
International Journal of Data Warehousing and Mining, 8(4), 1-21, October-December 2012 1

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Keywords:	 Non-Deterministic	Finite	Automata	(NFA),	Object	Oriented	Mining,	Web	Content	Mining,	
Web	Data	Integration,	Wrappers

INTRODUCTION

World Wide Web (WWW) is growing expo-
nentially over the years and web documents
constitute some of the largest repositories of
information (Kosala & Blockeel, 2000). Web
content usually refers to the information that a
user sees on a web document. It also includes
some hidden information which help users
interact with web contents. Web contents are

heterogeneous in nature and may be in different
forms like text, image, hyper-link, metadata,
audio, video and others with combinations of
these content types as well. A complete clas-
sification of all these different types of web
contents does not exist. Web content data are
updated frequently, volatile and not historical
(Bhowmick et al., 1999; Dung, Rahayu, & Ta-
niar, 2007). The creation and maintenance of a
data warehouse based on the web content data

Towards Comparative
Mining of Web Document

Objects with NFA:
WebOMiner System

C.	I.	Ezeife,	School	of	Computer	Science,	University	of	Windsor,	Windsor,	ON,	Canada

Titas	Mutsuddy,	School	of	Computer	Science,	University	of	Windsor,	Windsor,	ON,	Canada

ABSTRACT
The	process	of	extracting	comparative	heterogeneous	web	content	data	which	are	derived	and	historical	
from	related	web	pages	is	still	at	its	infancy	and	not	developed.	Discovering	potentially	useful	and	previ-
ously	unknown	information	or	knowledge	from	web	contents	such	as	“list	all	articles	on	‘Sequential	Pattern	
Mining’	written	between	2007	and	2011	including	title,	authors,	volume,	abstract,	paper,	citation,	year	of	
publication,”	would	require	finding	the	schema	of	web	documents	from	different	web	pages,	performing	web	
content	data	integration,	building	their	virtual	or	physical	data	warehouse	before	web	content	extraction	and	
mining	from	the	database.	This	paper	proposes	a	technique	for	automatic	web	content	data	extraction,	the	
WebOMiner	system,	which	models	web	sites	of	a	specific	domain	like	Business	to	Customer	(B2C)	web	sites,	
as	object	oriented	database	schemas.	Then,	non-deterministic	finite	state	automata	(NFA)	based	wrappers	
for	recognizing	content	types	from	this	domain	are	built	and	used	for	extraction	of	related	contents	from	data	
blocks	into	an	integrated	database	for	future	second	level	mining	for	deep	knowledge	discovery.

DOI: 10.4018/jdwm.2012100101

2 International Journal of Data Warehousing and Mining, 8(4), 1-21, October-December 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

is needed for effective derived and historical
querying of web content data. Some research-
ers adopted the web data extraction system in
virtual approach without creating physical data
base and warehouse (Bornhövd & Buchmann,
1999) but may have difficulty with contents
like images. There are some other information
or block in the web pages such as advertise-
ment, attached pages, copyright notices. These
are also web contents and usually not consid-
ered as part of the primary page information.
These unwanted information in a web page
are called noise information, and usually need
to be cleaned before mining the web contents
(Gupta et al., 2005; Ezeife & Ohanekwu, 2005;
Li & Ezeife, 2006). Borges and Leven (1999)
categorized web mining into three areas: web
structure mining, web usage mining and web
content mining. Web usage mining processes
usage information or the history of user’s visit
to different web pages, which are generally
stored in chronological order in web log file,
server log, error log and cookie log (Buchner
& Mulvenna, 1998; Ezeife & Lui, 2009; Priya
& Vadivel, 2012).When any mechanism is used
to extract relevant and important information
from web documents or to discover knowledge
or pattern from web documents, it is then called
web content mining. Traditional mechanisms
include: providing a language to extract certain
pattern from web pages, discovering frequent
patterns, clustering for document classifica-
tion, machine learning for wrapper (e.g., data
extraction program) induction, and automatic
wrapper generation (Liu & Chen-Chung-Chang,
2004; Muslea, Minton, & Knoblock, 1999;
Zhao et al., 2005; Crescenzi, Mecca, & Me-
rialdo, 2001; Liu, 2007). All these traditional
mechanisms are unable to catch heterogeneous
web contents together as they strictly rely on
web document presentation structure. Existing
extractors also are limited with regards to finding
comparative historical and derived information
from web documents. Creating more robust
automatic wrappers for multiple data sources
requires incorporating efficient techniques for
automatic schema (attribute) match, some of
which techniques are presented in Lewis and

Janeja (2011). Methods for testing the quality of
extracted and integrated information can also be
incorporated in the future (Golfarelli & Rizzi,
2011). Some sample queries that may not be
accurately answered by existing systems are:

1. Provide a comparative analysis of products
including sales, comments on four retail
store web sites in the past 1 year.

2. List all 17” LCD Samsung monitor selling
around Toronto with price range less than
$200.

In Annoni and Ezeife (2009), a model
for representing web contents as objects was
presented. They encapsulate web contents in
object-oriented class hierarchies which would
enable catching heterogeneous contents to-
gether in a unified way without strictly relying
on web page presentation structure, using six
web content data types.

Contributions

This paper proposes a two level mining process
based on object oriented data modeling of web
contents and focuses on the first level mining.
The first level mining extracts and classifies
web content data using content object hier-
archies defined by (Annoni & Ezeife, 2009)
in their OWebMiner system, and stores these
data into database table. Second level mining
is similar to traditional data mining process in
an object oriented dataset and is outside the
scope of this paper. This paper focuses on the
first level mining and proposes an architecture
called WebOMiner (standing for Web Object
Miner) for extraction and mining of web
contents using object-oriented model similar
to those defined in the OWebMiner sytem of
2009. Our architecture has 4-modules: crawler
module, cleaner module, extractor module and
miner module. We developed algorithms for
crawler module, used the freeware software
“HTMLCLEANER-2.2” (Sourceforge.net,
2010) for cleaner module, extend and complete
the algorithms for the extractor module initially
proposed by OWebMiner system of 2009, by

International Journal of Data Warehousing and Mining, 8(4), 1-21, October-December 2012 3

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

using an innovative algorithm for miner module
that generates and uses non-deterministic finite
state automata (NFA) for mining web content
objects to enable automatic content extraction,
discovery of web object hierarchies and scal-
ability. The five specific contributions made by
the WebOMiner system that were not handled
by the OWebMiner system of 2009 are:

1. Identification of data blocks and regions
from DOM trees of extracted html files
of web pages which are to be integrated
and mined for content, using only the
tag information of the DOM tree with
no vision-based context structure, is a
contribution of this paper. The initial draft
proposal by OWebMiner system of 2009
relies on DOM tree of web document and
uses “vision based context structure” for
data x-coordinate and y-coordinate location
of webpage features, web document zone,
data’s width, height and center location,
and data presentation features (such as
style, type, fonts and spaces) to identify
data blocks. Extracting the x-coordinate
and y-coordinate information from DOM
tree for automatic extraction is not easily
feasible. Within DOM tree all related data
are structured as data block but in flat array
data structure used by OWebMiner of 2009,
content data lose their relationships. It is
important to extract related data together or
create clear separation between data blocks
and data regions which contain the blocks.

2. The work in the 2009 system did not discuss
use of the separator element in content or
presentation object extraction. Our work
in this paper defines the use of separator
element for identification of data block and
data region in our problem context.

3. They did not define the object classes, size
of object classes, object class hierarchy,
object class dependencies, and functional-
ities of object classes. They only classify
the web content elements (such as text,
list, forms, product) but did not associate
object types with contents, nor discuss
how to control the creation of expensive

objects. In this work, we generate NFA
for each content type so that can be used
to identify specific contents in the DOM
tree during tuple extraction.

4. They did not address the issue of associating
leaf level tags with specific contents. A leaf
level tag contains important information
about the associated content. It is important
to associate leaf level tags before assigning
an object to a content type. For example
in a data block there are three image tags
as shown:

<imgid= “line”src=	“http://................”alt =
“line”	/> (1)
<imgid= “monitor”src=	
“http://...............”alt = “monitor”	/> (2)
<img	src	=	“http://.........................”alt=
“add”/> (3)

Here, the HTML tags at lines (1) and (2)
have three tag attributes: “id,” “src,” and “alt.”
Line (3) has two attributes: “src” and “alt.” Tag
attributes are variable inside a tag and each at-
tribute should have a value. First image tag of
line (1) is a line separator as identified from the
value of attribute “id” and “alt,” second image
tag of line (2) is for “monitor” as identified from
“id” and “alt” attribute and the third image tag
is for “Add to Cart” hyperlink identified from
“alt” attribute. If we do not care about tag at-
tribute of a source image, we will not be able
to identify the image we want. We resolve this
problem by analyzing tag attribute in this paper.

5. They did not address the issue of prevent-
ing noisy data entry into database table.
Their algorithm does not refine contents
before entering into the database table. We
address this issue by cleaning noises from
data tuple.

Outline of the Paper

First, we present the related work while we then
present the proposed WebOMiner architecture
and the NFA generator-based miner algorithm.

4 International Journal of Data Warehousing and Mining, 8(4), 1-21, October-December 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Afterwards we present the experimental results.
Conclusions and future work are presented at
the end of the article.

RELATED WORK

In order to mine data on web documents, the
HTML files are usually converted to pre-parsed
documents in a DOM (document object model)
tree by many systems (Zhao et al., 2005; Annoni
& Ezeife, 2009). In a DOM tree, tag and tag at-
tributes are represented with nodes that specify
the hierarchical relationships between tags.
IEPAD (Chang & Liu, 2001) is one of the first
information extractor systems that generalizes
extraction patterns from unlabeled web pages.
It is a learning wrapper that discovers repetitive
patterns from web pages that are well encoded
using a data structure called PAT trees, which
is a binary suffix tree. Wargo system (Raposo
et al., 2002), internally relies on two wrapper
programming languages: Navigation SEQuence
Language (NSEQL) for specifying navigation
sequence and Data EXTraction Language
(DEXTL) for specifying extraction pattern.
DEByE (Laender, Neto, & da Silva, 2002) is
an interactive tool that receives as input a set
of example objects taken from a sample web
page and generates extraction patterns. Web
Data Extraction System (WICCAP) (Zhao &
Ng, 2004) uses Web Data Extraction Language
(WDEL), a scripting language. Main problem
with wrapper language-based extraction system
is their reliability on diversified, non-standard,
non-popular wrapper languages. There are two
existing approaches for building DOM tree
(Jupiter Media, 2007); using tags alone and
using tags along with visual cues (Baumgart-
ner, Flesca, & Gottlob, 2001; Chriisment et al.,
2004). HTML is a flexible mark-up language
and page designer’s error in using tag is mostly
accepted. So, DOM tree building by using the
tag alone requires HTML code cleaning to
ensure the HTML page is well formed (that is,
has all opening and closed tags) before build-
ing the tree.

The OWebMiner System Related
to Proposed System WebOMiner

Annoni and Ezeife (2009) proposed the idea
of encapsulating heterogeneous web contents
into object class hierarchies to extract and mine
web contents in a comprehensive, derived and
historical way. All papers discussed so far in
this related work of web content extraction rely
on the web content presentation tree structure
and extract only limited targeted facts from
the web page. In this 2009 paper, an object-
oriented paradigm to model web data to capture
both content and presentation objects of a web
document was proposed with these two major
contributions for web content extraction: (A)
They define and give a framework of object-
oriented data model and (B) They give the idea
of how to extract web objects from the web
page. They give a high level algorithm called
OWebMiner() for web object extraction and an
algorithm called ProcessPresentationSibling()
for presentation (e.g., web page tag structure)
object extraction process. Their anticipated
use of presentation objects is to associate them
with content objects for mining process. Their
proposed framework for object-oriented data
model is based on the following concepts:

1. Related documents share same space and
web page presentation tag structure. The
web document segmentation work uses
DOM tree, data location features (e.g.,
WebZoneCenterX and Y values, width,
height) and data presentation features to
distinguish data blocks.

2. Proposed to not evaluate all HTML tags
because all HTML tags are not always
meaningful. They observed that main
HTML tags (e.g., non-empty tags such as
<	table	>, <	link	>, <	form> tags) have
impact in content and presentation and
pre-formatting and in-line tags such as <	
pre	>, <	br/	> should not be evaluated.
They rely on DOM tree of web document
and use “vision based context structure”
for defining data x-coordinate and y-
coordinate location of webpage features,

International Journal of Data Warehousing and Mining, 8(4), 1-21, October-December 2012 5

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

web document zone, data’s width, height
and center location, and data presentation
features such as style, type, fonts and spaces
to identify data blocks. They define the web
document zone to represent the entire web
document as an object named WebZone
object, which is divided into three zones:
HeaderZone, BodyZone, and FootZone.
They classify WebElement into six web
content types of Text, Image, Form, Plug-in
content, Separator element, and Structure
element all of which are in an object class
hierarchy. Their main algorithm OWeb-
Miner() basically takes a set of webpages
(WDHTMLFile) and for each WDHTML-
File, line (A) of the algorithm extracts all
the content and presentation objects into
two separate object arrays according to their
DOM hierarchical dependencies. Line (B)
stores web objects into the database. Line
(C) mines the extracted contents from the
database. Process begins with the root of
the DOM tree of the web page, “<html>.”
When it hits series-1, it calls algorithm
PrecessContentSibling() to start extrac-
tion of content objects and continues until
it hits series-2. ProcessContentSibling()
algorithm inputs DOM tree, a pointer
called “TTag” which indicates current tag
to process in the DOM tree, ContentObjec-
tArray[] and a variable “indTag” which is a
global index for labeling content objects per
zone. The algorithm recursively traverses
DOM tree block-level tags by depth-first
search until it hits non-block level tag and
resets “TTag” pointer to represent current
processing tag. If depth-first search hits
a non-block level tag, it processes all its
siblings into an array called “tagArray.” For
all non-block level tags in “tagArray,” the
algorithm then associates a content object
to tag value. Otherwise, it recursively
calls itself to advance “TTag” pointer. The
algorithm finally returns the ContentOb-
jectArray[] with full content objects from
body zone of web page. This related work
layed down conceptual object model and

initial algorithms but detailed and scalable
implementation of this automatic content
extractor was still needed.

THE PROPOSED
WEBOMINER SYSTEM

The proposed WebOMiner system aims at
developing an automatic object oriented web
content extraction and mining system for inte-
grating, mining heterogeneous contents that are
also derived, historical and complex for deeper
knowledge discovery. The problem to be solved
and the proposed solution are given.

Problem Definition 3.1.: Given a number of
product list web pages of retail stores (e.g.,
Figure 1) as defined in Example 1 in the
previous sections, extract the information
specified into the database for comparative
mining and querying.

Proposed Solution 3.1.: For the specific do-
main of B2C websites, we have selected
to mine the most common data-rich web
page, the product list page which usually
contains a brief list of all or specific types
of products. There is a set of product list
pages in a B2C website, and such a product
list page is defined as follows:

Definition 3.1.: A B2C web site w of a domain
d	is	made	up	of	a	number	of	product	list	
pages	where	each	product	list	page	(e.g.,
Figure	1),	p	is	defined	as	a	page	that	con-
tains	a	set	of	tuples	t	of	type	α	identified	
as	one	of	the	instance	types	in	domain	d.	
Product	list	page,	p,	contains	a	set	of	data	
blocks	that	are	arranged	in	different	data	
regions	including	product,	navigation,	and	
noise	blocks.

Definition 3.2. A Data Region r:	usually	con-
tains	similar	categories	of	data.	Advertise-
ment	data	region	contains	hyperlinks	with	
a	set	of	services.	Main	product	data	region	
contains	a	set	of	data	blocks.

Definition 3.3. Each Data Block B:	is	hyper-
linked	(by	“MORE	INFO”)	with	separate	
product	 details	 page	and	 contains	 some	

6 International Journal of Data Warehousing and Mining, 8(4), 1-21, October-December 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

key	information	like	image	of	the	product,	
product	name,	product	number,	brand	or	
manufacturer,	product	price	and	a	hyper-
link	for	shopping	the	product.	This	infor-
mation	is	defined	as	instances	or	objects	
of	a	distinctive	type.

Data Region and Block
Identification

A data region contains data blocks and is en-
closed by one too many block level tags. There
is no easy way to identify these data regions and
blocks. In this paper, we define the following
for purposes of identifying data regions and data
blocks of a web page stored as a DOM tree. If
T represents a DOM tree of an entire web page
tags including contents, then, it contains a set
of data regions. The data regions are disjoint
and are sub-trees of T. We observe that a data
region or data block can be within any block

level mark-up tag but usually lies within tags
like <	div	>, <	table	>, <	tr	>, <	span	>. This
set is not complete and intersects with non-
block level tags. Observation of positive page
tag structure is helpful to identify the region
and data block. We denote the region and data
block by the set notation ‘{‘, ‘}.’ In our case,
we use <	div	> and <	table	> tags as region
and data block tags respectively. A data region
in DOM tree consists of a set of data records
(defined as tuple in this paper) and all data re-
cords in a region, in general, represent similar
set of data and are contiguous in a data region.
In the context of web content, a data block Bi is
usually a text string, image-file, price as string
(of type long) representing distinctive related
instance. For example, a product data record
can be represented in a nested tuple as:

Product (title: string, image: image-file,
difSize (product number: integer, brand:
string, price:real)). This product data format

Figure	1.	Data	blocks	and	data	regions	of	a	product	list	page

International Journal of Data Warehousing and Mining, 8(4), 1-21, October-December 2012 7

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

is not unique and can be different in mark-up
encoding and in nested formation for different
data regions and web page structures of the
same B2C domain. There may also be some
additional noise contents like ‘Add- to-Cart-’
in data blocks which may need to be cleaned
up. For example, the same product data can be
in the following format in the web page:

{{<	image	>{}{<	title	>,{}, <	number	>,	
<	brand	>,	<price	>}}}

We define a data block as data tuple when
a data block’s nested relation is collapsed to
a flat relation and any unwanted instances
like separator object for nesting are removed
(cleaned) inside a data block. For example,
when we collapse the instances of the data
block and clean-up the internal nested noise
block, image block and any cascading block,
the resultant data tuple is:

<<	image	>,	<	title	>,	<	number	>,	<	brand	>,
	<	price	>> We used the notation ‘<’ and ‘>’
to denote a data tuple t. We define the data
tuple as:

Definition 3.4: A tuple t :is	a	domain	content	
type	dom(t)	which	consists	of	a	set	of	dis-
tinct	related	instances	of	atomic	or	basic	
type,	B = B1, B2, B3, .	.	.	Bk	in	flat	mark-up	
encoding	 relation.	 A	 mark-up	 encoding	
is	a	pair	of	mark-up	tags	open-tag	‘<>’	
and	close-tag	‘<	/	>’	respectively.	Mark-
up	 encoded	data	 instances	 reside	 in	 the	
leaf	level	of	tree	type	encoding	and	each	
instance	 or	 attribute	 of	 a	 tuple	 can	 be	
encoded	differently	to	distinguish	them,	or	
unrelated	catalyst	instance	(e.g.,	decora-
tive	<	img	>)	may	be	used	to	highlight	the	
importance.	A	tuple	t	denoted	by	notation	
can	be	written	as	t = B1, B2, B3, .	.	.	Bk.	In	
the	context	of	web	content,	Bi	is	usually	a	
text	string,	image-file,	price	representing	
distinctive	instance.

Thus, the nested data block product given
can be converted to a flat tuple with the schema:

Product <	title: string,	image: image−f	
ile,	productnumber: integer,	brand: string,	
price:real	>.

Tuple Formation from Data Block

We observe that a product list webpage contains
six basic types of content data blocks, which
are Product data block, List or Navigation
data block, Form data block, Text data block,
Decorative/Singleton data block and the Noise
/ Advertisement data block. We need to identify
data tuples from these content data blocks.
Product data block is an important data block
in product list page. Related information of
a typical product data block are: an image of
the product, the name or title of the product,
product number, brand, and price. Additional
information like rebate in tagged price, brief
description of the product, etc. may exist and
not necessarily all pages of the domain contain
all the information. These information or ele-
ments are found as either ordered or un-ordered
list and in flat or nested HTML tag encoded
relation. The set format of product data block
in nested relation is denoted as:

{<	image	>,{<	title	>,	<	number	>,	.	.	.,	
<	brand	>,	<	price	>}}. Some pages may
contain less information like: {<	image	>,	
<	title	>,	<	brand	>,	<	price	>}.

These information need to be identified
and assigned respective object (i.e., product
object for product element, text object for text
element, etc.). We redefine the use of separator
object to identify data regions and data blocks.
Therefore, in object view, placed in content
objects, proposed product tuple (e.g., a flat
product data block after cleaning) looks like
Figure 2. We used separator element/object and
classified separator element in two categories:
open-separator, denoted by set notation symbol

8 International Journal of Data Warehousing and Mining, 8(4), 1-21, October-December 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

‘{‘ and close-separator denoted by ‘}’ symbol
and the product data can be represented as:

{<	image	> {<	title	>,	<	specification	>,	
<	price	>}}.

For tuple formation of this data block, it
needs to flatten/collapse and keep all object
instances at the same level. So, interior set
notation should be deleted and the outer set
notations are replaced by the tuple notations
‘<’ and ‘>.’ It also needs to clean up the noise
block, null block, cascading set notations within
the data blocks to build it as a tuple. For tuple
identification, we use a Non-deterministic
Finite state Automata (NFA) based approach
of pattern matching.

Extracting Contect Tuple
Types Using NFA

An NFA is a finite state machine where the
number of states is finite and for each pair
of states (qi) and input symbol (si), there may
be several possible next states resulting from
consuming input symbol or without consum-
ing any input symbol but due to epsilon or null
input transition (є). In order to build an NFA
for correctly extracting product tuples from all
B2C product list pages, a comprehensive list of
representative web page product schemas drawn
from what can be seen as a set of positive pages
for this B2C domain is needed. Thepositive
sites for the domain (such as those of Future
shop, Best Buy, CompUSA, etc.) are the only
suggested input from the user and the system
would crawl the relevant parts (e.g., product list
pages) of these web sites to discover the object

database schemas for the objects or entities of
interest. In this case, the discovered object da-
tabase schema consists of the different product
schema representations for a product list page
of a B2C web site. For example, the initial ten
representations discovered from structures of
the product list pagefrom such web sites are:

Product	(title:string,	image:image-file,	
prodNum:string,	brand:string,	price:long);
Product	(title:string,	image:image-file,	
prodNum:string,	price:long);
Product	(title:string,	image:image-file,	
brand:string,	prodNum:string,	price:long);
Product	(title:string,	image:image-file,	
brand:string,	price:long);
Product	(title:string,	image:image-file,	
price:long);
Product	(image:image-file,	title:string,	
prodNum:string,	brand:string,	price:long);
Product	(image:image-file,	title:string,	
prodNum:string,	price:long);
Product	(image:image-file,	title:string,	
brand:string,	prodNum:string,	price:long);
Product	(image:image-file,	title:string,	
brand:string,	price:long);
Product	(image:image-file,	title:string,	
price:long);

Thus, to extract product tuple instances
from the DOM tree representation of any B2C
web site, a product tuple NFA has to be built
to recognize any of these schemas and any
such matching tuple is found and sent to the
product content object class. Similarly, and
secondly, a List tuple NFA is built to extract
any list tuple conforming to the <<	link	>,	<	
title	>,	<	link	>,	<	title	>,	<	link	>,	<	title	>,	

Figure	2.	Content	objects	of	a	product	data	block

International Journal of Data Warehousing and Mining, 8(4), 1-21, October-December 2012 9

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

	<	link	>,	<	title	>	.	 .	 .	>. The third NFA is
for the Form object NFA for recognizing and
extracting form tuples that may conform to the
schema: <<	form	>,	<	text	>,	<	text	>,	<	text	
>	.	.	.	>. The fourth NFA generated is the Text
NFA for extracting Text tuples, which may
contain raw texts in the web page or a bag of
text describing something. The text tuple may
contain a set of text objects with the following
schema: <<	text	>,	<	text	>,	<	text	>,	<	text	>,
<	 text	>	 .	 .	 .	>> . The segmentation of this
text instance needs further research in case of
problem domain that contains bulk text or text
corpus. The fifth NFA generated is the Noise/
Link NFA for recognizing and extracting noise
tuples which are a set of hyperlinks with image
and have the schema: <<	link	>,	<	image	>,	
<	link	>,	<	image	>	.	.	.	>>. The sixth NFA
is for identifying singleton tuples. A Singleton
tuple can be anything for presentation purpose.
Sometimes, some stand alone attractive images
with or without links are used in web pages for
better representation or to make the presenta-
tion attractive. This tuple can be represented by
<<	image	>> or <<	link	>, <	image	>>. So,
a singleton tuple may have some intersection
with Noise/Link tuple. The NFAs for recog-
nizing all these six content types are shown in
Figure 3. These six NFAs are built from a set
of rules that generally apply to entire identified
positive pages of the domain being mined and
are continuously refined with new discovery.
Figure 3 shows the six automatically generated
NFAs for recognizing i) product tuple, ii) list
tuple, iii) form tuple, iv) text tuple, v) noise
tuple and vi) singleton or separator tuple. The
algorithm for generating the NFAs is given as
Figure 4. An example execution of the NFA
algorithm along with the WebOMiner system
is given in the previous sections with solution
to Example 1.

The Proposed WebOMiner
Framework

The proposed architecture for extraction and
mining of web contents using object-oriented
model, which is called “WebOMiner” is shown

as Figure 6. The algorithm implementation of
this system is given as Figure 5.

Summary of the Modules of the
WebOMiner System

The WebOMiner system shown in the algo-
rithm of Figure 5 consists of six modules that
are called by the main algorithm sequentially.
The modules labeled A to E form the first
phase of mining, which begins with input data
that is a set of domain web site http addresses
or URLs (universal resource locator), and the
output is the integrated object database that is
mined in phase F for the second level mining.
The second level mining consists of answering
all types of comparative queries of objects in
these web sites and can include specialization or
generalization queries along object hierarchies,
frequent pattern and sequential pattern mining
querying, separate or combined object content
querying, historical or derived object content
querying. A summary of the functions of each
of the modules is discussed next.

a. The Crawler Module: We developed a
mini-crawler algorithm that crawls through
the WWW to find targeted web pages given
as input, streams entire web document
including tags, texts and image contents
and it then creates a mirror of original
web document in the local computer in a
directory. Our crawler module discards the
comments from the HTML document. This
crawler module calls the SiteMapGenera-
tor.generate method, which takes a URL
string as input and outputs HTML file in
local machine and also outputs an ArrayList
of Nodes having tags and contents of HTML
file. Node information is then written into
the output HTML file.

b. The HTML Cleaner Module: This
module is responsible for making the
HTML file from the first step well formed
by inserting missing tags at appropriate
locations, removing inline tags <	br/	>,
<	hr/	>, inserting missing “/” at the end
of un-closed <	image	> tags, cleaning up

10 International Journal of Data Warehousing and Mining, 8(4), 1-21, October-December 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

unnecessary decorative tags. The result is
a refined HTML page in local directory.
This module is accomplished with the web
based program, HTMLCLEANER-2.2
(Sourceforge.net, 2010).

c. Content Extractor Module creates the
DOM tree from HTML page and extracts

the contents from the DOM tree, assigns
respective class object type as per pre-
defined object classes to the contents and
sets information into objects and finally
puts objects into ArrayList. It also identifies
the data regions and data block and uses
separator objects to segment the respective

Figure	3.	NFAs	for	six	web	content	types	(product,	list,	form	text,	noise,	singleton)

International Journal of Data Warehousing and Mining, 8(4), 1-21, October-December 2012 11

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

data of a data block from other data blocks.
We use Java DOM package to create and
parse DOM tree of the webpage. The pro-
posed WebOMiner() algorithm line-C calls
OWebMiner.BuildDOMTree() method
which is given as Figure 7.

We modified the 2009 OWebMiner’s
ContentWebObjectScan() algorithm in order to
catch body zone content objects according to

their hypotheses for identifying the beginning
and end of body zone of a web document and
to set series-1 and series-2 pointers in the DOM
tree but using tags. This is now the ContentO-
bjectArray() function called by the DOM tree
builder. The 2009 OWebMiner suggests using
two tag series (a set of at least five or more <a>
or <area> sibling tags to distinguish the bound-
aries between the header, the body and the foot
zones of a web document. An <a> or <area>

Figure	4.	Algorithm	GenerateSeedNFA	for	generating	candidate	NFA

12 International Journal of Data Warehousing and Mining, 8(4), 1-21, October-December 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Figure	5.	The	WebOMiner	main	algorithm

Figure	6.	WebOMiner	architecture	for	object-oriented	web	content	mining

International Journal of Data Warehousing and Mining, 8(4), 1-21, October-December 2012 13

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

tag in an HTML file represents navigation URL.
They observed that a set of first five or more
sibling <a> tags indicate the starting of body
zone and is called series-1. The last set of five
of more sibling <a> tags indicate the end of the
body zone and is called series-2. Moreover,
they indicate that if the search for series-1 goes
over half of the DOM tree size, then, the web
document does not have a header zone and
series-1 is empty. Also, if the search for series-2
from the first half of the DOM tree to its end
returns null, the web document does not have
a foot zone. The ContentObjectArray() algo-
rithm calls ProcessContentSibling() for identi-
fying the data regions and data blocks, which
is also a modified version. Our modification of
this algorithm is to reflect the identification of
data regions and data blocks using separator/
singleton element. The result of this module is
the extracted ContentObjectArray[] of the web
page DOM tree.

d. Call MineContentObject.Identify-
Tuple(): This module takes as its input
ContentObjectArray[] from the module C
and extracts different tuple types to place
in their separate containers. This algorithm
generates Seed NFA pattern for data blocks
from positive pages. It extracts objects
of all tuples by matching them with the
refined NFAs and storing identical tuples
(e.g., product record object tuples, list
tuples) into appropriate TupleList. It then
counts tuples and checks requirements for
all tuple categories and if they satisfy the

minimum requirement count for that block
type, it stores the objects into the database.
The MineContentObject() algorithm inputs
the entire populated ContentObjectArray[]
and outputs categorized content objects
using separator objects and set minimum
requirement counts for correctly identify-
ing data blocks. For example, for product
block, the minimum requirement count
can be set to 3, meaning that data block
is expected generally to have at least 3
product tuples. Tuple squeezing is also
performed in this module before storing
it in the database. Tuple squeezing is used
to generalize tuples of the same data block
so that pattern of any tuple containing
varying length pattern can be represented
in the same category. We use LinkedList
data structure to squeeze this tuple without
disturbing its data representation order.

e. Call CreateDBTable(): This module is
responsible for using the data warehouse
star schema approach to integrate and store
data records into a database table. It accepts
as its input the generated tuple ArrayList
from module D with company names and
creates an integrated data warehouse fact
table with a set of dimension tables. The
algorithm for this module is shown as
Figure 8. Once the integrated databases
are built the second level mining of step
F can be done at a later stage. This paper
focuses on the first level mining involving
steps A to E.

Figure	7.	OWebMiner.	BuildDOMTree	algorithm

14 International Journal of Data Warehousing and Mining, 8(4), 1-21, October-December 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

APPLICATION OF THE
WebOMiner SYSTEM

Example 1

Given a product list web page of a retail B2C
web site like CompUSA sample with 6 products
given as Figure 1, using the WebOMiner system,
extract all types of information like: (i) Those
related to data records such as product image,
product brand, product id, short description,
product price. (ii) Navigation information such
as link URL, link id or name. (iii) Advertise-
ments such as product advertised, image, URL
links to related website. The extracted informa-
tion will be stored in the database for future
comparative mining and querying.

SOLUTION 1: The proposed WebOMiner
system 1 implemented in JAVA runs in
both Unix and Windows based environ-
ment (with NetBeans or Eclipse) to store
the extracted data from the web page in a
DBMS like Oracle tables. The directory
where the system is run requires having
the following files:WEBOMINER.jar,
htmlcleaner-2.2.jar, ojdbc6.jar and the
downloaded and cleaned web page to be
extracted which is stored as cleanHTML#_.
html. The algorithm would download the
pages when provided the link and the

cleaned page clean-HTML#_.html was
obtained after running steps A and B on
Figure 1. Note that all cleaned web pages
to be extracted are currently stored in
cleanHTML#_.html (e.g., CompUSA_.
html). The Unix command for initiating
the extraction of the cleanHTML#_.html
page is given:

java–cp WEBOMINER.jar:htmlcleaner-
2.2.jar:ojdbc6.jar webominer.Main.

This command has the effect of going
through steps C to E of the WebOMiner algo-
rithm using the input file cleanHTML#_.html.
Step C would build the DOM tree from this
clean HTML file as well as build the Conten-
tObjectArray[] of this page. Figure 9 shows the
generated DOM tree of the running example
(i.e., of the web page of Figure 1).

Next, the algorithm traverses the DOM
tree of Figure 9 to generate the ContentObjec-
tArray[] as follows. This algorithm starts stor-
ing content objects into the ContentObjectAr-
ray[] until it hits the Foot zone by identifying
series 2. Here, series-1 is set to TTag (current
pointer at DOM tree) at line 7, which is a “<div>”
tag (region node). The algorithm at some point,
calls CheckTagObject() which creates an
OpenSeparator object and stores it into the

Figure	8.	Algorithm	CreateDBTable.insertData()

International Journal of Data Warehousing and Mining, 8(4), 1-21, October-December 2012 15

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

ContentObjectArray[]. TTag is then set to the
next child tag “<div>” at line 8 (data block
node) and similarly stores another OpenSepa-
rator object into ContentObjectArray[]. The
TTag is again set to its child node “<a>” at line
9 and the algorithm recursively calls itself.
Since it is a non-block level tag, the algorithm
stores respective “<link>” followed by “<im-
age>” objects for all five siblings (line 9 to line
17) into ContentObjectArray[]. Line 19 ends a
data block and the algorithm stores a closing
separator object into the ContentObjectArray[].
Similarly, the algorithm starts another data block

which ends at line 33. Line 34 ends this data
region. Line 35 starts with another data region
that ends at line 192. Line 58 and 69 are two
text data blocks “SHOP BY PRICE” and “SHOP
BY BRAND” as shown in left pane of Figure
1. These embedded tags and contents are hidden
in Figure 1. Similarly, lines 105, 113, 121, 131,
139, and 147 are six monitor data blocks em-
bedded into hidden tables of the figure.

When the algorithm hits line 193, it gets
series 2 pointer and returns the populated
ContentObjectArray[] to the main algorithm

Figure	9.	DOM	tag	tree	of	CompUSA.com	web	document	for	Figure	1

16 International Journal of Data Warehousing and Mining, 8(4), 1-21, October-December 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

WebOMiner(). Two partial snapshots of this
ContentObjectArray[] are given in Figure 10.

Line-D of our main WebOMiner algorithm
mines populated ContentObjectArray[] for
identification of data blocks and their classifi-
cation to make contents ready for database
entry. Line-D starts with calling our mining
algorithm MineContentObjects(). It inputs
populated ContentObjectArray[] and outputs a
set of content patterns ready to input into da-
tabase table for content integration. It scans
ContentObjectArray[] for open and close
separator object and identifies candidate tuples
by matching key objects and minimum required
count. It then refines separator objects by delet-
ing themselves. At the same time, this algorithm
generates Seed NFA pattern for data blocks.).
GenerateSeedNFA() automatically generates
candidate NFA by second pass iteration through
all objects of an identified effective extraction
of data from ContentObjectArray[] and wide
range of other pages from WWW. It inputs all
data structure of algorithm IdentifyTuple() as
global and works with satisfied Enumeration
type to create its seed NFA. The algorithm
identifies the tuple type from PatternTable and
looks for any existing Seed NFA for that tuple
type. If it does not exist, it starts creating a new
NFA by scanning objects and creating NFA
state along with appropriate transition between
states as per NFA generation algorithm of
Figure 4. In case of our running example data
tuple shown in Figure 10 of the ContentObjec-
tArray snapshot, since the existing Seed NFA

is null, the algorithm creates the starting state
‘q0’ and refers ‘qc’(current state) to ‘q0’ as per
line 2. For <link> object at cell 9 it creates
another state ‘q1,’ which it refers to as next to
the header state ‘q0.’ It stores <link> object into
‘q0’ and refers ‘q1’ as ‘qc’ according to line 2.3.
This ensures a transition from ‘q0’ to ‘q1’ for
<link> object. In the second iteration it scans
<image> object of cell 9, creates state ‘q2,’ refer
it as next to ‘q1,’ store object into ‘q1’ and refer
‘q2’ as ‘qc’ per line 2.3. This process continues
until the last <image> object of the tuple at cell
17. Since it is the last object, the last state is
denoted by ‘F’ as per line 2.4.1. The next step
is the refinement of the generated Seed NFA as
per definition of the NFA patterns for different
tuple types shown in Figure 3.

Line 2.0 of our mining algorithm MineCon-
tentObjects() uses a function SqueezeTuple()
which basically squeezes the tuple length to
represent their general pattern. For example our
running example nevigation tuple is as follows:

〈 <link>, , <link>, , <link>,
, <link>, ,<link>, , 〉

The length of this tuple is unknown with
a set of repeated tags <link> and . These
repeated tags follow a general pattern. We can
squeeze these tuples with their common pattern
of a link tag followed by a title text tag as
(,)< > < >∑ link img j
n

3
. Lines 2.1, 2.2, and

2.3 extract objects of all tuples by matching

Figure	10.	Snapshot	of	ContentObjectArray[]

International Journal of Data Warehousing and Mining, 8(4), 1-21, October-December 2012 17

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

with refined NFA and storing identical tuples
into TupleList. The MineContentObject()
counts tuples and checks required support count
for all tuple categories and if they satisfy the
support, stores objects into relational database.
This leads to extracting web content data into
six database tables stored in Oracle Sqlplus.
The six created tables are: 1. Product(product
id, brand, image, prod number, price, text,
company name); 2. Company(company id,
company name); 3. List type (List type id, list
type); 4. List (list id, link, text, company name,
list type); 5. Text (text id, text, company name);
6. noise (noise id, link, image, company name).
All these data have been extracted by the We-
bOMiner system so that when several web
pages are extracted, some comparative ana-
lytical queries and mining could be performed.
The WebOMiner.jar contains currently about
36 .JAVA files including Main.JAVA (for algo-
rithm 1) and those for steps A to E of this al-
gorithm.

FUTURE WORK ON THE
CURRENT SYSTEM’S
IMPLEMENTATION

This is the very first effort for mining web
contents using object oriented model. There is
plenty of room for improvement of our system
in the future. Limitations of the current system
and future work as identified are stated as:

• Crawler Module: Current crawler module
can take one URL string at a time for extrac-
tion and mining of web contents. Further
improvement is required in the future for
automatic identification of positive web
pages from the web. Present implementa-
tion of this module is designed aiming to
work for basic functionalities as crawler
with the functionality to download data
stream from the targeted web pages into
the local computer and cleaning of the web
page comments from it. For robustness and
scalability, we need to improve the cur-
rent crawler module to handle all kinds of
situations from the web. We are currently

extending it to generate object schemas
of positive B2C web pages automatically.

• Cleaner Module: Currently, we are using
open source software “HTMLcleaner-2.2”
for cleaning the web pages. Development
of an independent cleaner module may
improve the systems performance and
usability in future.

• Extractor Module: One major problem
with the extractor module is its inability to
handle long tag attribute values. A reason-
able way to handle long HTML tag attribute
value is needed that are currently blasting
the DOM Tree creation. We need to find
out a way to reduce the tag attribute value
length without loss of resources from it.
A reasonable solution by finding any al-
ternative way to create DOM from other
platforms may solve the problem. Another
noticeable limitation of this system is its
limited capacity to handle noise contents
from the web page. More research is re-
quired to handle noise from data tuples.

• Miner Module: We introduced the idea
of using NFA for mining web contents in
this paper. This NFA has two fold uses:
Generation of extraction pattern for con-
tents and generation of database schema,
cardinalities to create tables and to store
contents into relational database. In this
paper, we generated extraction pattern
but generation of database schema from
the generated NFA is pending to develop.
Another limitation is the use of pattern
table for classification of tuples from the
ContentObjectArray. Implementation of
any automatic classification using co-sign
or other similarity algorithm will eliminate
the use of semi-automatic use of pattern
table and squeezeTuple algorithm from the
miner module.

EXPERIMENTS AND
PERFORMANCE ANALYSIS

We created simplified mirror of six popular B2C
web sites (e.g., futureshop.ca, compUSA.com,
bestbuy.ca, walmart.ca, shopping.com, dell.

18 International Journal of Data Warehousing and Mining, 8(4), 1-21, October-December 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

com as of July 2010) for empirical evaluation
of our system using different page structures.
Our system is implemented in Java program-
ming language. We then ran our system in 32-
bit Windows Vista Home Premium operating
system at Intel Due Core 2.26 GHz, 3.00 GB
RAM Sony machine for each of these mir-
ror web sites for empirical evaluation of our
WebOMiner system. The source codes for the
program are available in the code directory and
the document USER_MANUAL.txt provides
information on how to compile and execute
the system. We use the standard precision and
recall measures to evaluate the web content
retrieval accuracy and effectiveness of our
system. Precision is measured as the average
in percentage for the number of correct data
retrieved divided by the total number of data
retrieved by the system. Recall is measured
as average in percentage for the total number
of correct data retrieved divided by the total
number of existing data in the web document.
The results of the retrieval by our WebOMiner
system is tabulated in Table 1. From Table 1, it
could be seen that the WebOMiner is effective
for correctly extracting detailed data from web
documents since the precision for measuring
accuracy of extraction (total records retrieved
correctly / total records retrieved) is 176/176
or 100%. The recall is total records retrieved
correctly/total records in the page, which is
176/185 or 96%.

CONCLUSION AND FUTURE
WORK

We argue that there is need for a system capable
of per- forming deeper knowledge discovery
consisting of comparative analysis of such
product features as prices, answering historical
and derived queries about products and other
data on web pages. We propose an approach
for solving this complex data extraction that is
based on the object oriented data model, which
would utilize six class content types that can
be linked through class inheritance hierarchies.
We propose a system called WebOMiner (Web
Object Miner) for this purpose, which has in-
troduced some good features that would allow
for future robustness and scalability. We have
demonstrated that this first implementation
phase of our system is effective for extracting
web contents and storing them in database tables
for querying and mining. Future improvement
on the proposed system includes: the crawler
module needs to create the functionality for more
automatic selection of the targeted documents
from the web, create automatic object database
schemas of each web site as well as the object
data warehouse schema of integrated web site
schemas, cleaner module needs to handle long
tag attributes (Chaudhuri et al., 2003). Complex
attributes can be handled with content type
“structure” and the NFA for the structure content
type can be included for this type. The object
oriented data model has been implemented with

Table	1.	Accuracy	of	web	content	extraction	from	web	pages	

Website Data Records

Product List Noise Text Total Correct

www.futureshop.ca 10 13 4 0 27 27

www.compUSA.ca 18 21 8 2 49 47

www.bestbuy.ca 7 10 4 1 22 21

www.walmart.ca 2 4 2 - 8 8

www.walmart.ca 2 4 2 - 8 8

www.shopping.ca 40 4 4 - 48 47

www.dell.ca 14 13 4 - 31 28

International Journal of Data Warehousing and Mining, 8(4), 1-21, October-December 2012 19

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

relational database management system through
nested relations and JAVA classes. Future work
should also consider implementing this in an
object oriented DBMS. Another DOmilestone
wrapper generation system DEPTA (Zhai &
Liu, 2006, 2007) builds M tree to analyze web
document and uses single web page for wrapper
generation like our WebOMiner system. Future
extensions of the system are ongoing research.

ACKNOWLEDGMENT

We thank the students Allan Zawada for
helping with testing the codes and preparing
user documentation and Harun-Or-Rashid for
helping with testing parts of the codes. The
WebOMiner source codes with user manual
and other instructions are available from the
IJDWM source codes website which is at http://
users.monash.edu.au/~dtaniar/IJDWM/

REFERENCES

Annoni, E., & Ezeife, C. I. (2009). Modeling web
documents as objects for automatic web content
extraction. In Proceedings	of	the	ACM	/	LNCS	Spon-
sored	11th	International	Conference	on	Enterprise	
Information	Systems (pp. 91-100).

Baumgartner, R., Flesca, S., & Gottlob, G. (2001).
Visual web information extraction with Lixto. In
Proceedings	of	the	27th	International	Conference	on	
Very	Large	Data	Bases (pp. 119-128).

Bhowmick, S. S., Madria, S. K., Ng, W. K., & Lim,
E. P. (1999). Web warehousing: Design and issues.
In Y. Kambayashi, D.-L. Lee, E. Lim, M. Mohania,
& Y. Masunaga (Eds.), Proceedings	of	the	Workshops	
on	 Advances	 in	 Database	 Technologies (LNCS
1552, 93-105).

Borges, J., & Levene, M. (1999). Data mining of
user navigation patterns. In Proceedings	of	the	KDD	
Workshop	on	Web	Mining, San Diego, CA (pp. 31-36).

Bornhövd, C., & Buchmann, A. P. (1999, June).
A prototype for metadata-based integration of in-
ternet sources. In M. Jarke & A. Oberweis (Eds.),
Proceedings	of	the	11th	International	Conference	on	
Advanced	Information	Systems	Engineering (LNCS
1626, pp. 439-445).

Buchner, A. G., & Mulvenna, M. D. (1998). Discov-
ering internet marketing intelligence through online
analytical web usage mining. SIGMOD	 Record,
27(4), 54–61. doi:10.1145/306101.306124

Chang, C., & Lui, S. L. (2001). IEPAD: Information
extraction based on pattern discovery. In Proceedings	
of	the	10th	International	Conference	on	World	Wide	
Web, Hong Kong (pp. 681-688).

Chaudhuri, S., Ganjam, K., Ganti, V., & Motwani, R.
(2003). Robust and efficient fuzzy match for online
data cleaning. In Proceedings	of	the	ACM	SIGMOD	
International	Conference	on	Management	of	Data,
San Diego, CA (pp. 313-324).

Chriisment, C., Dousset, B., Karouach, S., & Mothe,
J. (2004). Information mining: Extracting, explor-
ing and visualising geo-referenced information.
In Proceedings	 of	 the	 Workshop	 on	 Geographic	
Information	Retrieval.

Crescenzi, V., Mecca, G., & Merialdo, P. (2001,
September). RoadRunner: Towards automatic data
extraction from large web sites. In Proceedings	of	
the	Conference	on	Very	Large	Data	Bases, Rome,
Italy (pp. 109-118).

Dung, X. T., Rahayu, W., & Taniar, D. (2007). A
high performance integrated web data warehousing.
Cluster	 Computing, 10(1), 95–109. doi:10.1007/
s10586-007-0008-9

Ezeife, C. I., & Liu, Y. (2009). Fast incremental
mining of web sequential patterns with PLWAP tree.
International	Journal	of	Data	Mining	and	Knowledge	
Discovery	 Journal, 19(3), 376–418. doi:10.1007/
s10618-009-0133-6

Ezeife, C. I., & Ohanekwu, T. E. (2005). Use of
smart tokens in cleaning integrated warehouse data.
International	 Journal	 of	 Data	 Warehousing	 and	
Mining, 1(2), 1–22. doi:10.4018/jdwm.2005040101

Golfarelli, M., & Rizzi, S. (2011). Data warehouse
testing. International	 Journal	 of	 Data	 Ware-
housing	 and	 Mining, 7(2), 26–43. doi:10.4018/
jdwm.2011040102

Gupta, S., Kaiser, G., & Stolvo, S. (2005 May 10-
14). Extracting context to improve accuracy for
HTML content extraction. In Proceedings	 of	 the	
International	World	Wide	Web	Conference, Japan
(pp. 1114-1115).

Jupiter Media Corporation. (2007). XML	parsers:	
DOM	and	SAX	put	to	the	test. Retrieved from http://
www.devx.com/xml/Article/16922/1954

20 International Journal of Data Warehousing and Mining, 8(4), 1-21, October-December 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Kosala, R., & Blockeel, H. (2000). Web mining
research: A survey. ACM	 SIGKDD	 Explorations	
Newsletter, 2(1), 1–15. doi:10.1145/360402.360406

Laender, A. H. F., Neto, B. R., & da Silva, A. S. (2002).
Debye-date extraction by example. Data	&	Knowl-
edge	 Engineering, 40(2), 121–154. doi:10.1016/
S0169-023X(01)00047-7

Lewis, D. M., & Janeja, V. P. (2011). An empirical
evaluation of similarity coefficients for binary valued
data. International	Journal	of	Data	Warehousing	and	
Mining, 7(2), 44–66. doi:10.4018/jdwm.2011040103

Li, J., & Ezeife, C. I. (2006, September 4-8). Cleaning
web pages for effective web content mining. In S.
Bressan, J. Küng, & R. Wagner (Eds.), Proceedings	
of	the	17th	International	Conference	on	Databases	
and	Expert	Systems	Applications, Krakow, Poland
(LNCS 4080, pp. 560-571).

Liu, B. (2007). Web	data	mining:	Exploring	hyper-
links,	contents,	and	usage	data	(Data-centric	systems	
and	applications). New York, NY: Springer.

Liu, B., & Chen-Chung-Chang, K. (2004). Edito-
rial: Special issue on web content mining. ACM	
SIGKDD	 Explorations	 Newsletter, 6(2), 1–4.
doi:10.1145/1046456.1046457

Muslea, I., Minton, S., & Knoblock, C. (1999).
A hierarchical approach to wrapper induction. In
Proceedings	 of	 the	 Third	 Annual	 Conference	 on	
Autonomous	Agents (pp. 190-197).

Priya, R. V., & Vadivel, A. (2012). User behaviour
pattern mining from WebLog. International	Jour-
nal	of	Data	Warehousing	and	Mining, 8(2), 1–22.
doi:10.4018/jdwm.2012040101

Raposo, J., Pan, A., Alvarez, M., & Hidalgo, J. A., &
Vina, A. (2002). The Wargo system: Semi-automatic
wrapper generation in presence of complex data ac-
cess modes. In Proceedings	of	the	13th	International	
Workshop	on	Database	and	Expert	Systems	Applica-
tions (pp. 313-320).

Sourceforge.net. (2010). Htmlcleaner. Retrieved
from http://htmlcleaner.sourceforge.net/download.
php

Zhai, Y., & Liu, B. (2006). NET – A system for ex-
tracting web data from flat and nested data records.
In A. H. H. Ngu, M. Kitsuregawa, E. J. Neuhold,
J.-Y. Chung, & Q. Z. Sheng (Eds.), Proceedings	of	
the	6th	International	Conference	on	Web	Information	
Systems	Engineering (LNCS 3806, pp. 487-495).

Zhai, Y., & Liu, B. (2007). Extracting web data using
instance-based learning. World	Wide	Web	(Bussum),
10(2), 113–132. doi:10.1007/s11280-007-0022-0

Zhao, H., Meng, W., Wu, Z., Raghavan, V., & Yu,
C. (2005). Fully automated wrapper generation for
search engines. In Proceedings	of	the	14th	Interna-
tional	Conference	on	World	Wide	Web (pp. 66-75).

Zhao, L., & Ng, W. K. (2004, May 24-27). WICCAP:
From semi-structured data to structured data. In Pro-
ceedings	of	the	11th	IEEE	International	Conference	
and	Workshop	on	Engineering	and	Computer-based	
Systems. Brno, Czech Republic (pp. 86-93).

C.	I.	Ezeife	received	her	MSc	in	Computer	Science	from	Simon	Fraser	University,	Canada	in	1988	
and	a	PhD	in	Computer	Science	from	the	University	of	Manitoba,	Canada	in	1995	following	a	
First	class	BSc	Honors	degree	in	Computer	Science	in	1982.	She	has	held	academic	positions	in	
a	number	of	universities	including	her	current	University	of	Windsor	where	she	has	been	since	
1996,	and	is	a	Full	Professor	of	Computer	Science	since	2009.	Her	research	interests	include	
distributed	object-oriented	database	systems,	data	warehousing	and	mining.	She	has	authored	
several	technical	publications	including	over	15	comprehensive	journal	articles	in	journals	such	
as	ACM Computing Surveys,	Springer’s	International Journal of Distributed and Parallel Databases
and	International Journal of Data Mining and Knowledge Discovery,	Elsevier’s	journal	of	Data
and Knowledge Engineering and	IGI	Global’s	International Journal of Data Warehousing and
Mining.	She	is	author	of	two	books	on	Problem	Solving	and	Programs	with	C	by	Thomson	Learn-
ing	Publishers,	which	have	been	successfully	used	for	teaching	hundreds	of	first	year	Computer	
Science	students	for	over	twelve	years.

International Journal of Data Warehousing and Mining, 8(4), 1-21, October-December 2012 21

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Titas	Mutsuddy	received	his	MSc	in	Computer	Science	from	the	University	of	Windsor,	in	Fall	
2010	in	the	area	of	object	oriented	web	content	mining,	under	the	supervision	of	Dr.	Christie	
I.	Ezeife.	Titas	previously	graduated	with	a	BSc	(Honors)	in	Computer	Science	in	2005	from	
the	University	of	Windsor	following	a	BSc	in	Civil	Engineering	from	Chittagong	University	of	
Engineering	and	Technology,	Cittagong,	Bangladesh	 in	1992.	He	also	received	a	Master	of	
Science	in	Civil	Engineering	in	2008	from	Wayne	State	University,	Detroit,	USA.	He	has	been	
employed	in	the	industry	working	in	databases	and	web	application	development	for	a	number	
of	years	now	and	is	currently	with	Stantec	Consulting	Ltd,	Windsor.

