
The HSPRec E-Commerce System Open Source
Code Implementation

1 Abstract—To promote big data application access, usage and
deployment, this paper presents a downloadable open source code
implementation for an E-Commerce Recommendation system,
HSPRec (Historical Sequential Pattern Recommendation Sys-
tem), in JAVA. The HSPRec system is composed of six different
modules for generating purchase/click sequential databases, min-
ing sequential patterns, computing click purchase similarities,
generating purchase sequential rules, computing weights for
frequent purchase patterns through Weighted Frequent Purchase
Pattern Miner, and normalization of the user-item ratings to
predict level of interest. The source code of each module and
the main runner are discussed under four possible headings
of running environment, input data files and format, minimum
support format, output data files and format. The overall goal of
the HSPRec system is to improve E-commerce Recommendation
accuracy by incorporating more complex sequential patterns
of user purchase and click stream behavior learned through
frequent sequential purchase patterns. HSPRec provides more
accurate recommendations than the tested comparative systems.

Index Terms—E-commerce recommendation, Sequential Pat-
tern Mining, Source code, application deployment, Collaborative
Filtering, user-item matrix quality

I. INTRODUCTION

An important application of recommendation system is
in the E-commerce domain [11], where the implicit ratings
derived from historical purchase and/or clickstream data are
used as rating of items in the user-item rating matrix [8], [9].
Many users may not be ready to provide explicit ratings for
many items and there is a large set of continuously growing
items (products), a very small percentage of which, each user
may have purchased. In addition, users’ purchase behavior
change with time so that sequences of clicks and purchases
play important role in capturing more realistic users’ purchase
behavior. Thus, the HSPRec (Historical Sequential Pattern
Recognition) [2] is a recent E-commerce recommendation
system that integrates sequential patterns of purchases gener-
ated from historical and/or clickstream E-commerce data into
the user-item rating matrix to capture more complex purchase
behavior.

Collaborative filtering is one of the most widely used rec-
ommendation techniques. It accepts a user-item rating matrix
(R), having ratings of each item i by user (ui) denoted as rui

.
The goal of collaborative filtering is to predict rui , a rating of
user u on item i which may be unknown, by going through the
following four major steps [1]:(1) Compute the mean rating
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for each user uj using all of their rated items, (2) calculate
the similarity between a target user v and all other users uj .
Similarity can be computed with Cosine Similarity (v, uj) or
Pearson Correlation coefficient [1] function, (3) find similar
users of target user v as their Top-N users and (4) Predict
rating for target user v for item i using only ratings of v’s
Top-N peer group.
HSPRec algorithm [2] learns more complex sequential patterns
of user historical purchase behavior which it includes in the
user-item matrix to make it quantitatively and qualitatively
rich before applying collaborative filtering. Other existing
recommendation systems that the HSPRec in its previous
experimental analysis were compared to, are the Choi12Rec
system [5] and the HPCRec18 system [13]. For purposes of
important application deployment, access and reusability, this
paper presents new discussions of the implementations of the
HSPRec E-Commerce recommendation system [2] with the
E-Commerce datasets used, which are cleaned and processed
by modules of the HSPRec with a url access to download
the source code of the system. A detailed explanation and
implementation of the six modules are presented with an
example in section II.
A. Related Work

Work on E-Commerce recommendation system includes
the Choi12Rec system [5], the HPCRec18 system [13], the
HSPRec system [2] which uses sequential pattern mining
algorithms such as the GSP [12]. Other related systems with
open source implementation and deployment of proposed al-
gorithms are available in paper [7] in 2005 SigKDD workshop
on data mining open source code system implementations. A
summary of some of these related systems are provided next.

The GSP (Generalized Sequential Patterns) [12] algorithm
is an Apriori based sequential pattern mining algorithm that
mines frequent sequential patterns from a sequential database,
SDB (such as sequence of sets of products purchased by each
user every day), given a minimum support percentage s (e.g.,
0.2), and a set of candidate 1-items (such as store products
like milk, sugar). The result of the GSP algorithm is to find all
frequently purchased sequence sets that are purchased in quan-
tities greater or equal to the minimum support number of times
such as <(milk, egg)(bread, butter)> to indicate that whenever
users purchased milk and egg in one day, it is learned that they
purchase bread and butter next in the following day. Table II
shows an example of daily purchase sequential database. To
mine frequent sequential patterns using a sequential pattern
mining algorithm such as the GSP (Generalized Sequential
Pattern Mining) [12] are available.
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SID Click Sequence
1 <(1,2,3), (7,5,3), (1,6), (6), (1,5)>
2 <(1,4), (6,3), (1,2), (1,2,5,6)>
3 <(1,5), (6,5,2), (6), (5)>
4 <(2,7), (6,6,7)>
5 <(1,5)>

TABLE I
DAILY CLICK SEQUENTIAL DATABASE

SID Purchase Sequence
1 <(1,2), (3), (6), (7), (5)>
2 <(1,4),(3),(2), (1,2,5,6)>
3 <(1),(2),(6), (5)>
4 <(2),(6,7)>

TABLE II
DAILY PURCHASE SEQUENTIAL DATABASE

A fragment of E-commerce historical database data is pre-
sented in Table III with schema {Uid, Click, Clickstart,
Clickend, Purchase, Purchasetime} for attributes representing
User identity, Clicked items, Clickstart and Clickend. Further-
more, purchase contains list of items purchased by the user
and Purchasetime represents timestamp when the purchase
happened.

Uid Click clickstart clickend PurchasePurchasetime
1 1,2,3 2014-04-04

11:25:14
2014-04-04
11:45:19

1, 2 2014-04-04
11:30:11

1 7,5,3 2014-04-05
15:30:07

2014-04-05
15:59:36

3 2014-04-05
15:56:32

1 1,6 2014-04-06
4:10:01

2014-04-06
04:30:29

6 2014-04-06
4:18:26

1 6 2014-04-07
8:50:29

2014-04-07
9:50:07

7 2014-04-07
8:59:21

1 1,5 2014-04-08
14:10:24

2014-04-08
14:25:18

5 2014-04-08
14:19:55

2 1, 4 2014-04-13
4:01:11

2014-04-13
4:30:15

1, 4 2014-04-13
04:04:34

2 6,3 2014-04-15
9:30:34

2014-04-15
9:40:11

3 2014-04-15
09:34:37

2 1,2 2014-04-17
13:40:11

2014-04-17
13:59:11

2 2014-04-17
13:54:48

2 1,2,5, 6 2014-04-17
11:30:18

2014-04-17
11:50:19

1,
2,5,6

2014-04-17
11:44:55

3 1, 5 2014-04-20
09:40:45

2014-04-20
10:10:15

1 2014-04-20
10:02:53

3 6, 5,2 2014-04-21
11:59:59

2014-04-21
12:10:39

2 2014-04-21
12:07:15

3 6 2014-04-22
17:05:19

2014-04-22
17:30:06

6 2014-04-22
17:10:28

3 5 2014-04-23
11:00:05

2014-04-23
11:20:15

5 2014-04-23
11:06:37

4 2,7 2014-04-23
12:00:11

2014-04-23
12:30:10

2 2014-04-23
12:06:37

4 6,6,7 2014-04-26
9:45:11

2014-04-26
10:20:13

6, 7 2014-04-26
10:06:37

5 1,5 2014-04-27
16:30:25

2014-04-27
16:45:45

?

TABLE III
HISTORICAL E-COMMERCE DATA SHOWING CLICKS AND PURCHASES

The term consequential bond [13] is used to measure the
relationship between clicks and purchases made by a user in
the historical databases. They are derived as sequential pattern
rules mined from the click sequence database. For example

the consequential bond for user 5 in Table 4 is computed
by finding frequent click sequential patterns using the SPR
(click sequence database) call. From the generated sequential
patterns, only strong rules containing the sequences in user
5 clicks were filtered out in order to derive user 5’s possible
future purchases.
Summary of the HSPRec Algorithm. The HSPRec takes
a minimum support count, historical user-item purchase
frequency matrix and consequential bond as input to generate
rich user-item matrix as output. Although a summary of the
main algorithm is provided in this paper, the full algorithm
can be obtained through [2]. It consists of six main modules
or functions, each of which could be run separately, plugged
in or out, updated to create revised versions of systems for
mining E-Commerce database systems.

B. Problem Definition
Given the HSPRec sequential pattern based E-commerce rec-
ommendation system algorithm [2], which takes as its input
data historical click and purchase data over a certain period
of time, and produces as its outputs, (1) the frequent periodic
(daily, weekly, monthly) sequential purchase and click patterns
in the first stage, (2) then, in the second stage, generates
qualitatively (specifying level of interest or value for already
rated items) and quantitatively (finding possible rating for
previously unknown ratings) rich user item matrix based on
the sequential purchase and click patterns obtained in the
first stage. Collaborative Filtering (CF) is then applied to the
enriched matrix to improve the overall accuracy of recom-
mendation. The main contribution of this paper is to present,
deploy and make available the source code implementation of
the HSPRec E-Commerce recommendation system in Java for
future use by other researchers and further improvement on the
code with re-implementation in other programming languages.

C. Contributions and Paper Outline
A limitation of existing related systems such as

(HPCRec18 [13], HSPRec [2]) is that there are no easily
available and usable source codes for applications to build
commercial systems, for experimental analysis and further
incremental improvement or re-development in different
programming languages. Thus, in this paper, we propose an
Open source Java code for an E-Commerce recommendation
system called Historical Sequential Pattern Recommendation
(HSPRec), where a link for downloading working source
JAVA codes and sample datasets for the HSPRec is included
as part of this paper. The rest of the paper is organized
as follows. Section 2 discusses example recommendation
with the HSPRec E-Commerce system. Section 3 discusses
the JAVA implementations of the HSPRec algorithm for E-
Commerce recommendation, Section 4 discusses experimental
analysis, while section 5 presents conclusions and future
work.

II. EXAMPLE STEPS IN RUNNING THE HSPREC SYSTEM

Although the details of the main algorithm of HSPRec
system are adapted from a previous work done by the same
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research group [..], the main steps are briefly explained with
an example for convenience:

1. Convert historical purchase information (Table III) to
user-item purchase frequency matrix (Table IV) by counting
the number of each item purchased by each user. For example,
User 2 purchased items 1 and 2 twice but other items once.
2. Create daily purchase sequential database (Table II) of
customer purchase (Table III) by running sequential historical
periodic database generation module (SHOD) with the cus-
tomer purchase database as input. For example, User 2 daily
purchase sequence is <(1, 4), (3), (2), (1, 2, 5, 6)>, which
shows User 2 purchased item 1 and item 4 together on the
same day and purchased item 3 on the next day then purchased
item 2 on another day and finally purchased items 1, 2, 5 and
6 together on the next day.
3. Input daily purchase sequential database (Table II) to
the Sequential Pattern Rule (SPR) module to generate se-
quential rule from frequent purchase sequences. For exam-
ple, 1-frequent purchase sequences={ <(1)>, <(2)>, <(3)>,
<(5)>, <(6)>, <(7)>}. Similarly, some of the 2-frequent
purchase sequences= <(6), (5)>, <(3), (6)>, <(3), (5)>,
<(2), (7)>, <(2),(6)>, <(2),(5)> and some of the 3-frequent
purchase sequences=< (2), (6), (5)>, <(1), (6), (5)>, <(1),
(3), (6)>, <(1), (3), (5)>, <(1), (2), (6)>. Thus, some of the
possible sequential purchase pattern rules based on frequent
purchase sequences are: (a) 1, 5 ! 3 (b) 2, 6 ! 1 (c) 2, 6 !
5, where rule (a) states that if user purchases items 1 and 5
together then user will purchase item 3 in next purchase, which
will be applied in case of for user 3 in user-item purchase
frequency matrix (Table IV).

User/item 1 2 3 4 5 6 7
User1 1 1 1 ? 1 1 1
User2 2 2 1 1 1 1 ?
User3 1 1 ? ? 1 1 ?
User4 ? 1 ? ? ? 1 1
User5 ? ? ? ? ? ? ?

TABLE IV
USER-ITEM PURCHASE FREQUENCY MATRIX (M)

4. Apply purchase sequential rule in user-item purchase
frequency matrix to improve quantity of ratings.
5. For each user, where click happened without a purchase
such as user 5 in Table II, we use consequential bond between
clicks and purchases derived as sequential pattern rules mined
from the click sequence database. The consequential bond
for user 5 in Table 4 is computed by finding frequent click
sequential patterns using the SPR(click sequence database)

User/item 1 2 3 4 5 6 7
User1 1 1 1 ? 1 1 1
User2 2 2 1 1 1 1 ?
User3 1 1 1 ? 1 1 ?
User4 1 1 ? ? 1 1 1
User5 ? ? ? ? ? ? ?

TABLE V
ENHANCED USER-ITEM FREQUENCY MATRIX WITH SEQUENTIAL PATTERN

UID Click sequence Purchase sequences
1 <(1,2,3), (7,5,3), (1,6), (6), (1,5)> <(1,2), (3), (6), (7), (5)>
2 <(1,4), (6,3), (1,2), (1,2,5,6)> <(1,4),(3),(2), (1,2,5,6)>
3 <(1,5), (6,5,2), (6), (5)> <(1),(2),(6), (5)>
4 <(2,7), (6,6,7)> <(2),(6,7)>
5 <(1,5)> ?

TABLE VI
CONSEQUENTIAL BOND TABLE SHOWING CLICKS AND PURCHASES

call. From the generated sequential patterns, we filter out only
strong rules containing the sequences in user 5 clicks so that
they can be used to derive user 5 is possible future purchases.
6. Next, compute Click and Purchase Similarity (click se-
quence, purchase sequence) using longest common subse-
quence rate (LCSR) and frequency similarity (FS) equation
3 presented in section 2 description of module.
7. Assign Click Purchase Similarity (click sequence, purchase
sequence) value to purchase patterns present in consequential
bond (Table II) to create weighted purchase patterns (Table
VII).
8. Input weighted purchase patterns to Weighted Frequent
Purchase Pattern Miner (WFPPM) presented in section 2 to
calculate the weight for each frequent individual item based
on its occurrence in weighted purchase patterns.
9. Repeat the steps 5, 6, 7, and 8 if there are more users with
clicks but without purchases, otherwise assign computed items
weights to modify enhanced user-item frequency matrix (Table
V) and apply collaborative filtering. The summary of the six
modules of the HSPRec algorithm is provided next.

1) Historical Periodic Sequential Database Generation
(SHOD) Module: In our case, the SHOD algorithm cre-
ated the daily purchase sequential database presented in
Table II from purchase database and the same steps can
be repeated to generate daily click sequential database
by using click item database as input.

2) Frequent sequences generation: Generates frequent
sequences using Generalized Sequential Pattern Mining
(GSP) algorithm [12].

3) Click Purchase Similarity (CPS): To compute the
CPS similarity between click sequence and purchase
sequence of each user, we have used sequence similarity
and frequency similarity of the two sequences. Sequence
similarity: It is based on longest common subsequence
rate (LCSR) [4] and presented in Equation (1).

LCSR(X,Y ) =
LCS(X,Y )

max(X,Y )
(1)

In our case, X represents click sequence and Y repre-
sents purchase sequence and LCS is defined as:

LCS(Xi, Y j) =

8
>>><
>>>:

φ if i = 0 or j = 0

LCS(Xi1, Yj1) \Xi if xi = yi

long(LCS(Xi, Yj1),

LCS(Xi1, Yj)), if xi 6= yi

Frequency similarity: First, form distinct sets of items
from both click and purchase sequential patterns and
count the number of items occurring in each sequence
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Purchase CPS
<(1,2),(3),(6),(7),(5)> 0.624
<(1,4),(3),(2),(1,2,5,6)> 0.834

<(1),(2),(6), (5)> 0.636
<(2),(6,7)> 0.67
<(1),(3)> 0.5

TABLE VII
WEIGHTED PURCHASED PATTERNS

to form the vectors specifying the number of times a
user clicked or purchased a particular item. Then, apply
Cosine frequency similarity (Equation (2)) to the click
and purchase vectors.

Cosine(X,Y ) =
X1 ⇤ Y 1 +X2 ⇤ Y 2 + ...Xn ⇤ Y np
X1

2 + ...+Xn
2
p
Y 1

2 + ...+ Y n
2

(2)
Thus,

CPS = ↵ ⇤ LCSR(X,Y ) + β ⇤ FS(X,Y ) (3)

where ↵ + β = 1, and 0 < ↵ < β < 1, and ↵ and β
are weights assigned to reflect the importance of the two
sequences of similarity and frequency. This CPS(X,Y)
can be used as weight or probability that user u will
purchase the entire sequence as shown in Table VII.

4) Sequential Pattern Rule (SPR) module: Sequential
Pattern Rule (SPR) is based on the use of frequent
sequential patterns created from periodic sequential
database. Thus, input of SPR is periodic historical
sequential database and output is recommended possi-
ble purchase items derived from generated sequential
patterns rules. The major steps in SPR are: Rule gen-
eration: Represent frequent sequences in the form of
Uclick ! Upurchase, where the left-hand side of the rule
refers to clicked item set while the right-hand side is
the recommended item to be purchased. Furthermore, to
verify the validity of SPR, confidence of SPR is defined
as (note that conf is for confidence):

Conf(U click ! U purchase) =
Support(U click [ U purchase)

Support(U click)
(4)

Here, some of the rules from frequent clicks sequences
are: (a) (1,5) ! (1),(3), (b)(1,5) ! (3), (1), (c)(1,2) !
(1,6), (d)(1)(5) ! (6),(5) Assume we are only interested
in rules that satisfy the following criteria: 1) At least
two antecedents. 2) Confidence > 50 percent. 3) Select
one rule with highest confidence. Let us consider rule
(a) recommends User 5 to purchase item 1 and item 3
when item 1 and item 5 are clicked together.

5) Weighted Frequent Purchase Pattern Miner (WF-
PPM) Module: Weighted Frequent Purchase Pattern
Miner (WFPPM) takes weighted purchase pattern as
input (present in Table VII) and weighted purchase
patterns is created by assigning CPS (click sequence,
purchase sequence) value to purchase patterns in conse-
quential bond Table (II) to generate frequent purchase

patterns with weight under user specified minimum
threshold as output. Major steps of WFPPM are: Count
support of items: Count occurrence of items presented
in weighted purchase pattern (Table VII). For example,
{support(1):5, support(2):5, support(3):3, support(4):1,
support(5):3, support(6):4, support(7):2} and Calculate
weight for individual item: Compute weight of indi-
vidual item from weighted purchase pattern (Table VII)
using CPS module (Equation (3)).

R, itemi =

Pn
i=1 CPS 2 itemi

Support(itemi)
(5)

For example, R1 = 0.624+0.834+0.834+0.636+0.5/5 =
0.68 Similarly, R2=0.71, R3=0.65, R4=0.834, R5=0.698,
R6=0.691, R7=0.647, Next, Test item weight with
minimum threshold: Define minimum threshold rating
for user, here in our case, minimum threshold=0.2. So,
all rating of item are frequent.

6) User-item Matrix Normalization Normalization in
recommendation system helps to predict the level of
interest of user on a particular purchased item. Thus,
normalization function for a user u’s rating of an item
i (rui) takes user-item frequency matrix (Table VIII) as
input and provides the level of user interest between 0
and 1 using unit vector formula (Equation (6)).

Normalization(rui) =
ruip

rui1
2 + rui2

2 + ...+ ruin
2

(6)
The normalization of enhanced user-item matrix (Table
VIII) using equation 5 is presented in Table IX.

User/item 1 2 3 4 5 6 7
User1 1 1 1 ? 1 1 1
User2 2 2 1 1 1 1 ?
User3 1 1 1 ? 1 1 ?
User4 1 1 ? ? 1 1 1
User5 0.68 0.71 0.65 0.834 0.698 0.691 0.647

TABLE VIII
ENHANCED USER-ITEM PURCHASE FREQUENCY MATRIX WITH RATING

FOR USER 5 (M1)

User/item 1 2 3 4 5 6 7
User1 0.40 0.40 0.40 ? 0.40 0.40 0.40
User2 0.57 0.57 0.28 0.28 0.28 0.28 ?
User3 0.44 0.44 0.44 ? 0.44 0.44 ?
User4 0.44 0.44 ? ? 0.44 0.44 0.44
User5 0.68 0.71 0.65 0.834 0.698 0.691 0.647

TABLE IX
NORMALIZED USER-ITEM PURCHASE FREQUENCY MATRIX (M2)

III. PROPOSED JAVA IMPLEMENTATIONS OF THE HSPREC

The proposed deployment of the HSPRec system delivers
the JAVA source codes for all components of the system from
the url https://cezeife.myweb.cs.uwindsor.ca/codes.html. The
codes are accompanied by some sample test data including the
(1) data used in the paper as example historical purchase and
click data and shown through Tables in sections 1 and 2 of this
paper; and (2) a more general dataset of Yoochoose published
in ACM RecSys 2015 [3], which is similar to the Amazon
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dataset. Yoochoose dataset has both click stream and purchase,
therefore making it more adaptable. Next, we will present
details regarding the execution and running environment of
the HSPRec system. Figure. 1 presents the HSPRec system
workflow.

A. Program Execution Environment

(a) Using an Integrated Development Environment
(IDE):To compile and run any module of HSPRec (e.g.,
HSPRec) in an IDE such as Eclipse or IntelliJ, import the
HSPRec module java project from within any IDE.
(b) Using Command Line: For easier portability and access,
to run the program in Unix Command-Line, change directory
to the folder where the SHOD module is located. Compile
the program by using ‘javac filename.java’ and run it by
using ‘java filename.

B. HSPRec Program Execution

(a) Execution of HSPRec as a Standalone System
The HSPRec Mainrunner is the main program that will
launch each module in sequence instead of manually running
each module individually.
(1) Running Environment: Same as described in section 3.1,
(2) Input Files and Format: The input data required to run the
HSPRec system are ClickData.txt and PurchaseData.txt as
shown in Figure 1 representing historical click and purchase
data. Each line of input data from the ClickData.txt file
includes UserID, ProductId, Rating, and Timestamp (when
the click happened). It produces sequential databases as
output, (3) Minimum Support Format: The program needs
to accept a numeric value between 0 and 1 (e.g., 0.5 for
50% ) as a minimum support or the minimum number of
records in the input sequential database, This program also
accept a numeric value for the number of lines to read
(that is, number of records in the sequential database). The
user also needs to adjust the wfppmInput7 value, which
adjusts the number of people who only clicked and did
not purchase that added to the matrix. Change this value
depending on your need or value found from the intermediate
user-item matrix. The lines as to where you can make
these changes are listed in the internal documentation. (4)
Output Data Format and Files: Once the HSPRec system
terminates, it would have produced fourteen new files.
These are the files produced by each module. The files
produced are the following: clicks hsc intermediate.txt,
EditedClickData.txt, hsc daily sequential db .txt,
hsp daily sequential db.txt, purchase hsp intermediate.txt,
user itemFrequency matrix.txt, frequent sequence.txt,
cps results.txt, cps uniqueitems.txt, se-
quenceRules.txt, user item martix updated.txt,
user item matrix WFPPM results.txt, WFPPM results.txt
and user item matrix normalized.txt.

(b) Execution of HSPRec as Individual Components
The HSPRec system is composed of six different modules as
presented in Figure. 1 consisting of the (1) SHOD sequential
historical database generator algorithm, (2) GSP sequential

pattern miner module, (3) CPS click purchase similarity finder
module for computing the correlation between purchased
and clicked data using consequential bond, (4) SPR, the
sequential rule generator module, (5) WFPPM Weighted
Frequent Purchase Pattern Miner Module, and the (6) The
user-item rating matrix normalization module for normalizing
the ratings in the enhanced matrix; and the (7) HSPRec
Mainrunner, which is the main function that will launch each
of the six modules in sequence. The source code of each
module and the main runner are discussed under four possible
headings of (1) Running environment, (2) Input files and
format, (3) Minimum support format, (4) Output files and
format. Each module is documented with information on this
section for code readability. The modules are saved as .java
files. On Unix/Linux system, each of these modules can be
compiled separately using the command: javac filename.java.
After compilation, the executable code of the module is
stored in its filename.class so that to run/execute the module,
use the Unix command: java filename.
1.The SHOD (sequential historical database) Module
(1)Running Environment : Same as described in section 3.1,
(2) Input Files and Format: The input files for the SHOD
Module are ClickData.txt and PurchaseData.txt. The two
files can be composed of hundreds of thousands of lines
where each line represents a click or purchase of an item by
a user. Each line of input data from the ClickData.txt file
includes UserID, ProductId, Rating, and Timestamp (when
the click happened). The date attribute is in the format
(mm dd, yyyy), (3) Minimum Support Format: It does not
use a minimum support value, (4) Output Data Format and
Files: Once the SHOD module terminates, it will produce six
different files: clicks hsc intermidate.txt, EditedClickData.txt,
hsc daily sequential db .txt, hsp daily sequential db.txt,
purchase hsp intermediate.txt,
user itemFrequency matrix.txt. The data produced are
periodic sequential databases as output.
2. The GSP (Generalized Sequential Pattern Miner)
Module
(1) Running Environment: Same as described in the SHOD
Module, (2) Input Files and Format: The SHOD module
produces the sequential database input data used for this
module which is the hsp daily sequential db.txt. It shows
what each user purchased over time; for example, when
the numbers are grouped, they are bought on the same day.
An example of an input line is: ‘1,2’,‘3’,‘6’,‘7’,‘5’ showing
items 1 and 2 are bought on the same day and item 3 on a
different day, (3) Minimum Support Format: The program
accepts a numeric value between 0 and 1 as minimum support
representing the percentage of the number of records (lines)
in the input file that an itemset sequence such as ’1’, or
’1, 2’ needs to occur in the input data file to be considered
frequent. This program also accepts a value for the number
of lines (records) to read in the input sequential database file,
(4) Output Data Format and Files: Once the GSP module
terminates, it will produce one file: frequent sequence.txt
which contains repeating sequential patterns.
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3. The CPS (Click Purchase Sequence Similarity) Module
(1) Running Environment: Same as described in the SHOD
Module, (2) Input Files and Format: The SHOD module
produces the CPS module’s input data. The input files are
hsc daily sequential db .txt and hsp daily sequential db.txt.
The hsp file shows what each user purchased over time; when
the numbers are grouped, they were bought on the same day.
An example of an input line is: ‘1,2’,‘3’,‘6’,‘7’,‘5’ which
shows that items 1 and 2 are bought on the same day and
item 3 on a different day. The hsc file shows what each user
clicks on overtime; when the numbers are grouped, it shows
that those items were clicked on the same day. An example
of an input line is: ‘1,2,3’,‘7,5,3’,‘1,6’,‘6’,‘1,5’ which shows
that the user clicked on items 1,2 and 3 in one day and 7,5
and 3 on another day, (3) Minimum Support Format: It does
not have a minimum support value, (4) Output Data Format
and Files: Once the CPS module terminates, it will produce
two new files: cps resuts.txt and cps uniqueitems.txt.
4. The SPR Module
(1) Running Environment: Same as described in the SHOD
Module, (2)Input Files and Format: The input data files used
for the SPR module are user itemFrequency matrix.txt and
frequent sequence.txt produced by both the SHOD module
and the GSP module respectively, (3) Minimum Support
Format: It does not have a minimum support value, (4)
Output Data Format and Files: Once the SPR module has
terminated, it will produce two files: sequenceRules.txt,
user item martix updated.txt. The output of this module is
recommended possible purchase items.
5. The WFPPM Module
(1) Running Environment: Same as described in the
SHOD Module, (2) Input Files and Format: The input
data files used for the WFPPM module are generated
from the SHOD, CPS and SPR modules and are named
as hsp daily sequential db.txt, CPS module cps resuts.txt,
cps uniqueitems.txt and user item martix updated.txt
respectively. This module will also need the ClickData.txt
and PurhcaseData.txt, previously used in the SHOD module,
(3) Minimum Support Format: The WFFPM does not
have minimum support. However, the it has a different
value the user must input into the source code that is the
wfppmInput7 value, which adjusts the number of people
who only clicked and did not purchase, added to the matrix.
Change this value depending on your need, which can be
read from the user-item rating matrix, (4) Output Data Format
and Files: Once the WFPPM module terminates, it will
produce two files: user item matrix WFPPM results.txt and
WFPPM results.txt.
6. The Normalization Module
(1) Running Environment: Same as described in the
SHOD Module, (2) Input Files and Format: The WFPPM
module produces the Normalization module’s input data
as file named user item matrix WFPPM results.txt, (3)
Minimum Support Format: It does not have a minimum
support value, (4) Output Data Format and Files: Once the
Normalization module terminates, it will produce one file:

user item matrix normalized.txt.

Fig. 1. Workflow of HSPRec Algorithm Modules

IV. EXPERIMENTAL DESIGN AND DATASET SELECTION

The performance of previously existing historical sequential
pattern mining based recommendation system, HSPRec [2]
was compared with two other existing recommendation sys-
tems of ChoiRec12 [5] and HPCRec18 [13] in user-based
collaborative filtering. The results show that HSPRec [2]
performs better using datasets similar to Amazon datasets. To
perform experiments, we used data available from Amazon
product data [10] and Yoochoose dataset [3]. The Yoochoose
dataset represents six months activities of a big e-commerce
businesses in Europe selling stuff such as garden tools, toys,
clothes and electronics. The dataset provides a collection of
sequences of click events; click sessions. For some of the
sessions, there are also buying events. Data is pre-processed by
the SHOD module to create sequential database that is mined
for sequential patterns. Previous experimental results showed
that [2] performed well against the tested compared systems
using three different evaluation metrics (a) mean absolute error
(MAE) (b) precision and (c) recall with LibRec [6] library of
Java (https://www.librec.net/).

Figures 2 and 3 presents results of HSPRec experiments
that used sequential rules to enhance user-item matrix quanti-
tatively and found better results than previously done related
work [5], [13]. To evaluate the performance of the recom-
mendation system, we use different number of users and
nearest neighbors using three different evaluation parameters
(a) mean absolute error (MAE) (b) precision and (c) recall with
https://www.librec.net/ LibRec[6] library available in Java.
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Fig. 2. User-based Collaborative Filtering with top-N

Fig. 3. Precision in User-based Collaborative Filtering

MAE measures the average of the errors in a set of predictions.
It is the average over the test sample of the absolute differences
between prediction and actual rating. Precision determines
the fraction of relevant items (an item in which user is
interested) retrieved out of all items in the recommendation
system whereas recall determines the fraction of relevant items
retrieved out of all relevant items in the recommendation
system (note that results of recall are not shown here due
to lack of space). The overall complexity of HSPRec is found
to be O(n2).

V. CONCLUSIONS AND FUTURE WORK

Many recommendation systems neglect sequential patterns
during recommendation. Thus, to verify the necessity of se-
quential patterns in recommendation, we generated sequential
patterns from historical E-commerce data and fed them into
collaborative filtering to make user-item matrix rich from
quantitative and qualitative perspectives. The main contribu-
tion of this paper is the Java source code implementation
of a full recent efficient recent E-Commerce recommendation
system, the HSPRec [2] that incorporates sequential patterns
of user purchases and clicks into product recommendation.
The source code of the system are downloadable for easy
application deployment, use and research extension. Further-
more, implementation in other languages such as C++ and

Python, separate modules of the HSPRec can be extended for
further improvement to the accuracy of recommendation. An
example extension is for handling high utility products for
recommendation that also consider revenue to the retailer.
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