GHz processor, --Memory)

2. A Unix Multiprocessor System (e.g., cs.uwindsor.ca servers)

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 6

Hardware and Software Requirements

 Note that both the software 1 & 2 can reside on the

same computer or on two separate computers. Also,

while the Oracle client software [e.g., Oracle 11g client]

is most suitable on a Windows based PC, the Oracle

Server software can reside on a Unix machine (like CS

servers Charlie/Bravo)

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 7

PL/SQL Development Environment

: SQL Developer

 SQL Developer and SQL*Plus are two Oracle-provided

tools that can be used to run PL/SQL scripts.

 SQL Developer is a free graphical tool used for

database development and administration.

 It is a new addition to the Oracle tool set.

 It is a much easier tool to use than SQL*Plus as it

allows you to browse database objects, run SQL

statements, create, debug and run PL/SQL statements.

 Apart from the GUI format, its functionality is similar

to that of the SQL*Plus discussed next.

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 8

PL/SQL Development Environment

: SQL Developer

 1. To use SQL Developer, download the tool from the Oracle

website: www.oracle.com onto your desktop.

 2. Also, for this to work on your computer at home you must install

GlobalProtect VPN. Steps on how to do so can be found in the

following link. (https://www.uwindsor.ca/itservices/talks/installing-

globalprotect-vpn)

 3. To use the SQL Developer to connect to your Oracle database

account on our cs server, you need to establish a connection first

by launching the SQL Developer and connecting as shown in the

figure next with the connection strings shown

 - The username and password are your Uwindsor’s that had been

synchronized previously. Hostname is: oracle.cs.uwindsor.ca

 - Connection name is: CS01; SID is: CS01; Port is: 1521

http://www.oracle.com/
https://www.uwindsor.ca/itservices/talks/installing-globalprotect-vpn

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 9

PL/SQL Development Environment

: SQL Developer

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 10

PL/SQL Development Environment

: SQLPLUS

• Sqlplus is the software for executing SQL stmts

(Sqlplus is to SQL stmts what C compiler is to C

programs)

 How to end an SQL command in Sqlplus

SQL command can be ended in Sqlplus and SQL

Developer in one of the following 3 ways:

• with a semicolon (;)

• with a forward (/) on a line

• with a blank line

• Note that SQL Developer may allow execution of block with no

ending / once the run is clicked. Details about use of SQL

Developer is left for students to explore further.

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 11

PL/SQL Development Environment

: SQLPLUS

 The SQL Buffer

• Sqlplus stores recently typed SQL command or
PL/SQL block in an area of memory called SQL
buffer.

• The SQL buffer remains unchanged until a new
command is entered or you exit Sqlplus.

• The SQL buffer can be edited by typing EDIT at
SQL prompt.

• While SQL and PL/SQL stmts are captured in the
SQL buffer, Sqlplus commands (e.g., SET LINE…)
are not captured in the buffer.

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 12

PL/SQL Development Environment

: SQLPLUS

• When you create stored procedures, functions or

packages, you begin with CREATE command.

• When you begin a PL/SQL block, you start by

entering the word DECLARE or BEGIN

• Typing either BEGIN, DECLARE or CREATE puts

the Sqlplus into PL/SQL mode.

 Running PL/SQL Blocks in Sqlplus

 How to End a PL/SQL block in Sqlplus

• A PL/SQL block is ended with a period (.).

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 13

PL/SQL Development Environment

: SQLPLUS

 How to Execute a PL/SQL Block in Sqlplus

• A PL/SQL block is executed with a forward slash (/) or RUN

• A PL/SQL program can be edited in sqlplus using EDIT

• A PL/SQL program can be saved as a script file with a .sql

extension. In that case, the file should be ended with a period

to mark end of program, and followed with a forward slash (/)

to execute the program when loaded.

• To execute a script file in PL/SQL, use @filename.sql

 E.g., sql>@scriptfile.sql

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 14

Part B: Oracle Database Development

(Oracle PL/SQL)

 PL/SQL in Client/Server Architecture

• Oracle applications can be built using client-server
architecture where the Oracle database resides on the server
and the program that requests data and changes on the
database resides on a client machine.

• The client program can be written in C, Java or PL/SQL

• PL/SQL is not a stand-alone programming language like C or
Java, but is part of the Oracle RDBMS.

• PL/SQL can reside in two environments – client side and
server side.

• PL/SQL blocks are processed by PL/SQL engine, a special
component of such Oracle products as Oracle server, Oracle
Forms, Oracle Reports.

• The SQL processor resides only on the Oracle server.

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 15

PL/SQL Formatting Guide

 PL/SQL Formatting Guide

 CASE

 PL/SQL is case-insensitive [use upper case for Reserved keywords

and lower case for others].

 WHITE SPACE

 Use proper indentation for readability.

 NAMING CONVENTIONS

 Use appropriate prefixes to distinguish identifiers standing for

variables (eg, v_studentid), cursor (c_studentid), record

(r_studentid), table (t_studentid), exception(e_studentid), etc.

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 16

Oracle PL/SQL

• PL/SQL processor sends SQL statements to the SQL processor

to process when encountered.

 The PL/SQL Block Structure

• The most basic unit in PL/SQL is a block

• All PL/SQL programs are combined into blocks that are nested

within each other.

• PL/SQL blocks can be named or anonymous.

• Named blocks are used for subroutines (which are procedures,

functions and packages)

• PL/SQL block has 3 sections: declaration section (optional),

executable section (mandatory) and exception – handling

section (optional).

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 17

Part B: PL/SQL IN A WRAP (slide 1 of 6)

 PL/SQL Program or block has a type and a structure
as:

• T: PL/SQL block Type

• S: PL/SQL block Structure

 T: PL/SQL block Type

• T1: Anonymous block (e.g.,)

• T2: Named block

– T2.1: Procedure (e.g.,)

– T2.2: Function (e.g.,)

– T2.3: Package (e.g.,)

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 18

Part B: PL/SQL IN A WRAP (slide 2 of 6)

 S: PL/SQL block Structure

• S1: Declaration section (optional)(e.g.)

– S1.1: Data types and rules (e.g.,;)

– (Varchar2, char, Number, binary_integer, Date,
BOOLEAN, Long or CLOB, Rowid, %TYPE, Exception,
%ROWTYPE, CURSOR, Type Record, Type Table, and
Bfile or BLOB.

– S1.2: Substitution variable for reading from the keyboard
(e.g.,)

– S1.3: Declaring Anchored Types ()

– S1.4: Declaring Record Types:

• S1.4.1. Cursors ()

• S1.4.2. Using %ROWTYPE

• S1.4.3. Using TYPE (like struct)

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 19

Part B: PL/SQL IN A WRAP (slide 3 of 6)

• S1.5: Declaring Exceptions ()

• S1.6: Pl/SQL Table (arrays) ()

 S2. Executable Section

• S2.1: SQL statements ()

• S2.2: Printing instruction ()

– DBMS_OUTPUT.PUTLINE(parameter);

• S2.3: Assignment instructions ()

• S2.4: Decision instructions (..)

– S2.4.1: IF-THEN-ENDIF statement

– S2.4.2: IF-THEN-ELSE-ENDIF statement

– S2.4.3: IF-THEN-ELSIF----ELSE-ENDIF statement

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 20

Part B: PL/SQL IN A WRAP (slide 4 of 6)

• S2.5: Repetition instructions ()

– S2.5.1: LOOP……END LOOP; statement

– S2.5.2: FOR loop_counter IN [REVERSE] lower_limit ..
Upper_limit LOOP ……. END LOOP; statement

– S2.5.3: CURSOR FOR LOOP statement

– S2.5.4: FOR UPDATE CURSOR statement

– S2.5.5: WHILE condition LOOP …. END LOOP;

• S2.6: Declaraing and Calling a function, procedure or package
()

• S2.7: Declaring and calling a trigger ()

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 21

Part B: PL/SQL IN A WRAP (slide 5 of 6)

• (Note1: expressions are important parts of all these

instructions and substitution variables can be used

in expressions).

• Note2: A function, procedure, or package must be

declared, compiled successfully into p-code and

stored in the database server as database object to

be called by other program units.

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 22

Part B: PL/SQL IN A WRAP (slide 6 of 6)

 S3: Exception Handling Section ()

• S3.1: Builtin exceptions

– (VALUE_ERROR, NO_DATA_FOUND,
TOO_MANY_ROW, ZERO_DIVIDE,
LOGIN_DEFINED, PROGRAM_ERROR,
DUP_VALUE_ON_INDEX)

• S3.2: User Defined exceptions (e.g.,)

– These must be declared in the declaration part,
condition to raise them specified in the
executable section and action to take when they
occur specified in the exception handling section.

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 23

Oracle PL/SQL: Structure of a block

Structure of an anonymous PL/SQL block is:

DECLARE

Declaration statements

BEGIN

Executable statements

EXCEPTION

Exception-handling statements

END;

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 24

PL/SQL: Declaration Section

 Declaration section is for definitions of PL/SQL identifiers
(variables, constants, cursors, etc)

 E.g.,

DECLARE

v_first_name VARCHAR2(35);

v_last_name VARCHAR2(35);

v_counter NUMBER:=0;

 A semicolon ends each declaration

 A variable declaration has the format

identifier-name identifier-type (size);

 A constant CONSTANT declaration has the format

 constant-name CONSTANT -type := initial value;

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 25

PL/SQL: Executable Section

 Executable section starts with BEGIN statement and
ends with END statement as in:

BEGIN

SELECT first_name, last_name

INTO v_first_name, v_last_name

FROM student

WHERE student_id = 123;

DBMS_OUTPUT.PUT_LINE

(‘Student name:’ || v_first_name || ‘ ‘ || v_last_name);

END;

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 26

PL/SQL: Executable Section

 Above selects first and last names of student with id

123 from db student table into PL/SQL variables

v_first_name and v_last_name so that they can be

printed using DBMS_OUTPUT.PUT_LINE statement.

• An example Exception handling section for the

above block is:

EXCEPTION

WHEN NO_DATA_FOUND THEN

DBMS_OUTPUT.PUT_LINE

(‘There is no student with id 123’);

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 27

PL/SQL: Reading Data with Substitution

variables

 Reading Data with Substitution variables

• PL/SQL cannot accept input from a user directly.

• However, sqlplus enables PL/SQL to receive input

information with substitution variables.

• Substitution variables are usually prefixed by the

ampersand (&) or double ampersand (&&)

character.

• Substitution variables cannot be used to output

values since no memory is allocated for them

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 28

PL/SQL: Reading Data with Substitution

variables

 E.g., The following block prompts user for v_student_id

(the substitution variable), which it stores as PL/SQL

variable v_student_id. Then, it stores the first and last

names of the student with this student id from student

table in the database and displays the student names as

output.

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 29

PL/SQL: Reading Data with Substitution

variables

DECLARE

v_student_id NUMBER := &sv_studentid;

v_first_name VARCHAR2(35);

v_last_name VARCHAR2(35);

BEGIN

SELECT first_name, last_name

INTO v_first_name, v_last_name

FROM student

WHERE student_id = v_student_id;

DBMS_OUTPUT.PUTLINE

(‘Student Name: ‘ || v_first_name || ‘ ‘ || v_last_name);

EXCEPTION

WHEN NO_DATA_FOUND THEN

DBMS_OUTPUT.PUTLINE (‘No such student’);

END;

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 30

PL/SQL: Reading Data with Substitution

variables

• When a single ampersand is used in a substitution variable, the
user is prompted to enter a new value for each occurrence of
the variable.

• E.g., on use of single substitution (&) variable

BEGIN

DBMS_OUTPUT.PUT_LINE (‘Today is ‘ || ‘ &sv_day’);

DBMS_OUTPUT.PUT_LINE (‘Tomorrow is ‘|| ‘&sv_day’);

END;

 The above block produces the following output (last two lines)

• Enter value for sv_day : Monday

 Old 2: DBMS_OUTPUT.PUT_LINE (‘Today is’ || ‘&sv_day’);

 New 2: DBMS_OUTPUT.PUT_LINE (‘Today is’ || ‘Monday’);

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 31

PL/SQL: Reading Data with Substitution

variables

– Enter value for sv_day: Tuesday

 Old 3: DBMS_OUTPUT.PUT_LINE (‘Tomorrow is’ || ‘&sv_day’);

 New 3: DBMS_OUTPUT.PUT_LINE (‘Tomorrow is’ || ‘Tuesday’);

 Today is Monday

 Tomorrow is Tuesday

 PL/SQL procedure successfully completed.

• The program output contains statements showing how the

substitution for the substitution variables are done. (e.g.,

statements beginning with old 2, new 2, old 3, new 3)

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 32

PL/SQL: Reading Data with Substitution

variables

• To block the display of substitution statements, use the SET

command option before running the script as in:

 SET VERIFY OFF;

• This gives the output that excludes the 4 statements beginning

with old and new.

• When we use a substitution variable that is preceded by a

double (&&), PL/SQL processor prompts the user to enter the

value of this variable once first time used. Then, it substitutes

this value for other uses of this variable (which should be single

(&)) in the block.

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 33

PL/SQL: Reading Data with Substitution

variables

• E.g., Use of Double (&&) substitution variable.

BEGIN

DBMS_OUTPUT.PUT_LINE (‘Today is’ || ‘&&sv_day’);

DBMS_OUTPUT.PUT_LINE (‘Tomorrow is’ || ‘&&sv_day’);

END;

• Here, user is prompted only once and if entered day is

‘Monday’, both output lines use Monday and result is like:

 Today is Monday

 Tomorrow is Monday

 PL/SQL procedure successfully completed.

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 34

PL/SQL: Reading Data with Substitution

variables

 It is a good practice to enclose a substitution variable in single
quotes if it is assigned to string (text) datatype as follows.

 E.g., Use of string substitution variable

v_course_no VARCHAR2(5) := ‘&sv_course_no’;

 Sqlplus allows changing the substitution variable character from
(&) to a non-alphanumeric character specified using the following
SET option

SET DEFINE character

SET DEFINE *

 To disable substitution variable feature, use:

SET DEFINE OFF

 To enable substitution variable feature, use:

SET DEFINE ON

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 35

PL/SQL: Displaying Output

 DISPLAYING OUTPUT with DBMS_OUTPUT.PUT_LINE

 The DBMS_OUTPUT.PUT_LINE is a call to procedure
PUT_LINE in the DBMS_OUTPUT package of the Oracle user
SYS

 This procedure DBMS_OUTPUT.PUT_LINE writes lines to buffer
so that they can be displayed on the screen at the end of the
program.

 The size of the buffer can be set to between 2000 and 1M bytes.

 Before output printed on the screen can be viewed, one of the
following statements must be entered before the PL/SQL block.

SET SERVEROUTPUT ON;

or

SET SERVEROUTPUT ON SIZE 5000;

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 36

PL/SQL: Displaying Output

 Both statements enable the

DBMS_OUTPUT_PUTLINE statements. And while

the first statement uses default buffer size, the second

uses buffer size of 5000 byte.

 To disable info from being displayed on the screen, use:

SET SERVEROUTPUT OFF;

 E.g., PL/SQL code for Exercise 1 on page 48 for

computing the area of a circle given the radius as

substitution variable is next.

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 37

PL/SQL: Displaying Output

 Solution:

DECLARE

v_radius NUMBER := &sv_radius;

v_area NUMBER := v_radius * v_radius * 3014;

BEGIN

DBMS_OUTPUT.PUT_LINE (‘Area of Circle with

radius’ || v_radius || ‘is’ || v_area);

END;

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 38

PL/SQL Programming Fundamentals

 PL/SQL Programming Fundamentals

 Character Types

• PL/SQL engine accepts four types of characters (letters, digits,

symbols (*, +, -, =, …) and white space.

• Combinations of characters form one of the valid 5 lexical

units (identifiers, reserved words, delimiters, literals,

comments).

• Identifiers begin with a letter and can be up to 30 characters

long (avoid reserved words).

• Reserved words like BEGIN, END etc are for use by PL/SQL

• Delimiters are arithmetic, comparison and logical operators

and quotation marks.

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 39

PL/SQL Programming Fundamentals

• Literals are values that are not identifiers, e.g., 150, ‘Holiday’,
FALSE.

• Comments: lines beginning with (--) are single line comments
while those lines between (/*) and (*/) are multiple line
comments.

 Anchored Datatypes.

• An anchored datatype is based on the datatype of a database
object (like database attribute, e.g., student.firstname).

• Giving a PL/SQL variable, an anchored datatype that is
similar to the datatype of database attribute,
Student.first_name can be done with the following instruction:

v_name student.first_name%TYPE;

• General syntax for declaring variable of anchored type is:

<variable_name> <type attribute> % TYPE;

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 40

PL/SQL Programming Fundamentals

• E.g.,

DECLARE

v_name student.first_name % TYPE;

v_grade grade.grade_type_code % TYPE;

BEGIN

DBMS_OUTPUT.PUT_LINE (NVL(v_name, ‘No

Name’) || ‘ has grade of ’ || NVL(v_grade, ‘ no grade’);

END;

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 41

PL/SQL Programming Fundamentals

 DECLARING AND INITIALIZING VARIABLES

• Each variable declared to be used by the program in

the DECLARATION section should be terminated

with a semicolon.

• A numeric constant variable must be assigned a

value with (:=) at declaration time and this value

cannot be changed later in the program

• A constant variable during declaration includes the

keyword CONSTANT as in:

v_cookies_calorie CONSTANT NUMBER := 300;

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 42

PL/SQL Programming Fundamentals

 Example declarations are:

DECLARE

v_lname VARCHAR2(30)

v_regdate DATE;

v_pctincv CONSTANT NUMBER(4, 2) := 1.15;

v_counter NUMBER := 0;

v_new_cost course.crsecost % TYPE;

v_yorn BOOLEAN := TRUE;

BEGIN

NULL;

END;

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 43

EXPRESSIONS, OPERANDS AND

OPERATORS

 An expression is a sequence of variables and literals, separated by
operators, for performing calculatioins and comparing data.

 An expression is a combination of operands and operators.

 An operand is a variable, a constant or a function call.

 An operator is arithmetic (**, /, *, +, -), comparison (<, >, <>, =,
>=, <=, !=, like, in, between, is null), logical (AND, OR, NOT),
string (||, like)

 Parentheses can be used to enforce the order of execution of an
expression.

 General operator precedence is

• **, NOT,

• +, -, arith identity and negation, *, /, +, -, ||, =, <>, <=, <, >, like,
between, IN, IS NULL.

• AND

• OR

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 44

EXPRESSIONS, OPERANDS AND

OPERATORS

 E.g., expressions are:

((v_counter + 5) * 2) / 2

(v_new_cost * v_counter) / 5

 Expressions form the right sides of assignment

instructions like:

v_counter := ((v_counter +5) * 2) / 2;

v_new_cost := (v_new_cost * v_counter) / 4;

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 45

Use of Labels, Scope of Block & Variables

 Use of Labels

• Labels can be used for readability and label for a block must
appear before the first line of executable code (BEGIN or
DECLARE) as follows.

<<find_stu_num>>
BEGIN

DBMS_OUTPUT.PUT_LINE(‘procedure find_stu_num has
been executed.’);

END find_stu_num;

 Scope of a Block & Variables

• The scope or existence of variables defined in the declaration
section of a block is the block.

• A nested block is a block totally inside another block.

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 46

Scope of Block & Variables; Common Data

Types

• Visibility of a variable is the part of the program where this
variable can be used or accessed.

• Scope of exception is also the block it is defined.

 Most Common Datatypes

 1. VARCHAR2 (maximum_length): takes character variable
specifying maximum length of up to 3276 bytes. Maximum width
of a VARCHAR2 database column is 2000 bytes.

 2. CHAR (maximum_length): stores fixed size character with
specified MAX_length, that is possibly padded with blanks.
Maximum length that can be specified is 32767 bytes although
maximum length of a database column that can be stored with this
type is 255 bytes. Default length is set to 1 if max_length is not
specified.

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 47

Common Data Types

 3. NUMBER [(precision, scale)]: stores fixed or floating-point number of
any size where precision represents number of digits and scale
determines number of digits following decimal point.

• When scale is omitted, it represents integer number

• Maximum precision is 38 decimal digits

• A negative scale causes rounding to the left of the decimal point.

• E.g., with the declarations

v_num NUMBER (6, 2) := 3.456;

v_num NUMBER (6, 3) := 3456;

v_num has 3.46 and v_numl has 3000.

• When scale is not specified, it defaults to 0 (rounding to nearest
whole number).

 4. BINARY INTEGER: stores signed integer variables in binary format
for less space and more efficiency.

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 48

Common Data Types

 5. DATE: stores fixed_length date values from January 1, 4712 BC to December
31, 4712 AD.

• When stored in database column, date values include the time of day in
seconds since midnight. The date portion defaults to midnight. Dates are
displayed according to default format.

 6. BOOLEAN: stores the values TRUE and FALSE and the non-value NULL.
The values TRUE and FALSE cannot be inserted into a database column.

 7. LONG: stores variable-length character strings of up to 32, 760 bytes, and can
be inserted into a LONG database column, (which has a maximum width of 2,
147,483,647 bytes.

• We cannot select a value longer than 32, 760 bytes from a LONG column
into a LONG variable.

• LONG columns can store text arrays of characters, or short documents, can
be referenced in UPDATE, INSERT and (most) SELECT statements but not
in expressions, SQL function calls, or certain SQL clauses such as WHERE,
GROUP BY and CONNECT BY.

 8. ROWID: stores rowids in a readable format. Internally, every Oracle database
table has a ROWID pseudo column, which stores binary values called rowids.

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 49

Managing PL/SQL Code with SQL

 Managing PL/SQL Code with SQL

• The changes to the database due to an application
session are saved into the database after a COMMIT
is executed.

• Work within a transaction up to commit can be
ROLLED BACK (that is undone).

• A transaction is a series of SQL statements grouped
together into a logical unit by the programmer.

• A SAVEPOINT can be used to break down large
SQL statements into individual units easier to
manipulate.

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 50

Variable Initialization

 Variable Initialization with SELECT INTO

• In PL/SQL, variables can be assigned values in one of 2 ways:

– During declaration with ‘:=’

– Assigning a value with SELECT INTO statement.

 SELECT INTO Statement: The Syntax of assignment with

SELECT INTO is:

SELECT item_name

INTO variable_name

FROM table_name;

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 51

Variable Initialization

• E. g.,

SET SERVEROUTPUT ON;

DECLARE

v_average_cost VARCHAR2(10);

BEGIN

SELECT To_char (Avg(cost), ‘$9, 999. 99’)

INTO v_average_cost

FROM course;

DBMS_OUTPUT.PUT_LINE(‘ The average cost of a ‘||’ course in

the CTA program is ‘|| v_average_cost);

END;

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 52

Variable Initialization

• Variable v_average_cost is given the datatype VARCHAR2 because of
the function used on the data.

• The TO_CHAR function formats the cost and the number datatype is
converted to a character datatype.

• Another example of use of DML statement in PL/SQL block is:

DECLARE

v_city zipcode.city % TYPE;

BEGIN

SELECT ‘COLUMBUS’

INTO v_city

FROM dual;

UPDATE zipcode
SET city = v_city

WHERE zip = 43224;

END;

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 53

Inserting Data in PL/SQL

 DDL is not valid in a simple PL/SQL block.

 Data can be inserted as shown in the following example.

DECLARE

v_zip zipcode.zip % TYPE;

v_user zipcode.created_by % TYPE;

v_date zipcode.created_date % TYPE;

BEGIN
SELECT 43438, USER, SYSDATE
INTO v_zip, v_user, v_date

FROM dual;
INSERT INTO zipcode

(ZIP, CREATED_BY, CREATED_DATE, MODIFIED_BY,
MODIFIED_DATE)

VALUES (v_zip, v_user, v_date, v_user, v_date);

END;

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 54

Using an Oracle Sequence

 USING AN ORACLE SEQUENCE

• An Oracle sequence is a database object used to generate
unique numbers like primary keys.

• Already created sequence values in SQL statements can be
accessed with pseudo columns.

 CURRVAL (for returning the sequence current value)

 NEXTVAL (for incrementing the sequence and returning new
value)

• E.g., to create a sequence called ESEQ in sqlplus, we use:

 CREATE SEQUENCE eseq INCREMENT BY 10;

• This sequence can be used to populate the column number
attribute of a table called Teacher as follows:

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 55

Using an Oracle Sequence

CREATE SEQUENCE ESEQ

INCREMENT BY 10;

CREATE TABLE TEACHER (col number);

BEGIN

INSERT INTO TEACHER

VALUES (ESEQ.NEXTVAL);

END;

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 56

Making Use of Savepoint

 Making Use of SavePoint

• A transaction is a logical unit of work consisting of a set of SQL

statements.

• A transaction would either succeed (once a COMMIT is

executed) or fail (if not successfully committed) as a unit.

• The PL/SQL block for one transaction ends with COMMIT or

ROLLBACK.

• COMMIT makes events within a transaction permanent and

releases all locks required by the transaction.

• ROLLBACK erases (undoes) events within a transaction and

releases all locks acquired by transaction.

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 57

Making Use of Savepoint

• SAVEPOINT can be used to control transaction such that SQL

statements are split into transaction units that can be

committed and rolled back as necessary.

• A COMMIT statement has the syntax:

 COMMIT [WORK];

• The word WORK is optionally used for readability.

• A ROLLBACK statement has following syntax:

 ROLLBACK [WORK];

• A SAVEPOINT command has the following syntax:

 SAVEPOINT name;

 The word name is the SAVEPOINT’s name.

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 58

Making Use of Savepoint

• A program can be made to rollback to a SAVEPOINT using

the more general form of ROLLBACK instruction below:

 ROLLBACK [WORK] to SAVEPOINT name;

• E.g., Page 81-82

BEGIN

INSERT INTO student

(student_id, Last_name, zip, registration_date, created_by,

created_date, modified_by, modified_date)

VALUES (student_id_seq.nextval, ‘Tashi’, 10015, ’01-JAN-99’,

‘STUDENTA’, ’01-JAN-99’, ‘STUDENTA’, ’01-JAN-99’);

SAVEPOINT A;

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 59

Making Use of Savepoint

INSERT INTO student

(student_id, Last_name, zip, registration_date, created_by, created_date

, modified_by, modified_date)

VALUES (student_id_seq.nextval, 'Sonam', 10015, '01-JAN-99',
'STUDENTB',

'01-JAN-99', 'STUDENTB', '01-JAN-99');

SAVEPOINT B;

INSERT INTO student

(student_id, last_name, zip, registration_date, created_by, created_date

, modified_by, modified_date)

VALUES (student_id_seq.nextval, 'Norbu', 10015, '01-JAN-99',

'STUDENTA', '01-JAN-99', 'STUDENTB', '01-JAN-99');

SAVEPOINT C;

ROLLBACK TO B;

END;

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 60

Making Use of Savepoint

 An example PL/SQL block that can contain multiple transactions

DECLARE

v_counter NUMBER;

BEGIN

v_counter := 0;

FOR i IN 1 .. 100

LOOP

v_counter := v_counter + 1;

IF v_counter = 10

THEN

COMMIT;

v_counter := 0;

END IF;

END LOOP;

END;

 Here, when v_counter hits 10, it commits keeping 10 transactions in one
PL/SQL block.

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 61

Types of Instructions

 1. Assignment Instructions

• 1.1 Using assignment operator :=
E.g., v_counter := ((v_counter + 5)) * 2)/2;

• 1.2 Using SQL statements like:
SELECT first_name, last_name
INTO v_firstname, v_lastname
FROM STUDENT
WHERE stuid = v_stud_id;

 2. Print and Read statements

• 2.1 Print instructions with
DBMS_OUTPUT.PUT_LINE as in:

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 62

Types of Instructions

• DBMS_OUTPUT.PUT_LINE(‘Area of Circle is’ || v_area);

• 2.2. Read from the keyboard with substitution variables as in

e.g.,

NUMBER := &sv_radius;

 3. Conditional Instructions (see slides 108 to 116 for IF statement

examples)

• 3.1 IF-THEN statement

• 3.2 IF-THEN-ELSE statement

• 3.3. IF-ELSIF. ….ELSE statement

• 3.4 CASE statements: CASE form is given next.

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 63

Types of Instructions

 CASE condition

WHEN expression 1 THEN statement 1;

WHEN expression 2 THEN statement 2;

………

WHEN expression N THEN statement N;

ELSE statement N+1;

END CASE;

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 64

Types of Instructions

 4. Repetition Instructions

• 4.1 Simple Loop (LOOP …. END LOOP)

• 4.2 Numeric FOR LOOP (FOR loop_counter IN

[REVERSE] lower_limit .. Upper_limit

LOOP ….. END LOOP;]

• 4.3 Variations of FOR loop used for CURSOR

(CURSOR FOR LOOP …)

• 4.4 WHILE condition LOOP (WHILE condition

LOOP …. END LOOP)

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 65

Conditional Control

 Conditional Control

 IF Statements

 An IF-THEN statement has the following structure:

IF CONDITION

THEN

STATEMENT 1;

…

STATEMENT N;

END IF;

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 66

Conditional Control

• If the CONDITION expression evaluates to TRUE, statements
1 to N are executed.

• E.g., write a PL/SQL block that compares two integer values in
v_num1 and v_num2 and stores the smaller value always in
v_num1.

DECLARE

v_num1 NUMBER := 5;

v_num2 NUMBER := 3;

v_temp NUMBER;

BEGIN

-- if v_num1 is greater than v_num2, then switch their values

IF v_num1 > v_num2

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 67

Conditional Control

THEN

v_temp := v_num1;

v_num1 := v_num2;

v_num2 := v_temp;
END IF;

DBMS_OUTPUT.PUT_LINE(‘v_num1=’ || v_num1);

DBMS_OUTPUT.PUT_LINE(‘v_num2=’ || v_num2);
END;

 The above produces the following output

v_num1 = 3

v_num2 = 5

 PL/SQL procedure successfully completed.

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 68

Conditional Control

 IF-THEN-ELSE STATEMENT

 The structure of the IF-THEN-ELSE statement is:

IF CONDITION

THEN

STATEMENT 1;

ELSE

STATEMENT 2;

END IF;

 STATEMENT 3;

 When CONDITOIN evaluates to TRUE, STATEMENT 1 is
executed, but if it is FALSE, STATEMENT 2 is executed. The next
statements in the program executed

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 69

Conditional Control

after the IF-THEN-ELSE statement is STATEMENT 3. E.g, Use of IF-
THEN-ELSE statement is shown next.

DECLARE

v_num NUMBER := &sv_user_num;

BEGIN

-- test if provided number is even

IF MOD (v_num, 2) = 0

THEN

DBMS_OUTPUT.PUT_LINE (v_num || ‘is even’);

ELSE

DBMS_OUTPUT.PUT_LINE (v_num || ‘is odd’);

END IF;

DBMS_OUTPUT.PUT_LINE (‘Done’);

END;

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 70

NULL Condition

 A NULL condition may arise if one of the compared variables has
no value, for example:

DECLARE

v_num1 NUMBER := 0

v_num2 NUMBER;

BEGIN

IF v_num1 = v_num2

THEN

DBMS_OUTPUT.PUT_LINE(‘They are equal’);

ELSE

DBMS_OUTPUT.PUT_LINE(‘They are not equal’);

END IF;

END;

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 71

NULL Condition

 Note that v_num2 has no value leading to a NULL condition that

evaluates to NULL and treated as false in this case.

 Use of Some Functions (Page 95), eg.

 TO_DATE, TO_CHAR, RTRIM

v_date DATE := TO_DATE(‘&sv_user_date’, ‘DD-MM-YY’);

v_day := RTRIM(TO_CHAR(v_date, ‘DAY’);

 In the above instructions, the function TO_CHAR returns the day

of the week with v_date padded with blanks since this function

always returns 9 bytes.

 Next, the function RTRIM is used to remove trailing spaces.

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 72

ELSIF STATEMENT

ELSIF statements

An Elsif statement has the following structure

IF CONDITION 1

THEN

STATEMENT 1;

ELSIF CONDITION 2

THEN

STATEMENT2;

ELSIF CONDITION 3

THEN

STATEMENT 3;

…

ELSE

STATEMENT N;

END IF;

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 73

Condition Control

 Only one of statements 1 to N is executed depending on which of
conditions 1 to N evaluates to TRUE. E.g.,

DECLARE

v_num NUMBER := &sv_num;

BEGIN

IF v_num < 0

THEN

DBMS_OUTPUT.PUT_LINE (v_num || ‘is a negative number’);

ELSIF v_num = 0

THEN

DBMS_OUTPUT.PUT_LINE (v_num || ‘is equal to zero’);

ELSE

DBMS_OUTPUT.PUT_LINE (v_num || ‘is a positive number’);

END IF;

END;

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 74

Exception Handling

 Exception Handling and Builtin Exception

• Exception handling section in a PL/SQL block specifies what

action to take when an exception error occurs.

• Two types of exceptions exist – builtin and user-defined

exceptions

• Errors that occur in a program are either compilation or

runtime errors. Exceptions are defined mostly for runtime

errors.

• Compilation errors are due to language syntax violation and

are also called syntax errors.

 E.g., v_num1 = v_num1 / v_num2;

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 75

Exception Handling

 Will generate syntax error because assignment operator is (:=) and
not (=). Statement should then be changed to following and re-
compiled:

 v_num1 := v_num1 / v_num2;

• Assume v_num1 has an initial value of 5 while v_num2 has a
value of 0. Running this statement in a PL/SQL block leads to
a runtime error because an illegal operation of dividing by zero
has occurred.

• Compilation and runtime errors may cause the program to not
successfully complete.

• Exception handling section is used to produce informative
message when a runtime exception occurs. It also makes the
program end successfully.

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 76

Exception Handling

 Exceptions:

• VALUE_ERROR: This is raised when there is a conversion or size
mismatch error. Eg, v_num := SQRT(v_num1); if v_num1 has a
negative value, the SQRT function cannot accept it, raising a
VALUE_ERROR.

 Usage:

EXCEPTION

WHEN VALUE_ERROR THEN

DBMS_OUTPUT.PUT_LINE(‘Value Error Occurs’);

 NO_DATA_FOUND: raised when a select into statement, which makes no
calls to group functions such as SUM or COUNT, does not return any
rows. [Note that if the select makes a call to a group function like count, if
nothing is found, it returns 0, and thus there is no need to raise a
NO_DATA_FOUND exception in that case].

 TOO_MANY_ROWS: raised when a SELECT INTO statement returns
more than one row [It normally should return only one row].

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 77

Exception Handling

 ZERO_DIVIDE: raised when a division by zero is performed.

 LOGIN_DEFINED: raised when a user is trying to log on to

Oracle with invalid username and password.

 PROGRAM_ERROR: raised when the PL/SQL program has an

internal problem.

 DUP_VALUE_ON_INDEX: raised when a program tries to store

a duplicate value in the columns that have unique index defined

on them. E.g., inserting values for course #, section # for course

Comp 4150, section 1 that already exists and has a unique index

defined on it.

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 78

Cursors

 Example use of Cursor

DECLARE

v_sid student.student_id%TYPE

CURSOR c_student IS

SELECT student_id

FROM student

WHERE student_id < 110;

BEGIN

OPEN c_student;

LOOP

FETCH c_student INTO v_sid;

EXIT WHEN c_student % NOTFOUND;

DBMS_OUTPUT.PUT_LINE(‘STUDENT ID:’ || v_sid);

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 79

Cursors

END LOOP;

CLOSE c_student;

EXCEPTION

WHEN OTHERS

THEN

IF c_student % ISOPEN

THEN

CLOSE c_student;

END IF;

END;

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 80

Cursors

 Using Cursor For LOOPS and Nesting Cursors

 Cursor FOR LOOP statement opens, fetches, and

closes the cursor implicitly.

 The cursor FOR LOOP specifies a sequence of

statements to be repeated once for each row returned

by the cursor.

 Use the cursor FOR LOOP if you need to FETCH and

PROCESS each and every record from a cursor.

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 81

Cursors

 For example, assume the existence of a table called table_log with
one column.
DECLARE

Cursor c_student IS

SELECT student_id, last_name, first_name

FROM student

WHERE student_id < 110;

BEGIN

FOR r_student IN c_student

LOOP

INSERT INTO table_log

VALUES (r_student.last_name);

END LOOP;

END;

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 82

Cursors

 Cursors can be nested inside each other

 Example nested cursor with a single child cursor.

DECLARE

v_zip zipcode.zip % TYPE;

CURSOR c_zip IS

SELECT zip, city, state

FROM zipcode

WHERE state = ‘CT’;

CURSOR c_student IS

SELECT first_name, last_name

FROM student

WHERE zip = v_zip;

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 83

Cursors

BEGIN

FOR r_zip IN c_zip

LOOP

v_zip := r_zip.zip;

DBMS_OUTPUT.PUT_LINE(CHR(10));

DBMS_OUTPUT.PUT_LINE(‘Students living in’
||r_zip.city);

FOR r_student IN c_student

LOOP

DBMS_OUTPUT.PUT_LINE(r_student.first_name || ‘ ‘ ||

r_student.last_name);

END LOOP;

END LOOP;

END;

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 84

Cursors

 USING PARAMETERS WITH CURSORS AND FOR UPDATE

CURSORS

 A cursor can be declared with parameters to enable it generate a

more specific result set and make itself more reusable.

 E.g., create a cursor that works for only a set of values.

CURSOR c_zip (p_state IN zipcode.state % TYPE)

IS

SELECT zip, city, state

FROM ZIPCODE

WHERE state = p_state;

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 85

Cursors

 A cursor declared to take a parameter must be called with a value
for that parameter.

 The c_zip cursor is called as follows:

OPEN c_zip (parameter_value);

OPEN c_zip (‘NY’);

 Using a FOR UPDATE CURSOR

 The cursor FOR UPDATE clause is only used with a cursor when
you want to update tables in the database.

 This entails simply adding FOR UPDATE to the end of the cursor
definition.

 Using the FOR UPDATE has the effect of locking the rows that
have been identified in the active set.

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 86

Cursors

 If we want to lock only one of multiple items being selected, add:

FOR UPDATE OF <item_name>

 E.g.,

DECLARE

CURSOR c_course IS

SELECT course_no, cost

FROM course FOR UPDATE;

BEGIN

FOR r_course IN c_course

LOOP

IF r_course.cost < 2500

THEN

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 87

Cursors

UPDATE course

SET crsecost = r_course.cost + 10

WHERE course_no = r_course.course_no;

END IF;

END LOOP;

END;

 WHERE CURRENT OF CLAUSE

 WHERE CURRENT OF <cursor_name> can be used

to update the most recently fetched row as in:

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 88

Cursors

DECLARE

v_zip zipcode.zip % TYPE;

CURSOR c_student IS

SELECT student_id, first_name, last_name, zip, phone

FROM student

FOR UPDATE;

BEGIN

FOR r_stud_zip IN c_student

LOOP

DBMS_OUTPUT.PUT_LINE(r_stud_zip.student_id);

UPDATE student

SET phone = '718' || SUBSTR(phone, 4)

WHERE CURRENT OF c_student;

END LOOP;

END;

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 89

User-Defined Exceptions

 User-Defined Exceptions

 Exceptions can be defined by programmer and must

first be declared with the following syntax:

DECLARE

Exception_name EXCEPTION;

 The executable statements of a user declared exception

are specified in the exception-handling section of the

block.

 E.g., use of user defined exception

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 90

User-Defined Exceptions

DECLARE

e_invalid_id EXCEPTION;

BEGIN

WHEN e_invalid_id

THEN

DBMS_OUTPUT.PUT_LINE(‘A negative id is not allowed’);

END;

 User defined exceptions have to be raised explicitly by defining

what conditions should cause them to be triggered.

 How is given below:

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 91

User-Defined Exceptions

DECLARE

Exception_name EXCEPTION;

BEGIN

……

IF CONDITION

THEN

RAISE exception_name;

ELSE

……

END IF;

EXCEPTION

WHEN exception_name

THEN

ERROR-PROCESSING STATEMENTS;

END;

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 92

User-Defined Exceptions

 Exception Propagation

 The rules governing how exceptions are raised in
declaration and exception-handling sections are called
Exception Propagation.

 When a runtime error occurs in the declaration or
exception handling section, the exception handling
section of this block is not able to catch it.

 In a program with nested PL/SQL blocks, when a
runtime error occurs in the declaration section of the
inner block, the exception immediately propagates to
the enclosing outer block.

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 93

User-Defined Exceptions

 Exception: Advanced Concepts

 Raise_Application_Error

 Raise_Application_Error is used to assign an exception number

and message to a user_defined exception.

 The syntax of the use of this procedure is:

RAISE_APPLICATOIN_ERROR(error_number, error_message);

 or

RAISE_APPLICATION_ERROR(error_number, error_message,

keep_errors);

 E.g.,

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 94

User-Defined Exceptions

SET SERVEROUTPUT ON;

DECLARE

v_student_id NUMBER := &sv_student_id;

v_total_courses NUMBER;

e_invalid_id EXCEPTION;

BEGIN

IF v_student_id < 0

THEN

RAISE e_invalid_id;

ELSE

SELECT count(*)

INTO v_total_courses

FROM enrollment

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 95

User-Defined Exceptions

WHERE student_id = v_student_id;

DBMS_OUTPUT.PUT_LINE('The student is registered

for ' || v_total_courses || ‘ Courses');

END IF;

END;

EXCEPTION

WHEN e_invalid_id

THEN

DBMS_OUTPUT.PUT_LINE('The entered id is

invalid');

END;

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 96

User-Defined Exceptions

 EXCEPTION_INIT_PRAGMA

 The EXCEPTION_INIT PRAGMA

 is used to associate an Oracle error number with a name of a user-
defined error so that a handler may be written for it.

 The EXCEPTION_INIT pragma appears in the declaration
section as:

DECLARE

exception_name EXCEPTION;

PRAGMA EXCEPTION_INIT(exception_name,
error_code);

 The user_defined exception has to be declared before the
EXCEPTION_INIT pragma that uses it.

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 97

User-Defined Exceptions

 SQLCODE and SQLERRM

 Oracle exception handler OTHERS can trap all Oracle errors.

 However, it is hard to know which error occurred if OTHER is

used to trap it.

 Two built-in functions SQLCODE and SQLERRM can be used

with the OTHERS exception handler to return the error number

and message respectively.

 SQLERRM returns a message that is less than or equal to 512

bytes, while SQLCODE generally returns a negative error

number.

 Example

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 98

User-Defined Exceptions

DECLARE

v_zip VARCHAR2(5) := '&sv_zip';

v_city VARCHAR2(15);

v_state CHAR(2);

v_err_code NUMBER;

v_err_msg VARCHAR2(200);

BEGIN

SELECT city, state

INTO v_city, v_state

FROM zipcode

WHERE zip = v_zip;

DBMS_OUTPUT.PUT_LINE(v_city || ' ' || v_state);
EXCEPTION

WHEN OTHERS

THEN

v_err_code := SQLCODE;

v_err_msg := SUBSTR(SQLERRM, 1, 200);

DBMS_OUTPUT.PUT_LINE('Error code: '|| v_err_code);

DBMS_OUTPUT.PUT_LINE('Error message : '|| v_err_msg);

END;

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 99

Procedures

 SQLCODE, however returns a 0 if it is referenced outside the
exception section, it returns +1 for user_defined exceptions and
100 for NO_DATA_FOUND exception.

 PROCEDURES

 Procedures allow structuring a program into modules (distinct
subsolutions)

 Each module performs a specific task that contributes toward the
final program goal.

 Modular code stored on database server is called a database
object or subprogram that is available to other program units for
repeated use.

 To save code into the database, it needs to be compiled into p-code
and stored in database server.

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 100

Procedures

 A PL/SQL module is a complete logical unit of work

and four types exist as:

 anonymous blocks

 procedures

 functions, and

 packages

 modular codes are more usable and manageable.

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 101

Procedures

 1. ANONYMOUS BLOCKS

• These have no names and no parameters.

• Consists of Declaration, Execution and optional Exception parts.

• They are not stored in the database as they cannot be called by
other blocks. All examples before now are anonymous blocks.

 2. PROCEDURES

• A procedure may have 0 or more parameters and must have a name.
The syntax of a procedure is:

 CREATE OR REPLACE PROCEDURE
name [(parameter1, parameter2, …)]

AS IS [local declarations]
BEGIN

Executable statements
[EXCEPTION exception handlers]

END [name];

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 102

Procedures

 A procedure consists of (1) the header [everything

before the AS or IS keyword used interchangeably], (2)

the body [everything after the AS or IS keyword].

 The word REPLACE is optional but if not used,

changing procedure code will entail dropping and re-

creating.

 E.g.,

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 103

Procedures

CREATE OR REPLACE PROCEDURE Discount

AS

CURSOR c_group_discount

IS

SELECT distinct s.course_no, c.description

FROM section s, enrollment e, course c

WHERE s.section_id = e.section_id

AND c.course_no = s.course_no

GROUP BY s.course_no, c.description, e.section_id,

s.section_id

HAVING COUNT(*) >= 8;

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 104

Procedures

BEGIN

FOR r_group_discount IN c_group_discount

LOOP

UPDATE course

SET cost = cost * .95

WHERE course_no = r_group_discount.course_no;

DBMS_OUTPUT.PUT_LINE (‘A 5% discount has been

given to’ || r_group_discount.course_no || ‘ ‘ ||

r_group_discount.description);

END LOOP;

END;

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 105

Procedures

 To have the procedure update the database, a

COMMIT needs to be issued after running the

procedure (after END). It can also be placed after the

END LOOP statement.

 A procedure can become invalid when the table it is

based on is deleted or changed.

 To re_compile an invalid procedure, use:

 ALTER procedure procedure_name compile;

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 106

Procedures

 PROCEDURES AND DATA DICTIONARY

 Data dictionary provides information on stored procedures in
either

• USER_OBJECTS view (information about objects), or

• USER_SOURCE view (source code text)

 Data dictionary also has an ALL_ and DBA_ version of these
views.

 PASSING PARAMETERS IN AND OUT OF PROCEDURES

 Parameters are used to pass values to and from calling
procedures to the server.

 Parameters are available in 3 modes as IN, OUT, and INOUT.

 Parameter mode specifies whether it is:

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 107

Procedures
• IN: an input parameter that simply passes a value to the procedure

for read only and this parameter cannot be changed by the
procedure.

• OUT: an output parameter that passes result back from the
procedure

• INOUT: both input and output parameter for passing value in and
sending result back.

 Example Procedure with Parameters

CREATE OR REPLACE

PROCEDURE FIND_NAME(ID IN NUMBER, LNAME OUT
VARCHAR2,

FNAME OUT VARCHAR2) AS

BEGIN

SELECT last_name, first_name

INTO LNAME, FNAME
FROM student

WHERE student_id = ID;

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 108

Procedures

EXCEPTION

WHEN OTHERS

THEN

DBMS_OUTPUT.PUT_LINE('
Student id not found ');

END FIND_NAME;
• In the example, the parameters ID and LNAME, FNAME in

the procedure header are formal parameters

 Formal parameters are place holders for actual data values passed
in or out with actual parameters during procedure call.

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 109

Procedures

 Formal parameters do not require datatype constraints
like size, e.g.,

 VARCHAR2(60) is stated as VARCHAR2.

 When matching actual and formal parameters, use
positional notation or named notation.

 Named notation associates formal parameter to its
actual value during procedure call explicitly using the
format: (formal parameter => actual parameter).

 Calling a Stored Procedure

 The procedure find_name defined above can be called
in another anonymous block

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 110

Procedures

 as:

DECLARE

ID student.student_id%TYPE;

v_local_fname student.first_name%TYPE;

v_local_lname student.last_name%TYPE;

BEGIN

ID := 250;

find_name(ID, v_local_lname, v_local_fname);

DBMS_OUTPUT.PUT_LINE('Student ' || ID || ' is

'||v_local_fname || ' ' || v_local_lname);

END;

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 111

Functions

 FUNCTIONS

 Function is a PL/SQL procedure that returns a single value.

 Function definition structure is:

CREATE [OR REPLACE] FUNCTION

function_name (parameter list)

RETURN datatype

IS

BEGIN

<body>

RETURN (return_value);

END;

 In a function, there should be a RETURN statement for each exception

 Function parameters can be of IN, OUT or INOUT types.

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 112

Functions

 E.g.,

CREATE OR REPLACE FUNCTION

Show_description(i_course_no NUMBER)

RETURN VARCHAR2

AS

v_description VARCHAR2(50);

BEGIN

SELECT description

INTO v_description

FROM course

WHERE course_no = i_course_no;

RETURN v_description;

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 113

Functions

EXCEPTION

WHEN NO_DATA_FOUND

THEN

RETURN (‘The cursor is not in the database’);

WHEN OTHERS

THEN

RETURN (‘Error in running show_description’);

END;

 The function declared above can be invoked in the SELECT

statement below:

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 114

Packages

SELECT course_no, show_description(course_no)

FROM course;

PACKAGES

 A collection of PL/SQL objects grouped together as a logical unit
under one package name is called a package.

 Packages include procedures, functions, cursors, declarations,
types and variables.

 First call to a package causes loading the package in memory,
while subsequent calls save compilation and loading time.

 Packages encourage top down design and improve on information
hiding and security of code.

 A package consists of Specification and Body, which may be
compiled separately.

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 115

Packages

 Package Specification contains declaration information

about objects in the package (procedures, functions and

not their codes, global/public variables). All objects in

a package specification are public objects.

 Private Procedures/Functions are not in the package

specification but coded in its body.

CREATE OR REPLACE PACKAGE

manage_students

AS

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 116

Packages

PROCEDURE FIND_NAME

(ID IN NUMBER, LNAME OUT VARCHAR2,

FNAME OUT VARCHAR2);

FUNCTION id_is_good(i_student_id NUMBER)

RETURN BOOLEAN;

END manage_students;

 An example package specification consisting of a

procedure and a function is given above.

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 117

Package Body

 Package Body

 The package body contains actual executable code of

the objects described in the package specification

 Package body may contain additional code for private

objects not declared in the specification of the package.

 The headers of the cursor and modules and their

definitions in the package specification should match

exactly.

 Elements declared in the specification can be

referenced in the body and should not be re-declared.

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 118

Package Body

 Package elements can be referenced outside the package using the
notation:

 package_name.element

 Elements referenced inside the body of the package do not need to
be qualified.

 The package body of the above specification is:

CREATE OR REPLACE PACKAGE BODY manage_students

AS

PROCEDURE FIND_NAME

(ID IN NUMBER,

LNAME OUT student.last_name % TYPE,

FNAME OUT student.first_name % TYPE)

IS

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 119

Package Body

BEGIN

SELECT first_name, last_name

INTO o_fname, o_lname

FROM student

WHERE student_id = ID;

EXCEPTION

WHEN OTHER

THEN

DBMS_OUTPUT.PUT_LINE(‘Error in finding

student id:’|| ID);

END find_sname;

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 120

Package Body

FUNCTION id_is_good

(i_student_id NUMBER)

RETURN BOOLEAN

IS

v_id_cnt number;

BEGIN

SELECT COUNT(*)

INTO v_id_cnt

FROM student

WHERE student_id = i_student_id;

RETURN v_id_cnt=1;

EXCEPTION

WHEN OTHERS

THEN

RETURN FALSE;

END id_is_good;

END manage_students;

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 121

Calling Stored Packages

 CALLING STORED PACKAGES

 The following anonymous block shows how elements of
manage_student package are called by other blocks.

DECLARE

v_first_name student.first_name % TYPE;

v_last_name student.last_name % TYPE;

BEGIN

IF manage_students.id_is_good (& v_id)

THEN

manage_students.find_sname

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 122

Calling Stored Packages

(&&v_id, v_first_name, v_last_name);

DBMS_OUTPUT.PUT_LINE(‘Student No’ || && v_id || ‘is’ ||

v_last_name || ‘;’ || v_first_name);

ELSE

DBMS_OUTPUT.PUT_LINE(‘Student ID’ || &&

v_id || ‘is not in the database.’);

END IF;

END;

 Find out why actual parameter v_id is passed with & and &&

 Type the above code in a file and run the script in a sqlplus session

 The package body manage_students is compiled into the database.

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 123

Stored Code

 Functions in packages need to meet additional restrictions in order
to be used in a SELECT statement (must be row functions and
using only SQL datatypes, and have no DML(insert, update,
delete), have certain level of purity achieved with PRAGMA
RESTRICT_REFERENCES, p 332, 358-361, 366-368).

 Getting Stored Code Information from the Data Dictionary

 1. DESC USER_ERRORS
[used to determine details of a compilation error]

 2. SHO ERR
[displays the line number the error occurred in USER_SOURCE
view]

 3. DESC <packagename>
To query the data dictionary to determine all stored objects in the
current schema of the database including the current status of the
stored code, use:

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 124

Stored Code

 SELECT OBJECT_TYPE, OBJECT_NAME, STATUS
FROM USER_OBJECTS
WHERE OBJECT_TYPE IN

(‘FUNCTION’, ‘PROCEDURE’, ‘PACKAGE’,
‘PACKAGE_BODY’)
ORDER BY OBJECT_TYPE;

 4. We can retrieve information from USER_ERRORS view with
SELECT line || ‘/’ || position “LINE/COL”, TEXT “ERROR”
FROM user_errors
WHERE name = ‘FORCE_ERROR’;

 5. DESC USER_DEPENDENCIES
[used to analyze impact of table changes]

 6. SELECT referenced_name
FROM user_dependencies
WHERE name = ‘SCHOOL_API’;

 The above lists all objects referenced in the package.

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 125

Stored Code

 7. DEPTREE is an Oracle utility that shows which objects are
dependent on a given object, but DBA access is needed to use this
utility [see page 365 for details]

 8. What is purity level of a function in a package?
Purity level of a function describes the extent to which the
function is free of side effects (altering public values also used by
other functions)

 Available Purity levels are

• WNDS (write no database state) or does not change any
database tables

• WNPS (write no package state) or does not alter any package
variables

• RNPS (reads no package state)

• RNDS (reads no database state or table)

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 126

Stored Code

 To assert Purity Level, use

PRAGMA RESTRICT_REFERENCES

(function_name, WNDS[, WNPS][,RNDS][,RNPS]);

 10. With the Purity level set as:

PRAGMA RESTRICT_REFERENCES (school_api, WNDS, WNPS);

 Inside the package specification, any update instruction will result
in a purity level violation error.

 Only the WNDS level is mandatory and we need a separate
pragma statement for each packaged function used in an SQL
statement.

 The pragma must come after the function declaration in the
package specification

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 127

Overloading Modules

 OVERLOADING MODULES

 When we overload modules, we give two or more modules the
same name.

 The parameter lists of the modules should differ enough to have
the versions distinguishable.

 Modules can be overloaded in the following 3 contexts.

 in a local module in the same PL/SQL block

 in a package specification

 in a package body.

 [see page 359-361]

 E.g., the following two procedures cannot be overloaded.

 PROCEDURE calc_total (reg_in IN CHAR);

 PROCEDURE calc_total (reg_in IN VARCHAR2);

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 128

Triggers

 TRIGGERS

 A database trigger is a named PL/SQL block stored in a database

and executed when a triggering event occurs.

 Executing a trigger is called firing a trigger.

 A triggering event is a DML (INSERT, UPDATE, or DELETE)

statement executed against a database table.

 A trigger can fire before or after a triggering event

 For example, a trigger can be defined to fire before an INSERT

statement on the STUDENT table and it fires each time before you

insert a row in the STUDENT table.

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 129

Triggers

 The general syntax for creating a trigger is:

CREATE [OR REPLACE] TRIGGER trigger_name {BEFORE |
AFTER}

Triggering_event ON table-name [FOR EACH ROW]

[WHEN condition]

DECLARE

Declaration statements

BEGIN

Executable statements

EXCEPTION

Exception-handling statements

END;

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 130

Triggers

 Dropping a table also drops all triggers on the table.

 Triggers can be used to enforce complex business rules
not handled with integrity constraints.

 Maintaining security rules

 Automatically generating values for derived columns

 Collecting statistical information on table access.

 Preventing invalid transactions

 For auditing

 A trigger may not issue a COMMIT, SAVEPOINT or
ROLLBACK statement.

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 131

Triggers

 Any function or procedure called by a trigger may not

issue a transactional control statement (COMMIT,

SAVEPOINT, ROLLBACK)

 Datatype LONG and LONG RAW cannot be used in a

trigger, E.g.,

CREATE OR REPLACE TRIGGER student_bi

BEFORE INSERT ON student

FOR EACH ROW

DECLARE

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 132

Triggers

v_student_id STUDENT.STUDENT_ID % TYPE;

BEGIN

SELECT STUDENT_ID_SEQ.NEXTVAL

INTO v_student_id

FROM dual;

:NEW.student_id := v_student_id;

:NEW.created_by := USER;

:NEW.created_date := SYSDATE;

:NEW.modified_by := USER;

:NEW.modified_date := SYSDATE;

END;

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 133

Triggers

 The above trigger fires before each INSERT statement on the
student table.

 The pseudo-record :NEW accesses a row currently being
processed.

 The :NEW record is a type TRIGGERING_TABLE % TYPE and
in this case, it is of type STUDENT % TYPE and members
(attributes) of this record are accessed using the dot notation (eg,
:NEW.student_id).

 Once the above trigger is used to populate the record with
student_id, user and creation dates, the attributes left to insert
values in this record would be last and first names, zip and
registration date.

 Thus, the shorter version of INSERT used is to accomplish this is:

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 134

Triggers

 INSERT INTO student (first_name, last_name, zip,
registration_date)

 VALUES (‘John’, ‘Smith’, ‘OO914’, SYSDATE);

 BEFORE triggers should be used

 When the trigger provides values for derived columns
before an INSERT or UPDATE statement is
completed.

 When the trigger determines whether an INSERT,
UPDATE or DELETE statement should be allowed to
complete. (E.g., determining if an inserted ZIP is
valid)

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 135

Triggers

 AFTER TRIGGERS

 Example: the statistics table with structure statistics (Table_Name,
Transaction_Name, Transaction_user, Transaction_Date);

 A trigger on the Instructor table, which fires after an UPDATE or
INSERT statement is:

CREATE OR REPLACE TRIGGER instructor_aud

BEFORE UPDATE OR DELETE ON INSTRUCTOR

DECLARE

v_type VARCHAR2(10);

BEGIN

IF UPDATING

THEN

v_type := ‘UPDATE’;

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 136

Triggers

ELSEIF DELETING

THEN

v_type := ‘DELETE’;

END IF;

UPDATE statistics

SET transaction_user = USER

transaction_date = SYSDATE

WHERE table_name = ‘INSTRUCTOR’

AND transaction_name = v_type;

IF SQL % NOTFOUND

THEN

INSERT INTO statistics

VALUES (‘ INSTRUCTOR’, v_type, USER, SYSDATE);

END IF;

END;

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 137

Triggers

 Note that the functions UPDATING and DELETING
are Boolean.

 This trigger updates or inserts a record in the statistics
table when an UPDATE or DELETE operation against
the instructor table occurs.

 Once trigger is created on the instructor table, any
UPDATE or DELETE causes modification of old
record or creating of new records, in the statistics.

 After triggers should be used when

 a trigger should be fired after a DML statement is
executed.

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 138

Triggers

 When a trigger performs actions not specified in a

BEFORE trigger.

 Consider the following UPDATE statement.

UPDATE student

SET zip = ‘01247’

WHERE zip = ‘02189’;

 The value “01247” of the ZIP column is a new value

and trigger would reference it as :NEW.ZIP. The value

“02189” in the ZIP column is the previous value and is

referenced as :OLD.ZIP.

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 139

Triggers

 :OLD is not defined for INSERT statements and :NEW

is not defined for DELETE statements.

 These pseudo variables are referenced in the condition

of a WHEN statement without : as in:

CREATE TRIGGER student_au

BEFORE UPDATE ON STUDENT

FOR EACH ROW

WHEN (NVL(NEW.ZIP, ‘ ‘) < > OLD.ZIP)

Trigger Body ……

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 140

Types of Triggers

 TYPES OF TRIGGERS

 Row Triggers

 A row trigger is defined with a statement including FOR EACH ROW as in

CREATE OR REPLACE TRIGGER course_au

AFTER UPDATE ON COURSE

FOR EACH ROW

……

 A row trigger fires as many times as there are rows affected by the trigger.

 Statement trigger

 A statement trigger does not include FOR EACH ROW in its definition, E.g.,

CREATE OR REPLACE TRIGGER enrollment_ad

AFTER DELETE ON ENROLLMENT

……

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 141

Types of Triggers

The trigger fires once after a DELETE statement is

issued against the enrollment table.

 Statement triggers are used for actions that do not

depend on individual records.

 INSTEAD OF TRIGGERS

 An instead of trigger is a row trigger that is defined on

views to fire instead of the DML statement.

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 142

Mutating Table Issues/Trigger Restrictions

 MUTATING TABLE ISSUES

 A mutating table is a table having a DML statement issued against

it. For a trigger, it is the table on which this trigger is defined.

 A constraining table is a table read from, for a referential integrity

constraint.

 TRIGGER SQL Statement Restrictions

 An SQL statement may not read or modify a mutating table.

 An SQL statement may not modify columns of constraining table

having primary, foreign, or unique constraints defined on them.

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 143

PL/SQL Tables

 PL/SQL Tables

 PL/SQL tables are PL/SQL arrays and DML
statements cannot be issued on them.

 PL/SQL tables exist in memory only and not in
database.

 Declaration of PL/SQL table

 To declare PL/SQL table,

 Define the table structure using TYPE statement.

 Declare the actual table.

 E.g., declaration of PL/SQL table

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 144

PL/SQL Tables

DECLARE

TYPE LnameType IS TABLE OF

--Table structure definition

Student.last_name % TYPE

INDEX BY BINARY_INTEGER;

--Create the actual table

Slname LnameType;

Ilname LnameType;

BEGIN

NULL;

……

END;

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 145

PL/SQL Tables

 Referencing and Modifying PL/SQL Table Rows

 A particular table row is referenced as:

 <table_name> (<index_value>)

 The datatype of the index value is compatible with BINARY_INTEGER
datatype and we assign values to a row using the := operator.

 E.g.

SET SERVEROUTPUT ON

DECLARE

CURSOR c_slname IS

SELECT last_name, student_id, ROWNUM

FROM student

WHERE student_id < 110

ORDER BY last_name;

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 146

PL/SQL Tables

TYPE type_lname_tab IS TABLE OF

student.last_name % TYPE

INDEX BY BINARY_INTEGER;

tab_slname type_lname_tab;

v_slname_counter NUMBER:=0;

BEGIN

FOR r_slname IN c_slname

LOOP

v_slname_counter := v_slname_counter + 1;

tab_slname(v_slname_counter):=r_slname.last_name;

END LOOP;

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 147

PL/SQL Tables

FOR i_slname IN 1..v_slname_counter

LOOP

DBMS_OUTPUT.PUT_LINE(‘Here is a last

name:’ || Tab_slname(i_slname));

END LOOP;

END;

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 148

PL/SQL Attributes

 PL/SQL Table Attributes

 Attributes used to gain information on a PL/SQL table are:

 1. DELETE – deletes rows in a table

 2. EXISTS – returns TRUE if specified entry exists in table.

 3. COUNT- returns number of rows in table.

 4. FIRST – returns the index of the first row in table.

 5. LAST – returns the index of the last row in table.

 6. NEXT – returns the index of the next row in table.

 7. PRIOR – returns index to previous row in table.

Comp 4150 Dr. C.I. Ezeife © 2024 Slide 149

PL/SQL Attributes

 Syntax of Use of Table Attributes

 PL/SQL table attributes are used with the following syntax

 <table_name>. <attribute>

 E.g., with a table name t_student, we can assign the row count of
this table to variable v_count as follows:

 v_count := t_student.count;

 t_student.delete deletes all rows from the t_student table.

 t_student.delete(15) deletes only the 15th row. Also
t_student.exists(100) will work on the 100th row.

 Thus, for some attributes, the syntax involes specifying which rows
as:

 <table_name>.<attribute> (<index number>[, <index number>])

