
1

Clustering Examples in Web-based Tutoring
Systems based on Relevance of Concepts

Ritu Chaturvedi

School of Computer Science

University of Guelph, Guelph, Canada

chaturvr@uoguelph.ca

C. I. Ezeife*

School of Computer Science

University of Windsor, Windsor, Canada

cezeife@uwindsor.ca

Abstract—Web-based online tutoring systems (WOTS) have
become extremely important and relevant in today’s world, espe-
cially with COVID-19 requiring schools, colleges and universities
to offer alternate forms of delivery. Many studies have indicated
that students find worked-out examples very useful, when they
are performing a task or studying for final exams. WOTS
certainly have the capability to host hundreds of such examples in
their repositories, but presenting students with such repositories
may cause cognitive overload on students and may force them
to bear the responsibility of searching for the most relevant
examples, when in need. This paper proposes an algorithm called
CER (Clustering Examples based on Relevance) that organizes
a collection of worked-out examples into coherent and relevant
clusters - relevant to the learning concepts covered by them.
When generating clusters, CER acknowledges not only the local
relevance of a concept (using parameters such as mode) within a
cluster but also its global relevance. The proposed algorithm CER
is validated using Dunn’s index as the internal validity index - a
score of 0.81 was achieved for CER. The external validity of CER
was measured by comparing its results to a benchmark dataset
that had properties of data that were common to the domain of
CER.

I. INTRODUCTION
1Web-based online tutoring systems (WOTS) have become

exptremely important and relevant in today’s world, especially

with COVID-19 requiring Universities and Colleges to offer

alternate forms of delivery. One of the essential components

of any WOTS is its domain model, that holds the learning

outcomes of the course it teaches (also known as the domain),

and more importantly, embeds the expertise in context with

that domain - expertise in terms of lessons (in any format, be it

text, audio or video), learning concepts covered by each lesson

(LC), graded work assessments (such as tasks, assignments or

projects), their solutions, and other helpful resources such as

worked-out examples to help students learn and understand the

domain LC. In traditional classroom teaching, such expertise

comes from a combination of the teacher and the text book

put together. The scope of this paper is limited to WOTS that

teach “Introductory Programming in C”.

This research was supported by the Natural Science and Engineering
Research Council (NSERC) of Canada under an Operating grant (OGP-
0194134) and a University of Windsor grant.
1978-1-7281-8084-7/20/$31.00 ©2020 IEEE

Clustering is an unsupervised mining method

[Pang-Ning et al., 2005] that partitions a finite set of

data points in multidimensional space into well-defined and

separate clusters using distance measures such as Euclidean

distance so that (1) data points belonging to the same cluster

are similar (intra-cluster) and (2) data points belonging to

different clusters are dissimilar (inter-cluster). For example,

in an educational dataset, students can be grouped into

two or more clusters according to their learning styles. A

simple and effective clustering algorithm called k-means

[Pang-Ning et al., 2005] (Algorithm 1) that takes as input an

integer value k (where k = number of desired clusters) and

n data points, where each data point is a vector with m m

elements (e.g. each worked-out example in the domain of C

programming is represented as a vector of m LCs). It then

groups its points into k clusters (where each cluster consists of

one or more data points) such that the inter-cluster similarity

of the resulting clusters is low, whereas the intra-cluster

similarity is high. Each group or cluster has a representative

point known as its centroid or center. Intra-cluster similarity

defines how close the points within a cluster are to each other,

whereas inter-cluster similarity defines how well-separated the

cluster centroids are from each other. A similarity or distance

function (similarity is considered to be the inverse of distance)

is used to find the closeness between a sample x and cluster

centroid c or between 2 cluster centroids - functions such

as Euclidean distance or Jaccard’s Coefficient of similarity.

The proposed algorithm CER (Clustering Examples based on

Relevance) revises steps 2.1.1 and 2.2 of k-means (Algorithm

1) to accommodate for the relevance of concepts, both locally

within a cluster and also in the entire global scope.
The rest of the paper is organized as follows. Section 2

outlines the proposed algorithm CER, with details on each

step modified. Section 3 presents an experimental analysis and

section 4 presents the conclusion, limitations of this work and

future directions.

II. KNOWLEDGE ORGANIZATION IN WOTS USING

CLUSTERING

This section presents the proposed algorithm CER, includ-

ing the domain model, steps used for data preparation and the

Authorized licensed use limited to: UNIVERSITY OF WINDSOR. Downloaded on May 12,2021 at 01:37:04 UTC from IEEE Xplore. Restrictions apply.

2

Algorithm 1 K-means algorithm [Pang-Ning et al., 2005]
Input: dataset of size n X m (n samples, each with m

attributes),

k (number of clusters),

maxIterations (threshold for maximum number of iterations)

Output: k clusters
Method
*** begin of k-means

1. Choose k samples as initial centroids

2. repeat until convergence (centroids not not change or

maximum number of iterations has been reached)

2.1. repeat steps until all n samples are exhausted

2.1.1. assign sample x to its closest centroid using an

appropriate distance function

2.2. recompute the centroid of each cluster based on

assignment in steps 2.1

*** end of k-means

final data representation used by CER to perform knowledge

organization.

A. Domain Model

Domain model DC for the proposed system consists of a

repository of all worked-out examples designed by WOTS ex-

perts for a course that teaches “Introductory C Programming”.

It also consists of all learning concepts (LC) in its domain

(also referred to as a topics or concepts in this paper) that

WOTS must teach in order to meet the learning outcomes of

the course. For example, “scanf”, which is a command for

entering values into variables from the keyboard, is a LC in

the domain of C programming. Similarly, “fraction” is an LC

in the domain of Math. The development of domain model is

a very tedious job, and requires the time and effort of several

domain experts [Chaturvedi et al., 2018].

A worked-out example (WE) in this paper is defined as

a complete or partial worked-out solution for a question or

instruction (similar to examples in textbooks). Figure 1 shows

a sample worked-out example find_Area, which is essentially

the solution to the following instruction: “Write a program that

computes and prints the area of a triangle, given its base and

height”.

A data point is a binary vector of size n, representing

a worked-out example or a task solution in CER, where

n is the total number of LCs in the domain of CER. For

example, worked-out example find_area shown in figure 1 can

be represented as a data point [1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], assuming m (total

number of LCs in the domain) = 26.

B. Data Preparation and Representation

In an earlier research [Chaturvedi et al., 2018],

[Chaturvedi, 2016], the authors used an extraction method

that takes a WE and represents it as a vector of m binary

values, where m is the total number of LCs in the domain.

This paper chooses to use the same vector representation for

each WE in its domain. The choice of a similarity function

Figure 1. Worked-out example find_Area.c as solution to the instruction
’Write a program that computes and prints the area of a triangle, given its
base and height’

depends on the type of data attribute used - types such as

continuous, categorical or binary. Continuous data attributes

are those that can be measured (e.g. weight of a person).

Categorical data attributes define different categories of data

but cannot be measured (e.g. gender, that has two categories

’F’ and ’M’). Binary data attributes are a special case of

categorical data, that can have only one of the two values 1

or 0. Binary data can be further categorized as symmetric

and asymmetric data. A symmetric binary attribute is one in

which the presence of a 1 is regarded as equally significant

as its absence (0). An asymmetric binary attribute is one in

which the presence of one of the values (e.g. 1) is regarded

as more significant than the other. For example, in a vector

of m binary values representing a WE, where a value of 1

indicates the presence of an LC and 0 its absence, then a 1-1

match of an LC in two different WEs is significant, whereas

a 0-0 match has no significance (since 0 implies that the LU

is not present) and must be ignored.

The most common similarity function used with binary

asymmetric data is Jaccard’s coefficient (JC) [Jaccard, 1901]

and therefore is is most applicable to the domain data used in

this paper. Jaccard’s coefficient between two binary vectors x

and y is measured as

JC(x, y) =
f11

f11 + f01+f01
(1)

where f11 is the frequency of occurrence of 1 and 1 in
the corresponding bits of x and y, f01 is the frequency of
occurrence of 0 and 1 in the corresponding bits of x and

y and f10 is the frequency of occurrence of 1 and 0 in the
corresponding bits of x and y. Here, f01 and f10 represent
the non-matching attribute pairs. For example, if x = [1, 0, 0,

1] and y = [1, 0, 1, 0], then JC(x, y) = 1/3 . , where m =

number of elements in a data point.

Authorized licensed use limited to: UNIVERSITY OF WINDSOR. Downloaded on May 12,2021 at 01:37:04 UTC from IEEE Xplore. Restrictions apply.

3

C. Proposed Algorithm - Clustering Examples based on Rel-
evance (CER)

CER focuses on organizing the list of worked-out examples

in its domain based on the learning concepts (LC) they

contain. The main motivation for proposing and implementing

a learning concept based organization of worked-out examples

is to enable WOTS to assist students to prepare for final

examination, when they must have completed all other re-

quirements in the course and must have learnt all the relevant

learning concepts. The proposed CER algorithm will group all

those worked-out examples that have related LCs into a single

cluster (as opposed to traditional lesson-wise organization that

we find in textbooks). For example, a cluster for “Introductory

C Programming” that has examples on arrays in it, will also

include examples with for-loops in it (CER experts assume

that most C programs that use one-dimensional arrays tend to

use simple for loops and those with two-dimensional arrays

tend to use nested-for loops).

CER uses a modified k-means clustering algorithm to cluster

its resources - the modifications are focused on including

the relevance of LCs in any vector representation of a WE.

It treats the problem of organizing worked-out examples

into coherent groups or clusters as a problem of clustering

binary datasets. There are existing algorithms that cluster

binary symmetric data efficiently but do not consider the

asymmetric nature of data. For example, Tao Li [Li, 2005]

proposed a general framework for clustering binary data, in

which they cluster both data and their features simultaneously

using matrix approximation. They initialize k-means exactly

as in standard k-means by randomly picking initial cluster

centroids, but recompute the centroids using an alternating

optimization method that minimizes the approximation error

between original clusters and the recomputed ones. Their

algorithm works well with symmetric binary data that is

not too sparse, unlike the data used in this research. Simi-

larly, Ordonez [Ordonez, 2003] proposed a modified k-means

algorithm called Incremental k-means for symmetric sparse

binary data. Incremental k-means uses Euclidean distance as

the distance measure, which is meaningful only when data

is measurable and its magnitude is significant (unlike the

data used in this paper). The initialization step of Incremen-

tal k_means uses estimation maximization (EM) algorithm

[Markov & Larose, 2007] to compute the initial set of cluster

centroids but uses sum of euclidean distances to recompute

centroids. The proposed CER algorithm uses not only the

local information available to clusters (similar to k-means)

but also global information on domain data as explained in

the following section.

CER uses k-means as its core algorithm but with 2 im-

portant modifications - (1) step 1 of k-means is modified to

choose a set of initial centroids using knowledge of the local

neighborhood. To find each successive initial centroid, CER

chooses the example that is farthest away from any of the

already picked centroids. This guarantees that the initial set of

centroids is well-separated. Section II-C1 presents this step as

algorithm 3 (CERIC). (2) step 2.2 of k-means is customized
to recompute centroids for binary data. Conventional methods

Algorithm 2 CER (Clustering Examples based on Relevance)

Input: dataset ∂ of size m X n (m data points, each with n

attributes), k (number of clusters

Output: k clusters
Method:
**** begin of CER

1. Choose k data points from ∂ as initial centroids using

Algorithm 3 (CERIC)

2. repeat until convergence

2.1. repeat steps until all m data points are exhausted

2.1.1. assign point x to its closest centroid using

Jaccard’s similarity (equation 1)

2.2. recompute the centroid of each cluster using Algo-

rithm 4 (CERRC)

**** end of CER

such as computing the mean of all cluster members do not

work well with binary data [Pang-Ning et al., 2005]. Mode,

instead of mean is commonly used for categorical attributes

including binary attributes but is not useful in the example

dataset used in our research. Section II-C2 proposes a novel

algorithm called CERRC(algorithm 4) to recompute centroid

bit for each LC to either 1 or 0, depending on the global

relevance of the LC, in addition to mode, which is a local

property of the cluster.

1) Neighborhood-sensitive choice of initial centroids (mod-
ified step 1 of k-means) : Definition: Similarity vector :
Similarity vector sv between a data point e and all data points
in a set S is defined to be a vector of size q, where q = number
of data points in S . Each element of sv stores the Jaccard’s
similarity coefficient JC (equation 1) between e and each data
point in S. Both e and data points in S must belong to the

same domain and must have the same number of features.

For example, let q = 3, e = 1010, S = { s1: 1001, s2: 1101,
s3: 0110}, sv =[0.5, 0.25, 0.33]

The choice of initial centroids impacts the number of itera-

tions required to get the final clusters by k-means algorithms.

Keeping in mind the primary goal of organizing worked-out

examples into clusters based on the LCs they consist of, CER

chooses as initial centroids those WE that consist of LCs that

are very different conceptually, implying that they should be

placed in different clusters. With this rationale, we choose

a farthest-neighbor approach [Pang-Ning et al., 2005] to pick

the initial set of centroids. CER chooses the first centroid

randomly. Then, for each successive centroid, the worked-

out example that is farthest away from any of the already

chosen initial centroids is chosen using Jaccard’s coefficient

(equation 1). This guarantees that the initial set of centroid

is well-separated. Algorithm 3 (CERIC) that describes this

method picks a worked-out example randomly as the first

initial centroid (ic1). Then it uses JC to generate the similarity
vector sv (section II-C1) between ic1 and all other worked-out
examples in DC . The worked-out example that has the least

similarity value in sv (and therefore the farthest neighbor of
ic1) is chosen as the next centroid (ic2). To find the third
centroid (and the remaining ones), CERIC finds the LCs that

Authorized licensed use limited to: UNIVERSITY OF WINDSOR. Downloaded on May 12,2021 at 01:37:04 UTC from IEEE Xplore. Restrictions apply.

4

Algorithm 3 CERIC (modified step 1 of k-means)

Input : (1) binary matrix ∂ of m rows and n columns (each

row of ∂ represents an example; each column of ∂ represents
a LC in the example) ,

(2) desired number of clusters k

Output: matrix ic of k rows and n columns, consisting of k
initial centroids

Method:
***begin of CERIC

1. add first row in ∂ to ic[1]—- each initial centroid is a vector
of n 1s and 0s

2. compute similarity vector sv between ic[1] and ∂ using JC
(equation 1).

3. find the example that has least similarity value in sv and
add that as the next centroid to ic[2].
4. initialize z to 3.

5. repeat until desired number of clusters k is achieved (until

z=k)

5.1 ∂ = ∂ - {rows already stored in ic}
5.2 compute temp by assigning each bit μij of temp to

1 or 0 using equation 2.

5.3 compute similarity vector sv between temp and all
rows in ∂ using JC (equation 1).

5.4 find the example that has least similarity value in sv
and pick that as the initial centroid ic[z]; increment z
***end of CERIC

are absent in the already chosen centroids (ic1 and ic2) and
sets those bits to 1 in a temporary vector called temp - we
call each bit of temp as μij (jth bit of vector i) as defined

in equation 2. Conceptually, temp stores all LCs not already
covered by the existing initial centroids. Thus, temp is a good
representative of the information on LCs covered by all the

already chosen initial centroids.

μij = 1, if ∀x ∈ {ic}, l = #{ic},
l∑

j=1

xj < (l −
l∑

j=1

xj)

= 0, otherwise (2)

For example, if ic1 = [0 1 0 0 0 1] and ic2 = [1 0 0 0 0
1], then temp vector = [0 0 1 1 1 0]. Next, it computes sv
between temp and the remaining examples in DC to choose

the example with the least similarity value as the next initial

centroid ic. This process is repeated until the desired number
of clusters is reached.

2) Recomputing centroids for binary data (modified step
2.1 of k-means): Step 2.2 of k-means recomputes the mean
of all clusters to update the set of centroids, if necessary. For

categorical attributes including binary ones, mode (instead of

mean) of all clusters is commonly used to update centroids

[Pang-Ning et al., 2005]. Mode of an attribute refers to the

value that occurs most often. For example, let cluster c created

from an iteration i of CER (Algorithm 2) has 7 data points

in it, where each data point has 26 LCs as its features. If the

first feature LC1 for cluster c has values {1, 1, 0, 0, 1, 0, 1}

for the 7 data points, then its mode is 1, since the number

of 1s is more than the number of 0s. Therefore, the updated

centroid’s bit for LC1 is assigned a value of 1. Conceptually,

this implies that LC1 is a good representative for this cluster.

As this example illustrates, LCs that are contained in very
few worked-out examples in the entire domain will suffer a

bias, if mode is used to recompute centroid bits. For instance,

in the above example, if feature LC26 for cluster c has values

{0,0,0,1,1,0,1}, then using the mode method, centroid bit for

LC26= 0. But, if the total number of worked-out examples in

DC with learning unit LC26 is just 4, then cluster c has 3 out

of the 4 worked-out examples that CER has with LC26, and

therefore, LC26 should be marked as a good representative

of cluster c and its centroid bit should be assigned a value

of 1 (instead of 0). We propose a novel algorithm CERRC

(algorithm 4) that uses a smart technique to assign a value of

1 to the new centroid bit in 2 situations: (1) when the mode

is 1 (2) when the mode is 0 but the presence of that LC
is more relevant globally. CERRC recomputes centroids by

first calculating the mode of feature LCi, for all worked-out

examples in its cluster. If the mode is 1 for an attribute LCi,

then it is considered a good representative for the cluster and

its bit is set to 1. If mode is 0, then the frequency of occurrence

of attribute LCi, in the entire database (αi) is determined
and used to find the remaining number of worked examples

with LCi in them (residual). If the number of times LCi

appears in cluster c is at least a certain threshold number of

the remaining examples (residual), then the new centroid’s

bit for LCi is assigned a value of 1. After experimenting with

different threshold values, we chose a value of 30%.

III. EXPERIMENTAL ANALYSIS OF CER

The proposed algorithm CER forms clusters of worked-

out examples so that all examples belonging to a single

cluster have related LCs. Clustering can be evaluated using

both internal and external validation measures (also known

as indices). Internal validity index (such as Dunn’s index) is

based on the information intrinsic to the data alone, whereas

external validity index (such as f_score) is based on previous

information about data. Internal validity index are preferred

when the class of data used in clustering is not known in

advance [Maulik & Bandyopadhyay, 2002]. Such indices are

useful in validating the algorithms written for clustering,

comparing them with others and in choosing the number of

clusters. This paper chooses to evaluate CER using internal

validity indices such as Dunn’s index because (1) the objective

of this experiment is to compare the performance of CER with

standard k-means for binary data (2) CER does not have any

pre-defined classes or clusters that can be used to compare

the results of CER for external validation. Dunn’s index

[Dunn, 1974] for each cluster partition, given the distance

d(x, y) between two data points x and y is defined as

Dunn = min1≤i≤k{min1≤j≤k,i �=j{ δ(Di, Dj)

max1≤r≤k{�(Dr)}}}
(3)

δ(Di, Dj) = minx∈Di,y∈Dj{d(x, y)}

�(Dr) = maxx,y∈Dr
{d(x, y)}

Authorized licensed use limited to: UNIVERSITY OF WINDSOR. Downloaded on May 12,2021 at 01:37:04 UTC from IEEE Xplore. Restrictions apply.

5

Algorithm 4 CERRC (modified step 2.2 of k_means)

Input: (1) initial_centroids of k rows and n columns,
(2) example dataset of m rows and n columns E,

(3) k clusters,

(4) threshold
Output: k new_centroids
Method:
***begin of CERRC

1. repeat for each cluster k

1.1. repeat for each attribute i of k

1.1.1. calculate its mode of all members of cluster k

Let ones = number of 1s; zeros = number of 0s

mode = 1, if ones > zeros

= −1, otherwise
1.1.2. if mode is equal to 1,

1.1.2.1. assign new_centroid’s bit i to 1

1.1.3. else

// αi is the total number of examples in E that

have i=1 in them

1.1.3.1.residual = (αi − ones),
// cluster has at least threshold number of

examples in E with LCi

1.1.4. if ones >= residual ∗ threshold,
1.1.4.1. assign new_centroid’s bit i to 1

1.1.5. else

1.1.5.1. assign new_centroid’s bit i to 0

***end of CERRC

In equation 3, δ represents the inter-cluster distance between
2 clusters Di and Dj . �Dr measures the intra-cluster dis-

tances in cluster Dr. Larger values of Dunn’s index indicate
good clusters, implying high intra-cluster similarity and low

inter-cluster similarity. The value of k that maximizes Dunn

is then chosen as the optimal number of clusters.

This section presents an experimental analysis of CER

and compares its cluster formation with clusters formed by

standard k-means algorithm (Algorithm 1) using different

parameters such as Dunn’s index, total number of iterations

to converge and interpretability. Table I shows results of

4 different experiments done with CER dataset. This table

indicates that Dunn’s index is as high as 0.81 when CER is

used for cluster formation as compared to standard k-means

that gives a Dunn’s index of 0.51. The optimal number of

clusters formed by CER is found to be 6, when Dunn’s index

is the highest (Dunn’s index = 0.81, when k = 6). We compute

the Dunn’s index index for all values of k from 1 to 15, and

find that k = 6 has the highest value.

In order to further validate the proposed clustering algo-

rithm CER, we implement it on a benchmark zoo dataset

[Bache & Lichman, 2013] and compare its results with stan-

dard k-means. The reason for choosing this benchmark is the

similarity in properties of data used in both zoo and CER. Zoo

dataset [Bache & Lichman, 2013], available at the UCI Irvine

Machine Learning Repository (uci.kdd) consists of 17 binary

attributes and 1 categorical attribute. We transformed the non-

Case Algorithm Number
of

clusters

Number
of

iterations
to

converge

Dunn’s Index

1

Modified Step1
Modified Step6
(Algorithm 2 -

CER)

6 5 0.802

2
Modified Step1
Standard Step6

6 3 0.802

3
Standard Step1
Modified Step6

6 5 0.601

4
Standard Step1
Standard Step6

6 6 0.512

Table I
COMPARATIVE ANALYSIS OF PROPOSED MODIFIED K-MEANS WITH

STANDARD K-MEANS - CER DATASET

binary attribute into 4 different binary attributes. Therefore,

zoo dataset in our experiments consists of 101 instances (or

records) of 21 binary attributes each (attributes such as hair,

feathers, eggs and tail). There are 7 pre-defined classes of

animals in the zoo dataset and the total number of animals

in each class are 41, 20, 5, 13, 3, 8 and 10. For example,

animals (frog, newt, toad) classify as class 5, whereas pitviper,

seasnake, slowworm, tortoise, tuatara classify as class 3. CER,

when applied to this zoo dataset, results in Dunn’s index = 1.41

for 5 clusters (instead of 7). This can be attributed to the fact

that classes 3 and 5 have very few instances in them (class

3 has just 5 animals in it and class 5 has 3 animals from a

total of 101) and therefore CER is not able to identify them as

separate clusters. Figure 2 shows the Dunn’s index computed

for all values of k from 1 to 15 for both datasets (CER and

Zoo).

We also validate the cluster formation in zoo

dataset by CER against its actual pre-defined classes

[Bache & Lichman, 2013] using external validation measures

such as accuracy and f_score and use the results as a

benchmark for CER (since both CER and zoo data are

binary). A confusion matrix is generally created to compute

such measures. A confusion matrix is a table that allows

visualization of the performance of a classification algorithm.

Each column of the matrix represents the instances in a

predicted class, and each row represents the instances in an

actual class. The confusion matrix in table II shows the total

number of zoo classes predicted by CER that match the actual

pre-defined ones. For example, row 1 in table II indicates

that there are 36 (out of 41 animals in zoo dataset) that are

predicted correctly as class 1, whereas there are 2 animals

that are actually class 1 but are predicted incorrectly as class

2. Similarly, there are 3 animals that actually class 1 but

are predicted incorrectly as class 5. Accuracy (given as total

number of correct predictions / total number of predictions)

for CER is found to be 77% and f_score is computed as 79%,

whereas f_score using standard k-means is computed to be

74%. Details on computing accuracy and f-score are given in

section. This comparison shows that the proposed algorithm

CER is a viable algorithm to cluster data that is asymmetric

and binary.

Authorized licensed use limited to: UNIVERSITY OF WINDSOR. Downloaded on May 12,2021 at 01:37:04 UTC from IEEE Xplore. Restrictions apply.

6

P R E D I C T
class 1 2 3 4 5 6 7

A 1 36 2 0 0 3 0 0
C 2 0 11 9 0 0 0 0
T 3 2 0 0 3 0 0 0
U 4 0 0 0 13 0 0 0
A 5 0 0 0 1 3 0 0
L 6 0 0 0 0 0 8 0

7 0 0 0 1 0 2 7
Table II

CONFUSION MATRIX FOR THE BENCHMARK ZOO DATASET TO COMPARE
THE ACTUAL ANIMAL CLASSES WITH THOSE PREDICTED BY CER

Figure 2. Validity Indexes for k=1..12 for the benchmark Zoo and CER
dataset

A. Complexity of CER

Complexity of CER is the same as that of standard k-

means clustering. Complexity of CER to organize m number

of worked-out examples with n number of LCs in each is

O(I ∗ k ∗ m ∗ n) [Pang-Ning et al., 2005], where I is the
number of iterations required to converge and k is the number
of neighbors. Typically I is a small value and k is a value
much smaller than m, therefore complexity of CER can be
considered to be O(m ∗ n).

IV. CONCLUSION AND FUTURE WORKS

Web-based tutoring systems are seeing a major shift into

completely online to mitigate issues of social distancing

amidst the crisis of COVID-19. While a WOTS requires

many different automated tasks to run successfully, this paper

focuses on the task of helping students pick and study the

most relevant worked-out examples from a collection that is

organized based on the relevance of its domain’s learning

concepts. The proposed clustering algorithm CER is validated

using Dunn’s index as the internal validity index. A high value

of Dunn’s index indicates the formation of compact and well-

separated clusters by CER. CER is also implemented on a

benchmark binary dataset Zoo [Bache & Lichman, 2013] to

evaluate if the number of clusters formed by CER are optimal.

This is done by comparing these clusters formed by CER with

predefined classes for Zoo as given in UCI Irvine Machine

Learning Repository [Bache & Lichman, 2013] to compute an

f_score of 79%.

Although the results of this study are promising, they

still need to be validated with the student model component

of any WOTS, so that usefulness of clusters generated by

the proposed algorithm can be validated with real student

interactions.

REFERENCES

[Bache & Lichman, 2013] Bache, K. & Lichman, M. (2013). Uci machine
learning repository.

[Chaturvedi, 2016] Chaturvedi, R. (2016). Task-based example miner for
intelligent tutoring systems.

[Chaturvedi et al., 2018] Chaturvedi, R., Brar, V., Geelal, J., & Kong, K.
(2018). Concept extraction: A modular approach to extraction of source
code concepts. In 2018 IEEE International Conference on Internet
of Things (iThings) and IEEE Green Computing and Communications
(GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom)
and IEEE Smart Data (SmartData) (pp. 1860–1866).: IEEE.

[Dunn, 1974] Dunn, J. C. (1974). Well-separated clusters and optimal fuzzy
partitions. Journal of cybernetics, 4(1), 95–104.

[Jaccard, 1901] Jaccard, P. (1901). Etude comparative de la distribution
florale dans une portion des Alpes et du Jura. Impr. Corbaz.

[Li, 2005] Li, T. (2005). A general model for clustering binary data. In
Proceedings of the eleventh ACM SIGKDD international conference on
Knowledge discovery in data mining. ACM, 2005. (pp. 188–197).

[Markov & Larose, 2007] Markov, Z. & Larose, D. (2007). Data mining the
web - Uncovering Patterns in Web Content, Structure and Usage. John
Wiley.

[Maulik & Bandyopadhyay, 2002] Maulik, U. & Bandyopadhyay, S. (2002).
Performance evaluation of some clustering algorithms and validity indices.
In Pattern Analysis and Machine Intelligence, IEEE Transactions on ,,
volume 24 (pp. 1650–1654).

[Ordonez, 2003] Ordonez, C. (2003). Clustering binary data streams with
k-means. In Proceedings of the 8th ACM SIGMOD workshop on Research
issues in data mining and knowledge discovery. ACM, 2003. (pp. 12–19).

[Pang-Ning et al., 2005] Pang-Ning, T., Steinbach, M., & Kumar, V. (2005).
Introduction to Data Mining. Addison-Wesley.

Authorized licensed use limited to: UNIVERSITY OF WINDSOR. Downloaded on May 12,2021 at 01:37:04 UTC from IEEE Xplore. Restrictions apply.

