
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe
Dr. Christie Ezeife Comp 4150 (2021)

Comp-4150: Advanced and Practical Database Systems

Slide 21-1

• Ramez Elmasri , Shamkant B. Navathe(2016) Fundamentals of Database Systems (7th 

Edition), Pearson, isbn 10: 0-13-397077-9; isbn-13:978-0-13-397077-7.

CHAPTER 21

Concurrency Control 

Techniques



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe
Dr. Christie Ezeife Comp 4150 (2021)

CHAPTER 21:Concurrency Control Techniques

Outline

Slide 21- 2

 1. Two-Phase Locking Techniques for Concurrency 

Control

 2. Concurrency Control Based on Timestamp Ordering

 3. Multiversion Concurrency Control Techniques

 4. Validation (Optimistic) Techniques and Snapshot 

Isolation Concurrency Control

 5. Granularity of Data Items and Multiple Granularity 

Locking

 6. Using Locks for Concurrency Control in Indexes



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe
Dr. Christie Ezeife Comp 4150 (2021)

Chapter 21: Introduction
 Concurrency control protocols are:

 Set of rules to guarantee serializability of schedules 

(representing multiple transactions running concurrently). 

The four main techniques of concurrency control are: 

 1. Two-phase locking protocols

 Lock data items to prevent concurrent access by multiple 

transactions

 Timestamp

 Use Unique identifier for each transaction

 Multiversion currency control protocols

 Use multiple versions of a data item

 Optimistic Protocols based on Validation or certification of a 

transaction

Slide 21- 3



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe
Dr. Christie Ezeife Comp 4150 (2021)

21.1 Two-Phase Locking Techniques

for Concurrency Control
 A Lock is

 A Variable associated with a data item describing status for 

operations that can be applied to the variable (e.g., read or write)

 There is One lock for each data item in the database

 The lock of a data item X is expressed as Lock(X)

 Binary locks have only

 Two states (values) of 1 or 0

 Locked (1) (e.g., Lock(X) =1)

 Then, Item cannot be accessed (e.g., read). Item can be 

unlocked after use to set its Lock back to 0.

 Unlocked (0) (e.g., Lock(X) = 0)

 The, Item can be accessed when requested and once 

acquired, its Lock status changes to a 1.

Slide 21- 4



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe
Dr. Christie Ezeife Comp 4150 (2021)

21.1 Two-Phase Locking Techniques

for Concurrency Control (cont’d.)

 Transaction requests access by issuing a 

lock_item(X) operation

Slide 21- 5

Figure 21.1 Lock and unlock operations for binary locks



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe
Dr. Christie Ezeife Comp 4150 (2021)

21.1 Two-Phase Locking Techniques

for Concurrency Control (cont’d.)

 Lock table specifies items that have locks on data items (eg. Records)

 Lock manager subsystem

 Keeps track of and controls access to locks by transaction T

 Four Rules are enforced by lock manager module for deciding 

who should be given Lock of a data item.

 (1) A transaction T must ask for a Lock(X) before any read or write 

on X. (2) A transaction T must ask for an Unlock(X) after all reads 

or writes on X are completed. (3) A transaction T must not ask for 

a Lock(X) if it already has a Lock on X. (4) A transaction T must 

ask to Unlock(X) unless it already holds a Lock on X.

 At most one transaction can hold the lock on an item at a given time

 Binary locking is simple but too restrictive for database items and may 

lead to a problem of starvation (transactions waiting for too long).

Slide 21- 6



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe
Dr. Christie Ezeife Comp 4150 (2021)

21.1 Two-Phase Locking Techniques

for Concurrency Control (cont’d.)

 Shared/exclusive or read/write locks

 Read operations on the same item are not conflicting. Thus, 

more than one transaction can a read_lock(X) at the same 

thime.

 Must have exclusive lock to write a data item. Thus, only 

one transaction can hold a write_lock(X) at a time.

 It uses Three locking operations of 

 read_lock(X)

 write_lock(X)

 unlock(X)

Slide 21- 7



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe
Dr. Christie Ezeife Comp 4150 (2021) Slide 21-8

Figure 21.2 Locking and 

unlocking operations for 

two-mode (read/write, or 

shared/exclusive) locks



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe
Dr. Christie Ezeife Comp 4150 (2021)

21.1 Two-Phase Locking Techniques

for Concurrency Control (cont’d.)

 Lock conversion

 Transaction that already holds a lock allowed to 

convert the lock from one state to another

 Upgrading

 Issue a read_lock operation then a write_lock 

operation

 Downgrading

 Issue a read_lock operation after a write_lock 

operation

Slide 21- 9



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe
Dr. Christie Ezeife Comp 4150 (2021)

21.1 Guaranteeing Serializability by Two-

Phase Locking

 Two-phase locking protocol requires that

 All locking operations precede the first unlock operation in the 

transaction. That is, there is a lock expanding phase before a lock 

releasing phase.

 Phases

 Expanding (growing) phase

 New locks can be acquired but none can be released

 Lock conversion upgrades must be done during this phase

 Shrinking phase

 Existing locks can be released but none can be acquired

 Downgrades must be done during this phase

Slide 21- 10



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe
Dr. Christie Ezeife Comp 4150 (2021)

Figure 21.3 Transactions that do not obey two-phase locking (a) Two 

transactions T1 and T2 (b) Results of possible serial schedules of T1 and T2 

(c) A nonserializable schedule S that uses locks

Slide 21- 11



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe
Dr. Christie Ezeife Comp 4150 (2021)

21.1 Guaranteeing Serializability by Two-

Phase Locking

 If every transaction in a schedule follows the two-phase 

locking protocol, schedule is guaranteed to be serializable

 Two-phase locking may limit the amount of concurrency 

that can occur in a schedule

 Some serializable schedules will be prohibited by two-

phase locking protocol

Slide 21- 12



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe
Dr. Christie Ezeife Comp 4150 (2021)

21.1 Variations of Two-Phase Locking

 1. Basic 2PL

 Technique described on previous slides

 2. Conservative (static) 2PL

 Requires a transaction to lock all the items it accesses 

before the transaction begins

 Predeclare read-set and write-set

 Is a Deadlock-free protocol

 3. Strict 2PL

 Transaction does not release exclusive locks (write_locks) 

until after it commits or aborts

Slide 21- 13



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe
Dr. Christie Ezeife Comp 4150 (2021)

21.1 Variations of Two-Phase Locking 

(cont’d.)

 4. Rigorous 2PL

 Transaction does not release any locks (read_lock and 

write_lock) until after it commits or aborts

 Concurrency control subsystem responsible for generating 

read_lock and write_lock requests

 Locking generally considered to have high overhead

Slide 21- 14



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe
Dr. Christie Ezeife Comp 4150 (2021)

21.1 Dealing with Deadlock and Starvation

 Deadlock

 Occurs when each transaction T in a set is waiting 

for some item locked by some other transaction T’

 Both transactions stuck in a waiting queue

Slide 21- 15

Figure 21.5 Illustrating the deadlock problem (a) A partial schedule of T1′ and T2′ that is

in a state of deadlock (b) A wait-for graph for the partial schedule in (a)



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe
Dr. Christie Ezeife Comp 4150 (2021)

21.1 Dealing with Deadlock and Starvation 

(cont’d.)

 Deadlock prevention protocols

 Every transaction locks all items it needs in advance

 Ordering all items in the database

 Transaction that needs several items will lock them in 

that order

 Both approaches impractical

 Protocols based on a timestamp

 Wait-die (wait-abort to kill off transaction that had been 

waiting for a long time).

Slide 21- 16



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe
Dr. Christie Ezeife Comp 4150 (2021)

21.1 Dealing with Deadlock and Starvation 

(cont’d.)

 No waiting algorithm

 If transaction unable to obtain a lock, immediately 

aborted and restarted later

 Cautious waiting algorithm

 Deadlock-free

 Deadlock detection

 System checks to see if a state of deadlock exists

 Wait-for graph

Slide 21- 17



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe
Dr. Christie Ezeife Comp 4150 (2021)

21.1 Dealing with Deadlock and Starvation 

(cont’d.)

 Victim selection

 Deciding which transaction to abort in case of 

deadlock

 Timeouts

 If system waits longer than a predefined time, it 

aborts the transaction

 Starvation

 Occurs if a transaction cannot proceed for an 

indefinite period of time while other transactions 

continue normally

 Solution: first-come-first-served queue
Slide 21- 18



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe
Dr. Christie Ezeife Comp 4150 (2021)

21.2 Concurrency Control Based

on Timestamp Ordering

 Timestamp

 Unique identifier assigned by the DBMS to identify 

a transaction

 Assigned in the order submitted

 Transaction start time

 Concurrency control techniques based on 

timestamps do not use locks

 Deadlocks cannot occur

Slide 21- 19



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe
Dr. Christie Ezeife Comp 4150 (2021)

21.2 Concurrency Control Based

on Timestamp Ordering (cont’d.)

 Generating timestamps

 Counter incremented each time its value is 

assigned to a transaction

 Current date/time value of the system clock

 Ensure no two timestamps are generated during the 

same tick of the clock

 General approach

 Enforce equivalent serial order on the transactions 

based on their timestamps

Slide 21- 20



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe
Dr. Christie Ezeife Comp 4150 (2021)

21.2 Concurrency Control Based

on Timestamp Ordering (cont’d.)

 Timestamp ordering (TO)

 Allows interleaving of transaction operations

 Must ensure timestamp order is followed for each 

pair of conflicting operations

 Each database item assigned two timestamp 

values

 read_TS(X)

 write_TS(X)

Slide 21- 21



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe
Dr. Christie Ezeife Comp 4150 (2021)

21.2 Concurrency Control Based

on Timestamp Ordering (cont’d.)

 Basic TO algorithm

 If conflicting operations detected, later operation 

rejected by aborting transaction that issued it

 Schedules produced guaranteed to be conflict 

serializable

 Starvation may occur

 Strict TO algorithm

 Ensures schedules are both strict and conflict 

serializable

Slide 21- 22



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe
Dr. Christie Ezeife Comp 4150 (2021)

Concurrency Control Based

on Timestamp Ordering (cont’d.)

 Thomas’s write rule

 Modification of basic TO algorithm

 Does not enforce conflict serializability

 Rejects fewer write operations by modifying 

checks for write_item(X) operation

Slide 21- 23



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe
Dr. Christie Ezeife Comp 4150 (2021)

21.3 Multiversion Concurrency

Control Techniques

 Several versions of an item are kept by a system

 Some read operations that would be rejected in 

other techniques can be accepted by reading an 

older version of the item

 Maintains serializability

 More storage is needed

 Multiversion currency control scheme types

 Based on timestamp ordering

 Based on two-phase locking

 Validation and snapshot isolation techniques

Slide 21- 24



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe
Dr. Christie Ezeife Comp 4150 (2021)

21.3 Multiversion Concurrency

Control Techniques (cont’d.)

 Multiversion technique based on timestamp 

ordering

 Two timestamps associated with each version are 

kept

 read_TS(Xi)

 write_TS(Xi)

Slide 21- 25



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe
Dr. Christie Ezeife Comp 4150 (2021)

21.3 Multiversion Concurrency

Control Techniques (cont’d.)

 Multiversion two-phase locking using certify locks

 Three locking modes: read, write, and certify

Slide 21- 26

Figure 21.6 Lock compatibility tables (a) Lock compatibility table for read/write 

locking scheme (b) Lock compatibility table for read/write/certify locking scheme



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe
Dr. Christie Ezeife Comp 4150 (2021)

21.4 Validation (Optimistic) Techniques and 

Snapshot Isolation Concurrency Control

 Optimistic techniques

 Also called validation or certification techniques

 No checking is done while the transaction is 

executing

 Updates not applied directly to the database until 

finished transaction is validated

 All updates applied to local copies of data items

 Validation phase checks whether any of 

transaction’s updates violate serializability

 Transaction committed or aborted based on result

Slide 20- 27



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe
Dr. Christie Ezeife Comp 4150 (2021)

21.4 Concurrency Control Based on 

Snapshot Isolation

 Transaction sees data items based on committed 

values of the items in the database snapshot

 Does not see updates that occur after transaction 

starts

 Read operations do not require read locks

 Write operations require write locks

 Temporary version store keeps track of older 

versions of updated items

 Variation: serializable snapshot isolation (SSI)

Slide 20- 28



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe
Dr. Christie Ezeife Comp 4150 (2021)

21.5 Granularity of Data Items and

Multiple Granularity Locking

 Size of data items known as granularity

 Fine (small)

 Coarse (large)

 Larger the data item size, lower the degree of 

concurrency permitted

 Example: entire disk block locked

 Smaller the data item size, more locks required

 Higher overhead

 Best item size depends on transaction type

Slide 20- 29



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe
Dr. Christie Ezeife Comp 4150 (2021)

21.5 Multiple Granularity Level Locking

 Lock can be requested at any level

Slide 21- 30

Figure 21.7 A granularity hierarchy for illustrating multiple granularity level locking



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe
Dr. Christie Ezeife Comp 4150 (2021)

21.5 Multiple Granularity Level Locking 

(cont’d.)

 Intention locks are needed

 Transaction indicates along the path from the root 

to the desired node, what type of lock (shared or 

exclusive) it will require from one of the node’s 

descendants

 Intention lock types

 Intention-shared (IS)

 Shared locks will be requested on a descendant 

node

 Intention-exclusive (IX)

 Exclusive locks will be requested

Slide 21- 31



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe
Dr. Christie Ezeife Comp 4150 (2021)

21.5 Multiple Granularity Level Locking 

(cont’d.)

 Intention lock types (cont’d.)

 Shared-intension-exclusive (SIX)

 Current node is locked in shared mode but one or 

more exclusive locks will be requested on a 

descendant node

Slide 21- 32

Figure 21.8 Lock compatibility matrix for multiple granularity locking



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe
Dr. Christie Ezeife Comp 4150 (2021)

21.5 Multiple Granularity Level Locking 

(cont’d.)

 Multiple granularity locking (MGL) protocol rules

Slide 21- 33



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe
Dr. Christie Ezeife Comp 4150 (2021)

21.6 Using Locks for Concurrency

Control in Indexes

 Two-phase locking can be applied to B-tree and 

B+ -tree indexes

 Nodes of an index correspond to disk pages

 Holding locks on index pages could cause 

transaction blocking

 Other approaches must be used

 Conservative approach

 Lock the root node in exclusive mode and then 

access the appropriate child node of the root

Slide 21- 34



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe
Dr. Christie Ezeife Comp 4150 (2021)

21.6 Using Locks for Concurrency

Control in Indexes (cont’d.)

 Optimistic approach

 Request and hold shared locks on nodes leading 

to the leaf node, with exclusive lock on the leaf

 B-link tree approach

 Sibling nodes on the same level are linked at 

every level

 Allows shared locks when requesting a page

 Requires lock be released before accessing the 

child node

Slide 21- 35



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe
Dr. Christie Ezeife Comp 4150 (2021)

21.7 Other Concurrency Control Issues

 Insertion

 When new data item is inserted, it cannot be 

accessed until after operation is completed

 Deletion operation on the existing data item

 Write lock must be obtained before deletion

 Phantom problem

 Can occur when a new record being inserted 

satisfies a condition that a set of records accessed 

by another transaction must satisfy

 Record causing conflict not recognized by 

concurrency control protocol
Slide 21- 36



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe
Dr. Christie Ezeife Comp 4150 (2021)

21.7 Other Concurrency Control Issues 

(cont’d.)

 Interactive transactions

 User can input a value of a data item to a 

transaction T based on some value written to the 

screen by transaction T′, which may not have 

committed

 Solution approach: postpone output of 

transactions to the screen until committed

 Latches

 Locks held for a short duration

 Do not follow usual concurrency control protocol

Slide 21- 37



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe
Dr. Christie Ezeife Comp 4150 (2021)

21.8 Summary

 Concurrency control techniques

 Two-phase locking

 Timestamp-based ordering

 Multiversion protocols

 Snapshot isolation

 Data item granularity

 Locking protocols for indexes

 Phantom problem and interactive transaction 

issues

Slide 21- 38


