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INTRODUCTION

World Wide Web (WWW) is growing expo-
nentially over the years and web documents 
constitute some of the largest repositories of 
information (Kosala & Blockeel, 2000). Web 
content usually refers to the information that a 
user sees on a web document. It also includes 
some hidden information which help users 
interact with web contents. Web contents are 

heterogeneous in nature and may be in different 
forms like text, image, hyper-link, metadata, 
audio, video and others with combinations of 
these content types as well. A complete clas-
sification of all these different types of web 
contents does not exist. Web content data are 
updated frequently, volatile and not historical 
(Bhowmick et al., 1999; Dung, Rahayu, & Ta-
niar, 2007). The creation and maintenance of a 
data warehouse based on the web content data 
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is needed for effective derived and historical 
querying of web content data. Some research-
ers adopted the web data extraction system in 
virtual approach without creating physical data 
base and warehouse (Bornhövd & Buchmann, 
1999) but may have difficulty with contents 
like images. There are some other information 
or block in the web pages such as advertise-
ment, attached pages, copyright notices. These 
are also web contents and usually not consid-
ered as part of the primary page information. 
These unwanted information in a web page 
are called noise information, and usually need 
to be cleaned before mining the web contents 
(Gupta et al., 2005; Ezeife & Ohanekwu, 2005; 
Li & Ezeife, 2006). Borges and Leven (1999) 
categorized web mining into three areas: web 
structure mining, web usage mining and web 
content mining. Web usage mining processes 
usage information or the history of user’s visit 
to different web pages, which are generally 
stored in chronological order in web log file, 
server log, error log and cookie log (Buchner 
& Mulvenna, 1998; Ezeife & Lui, 2009; Priya 
& Vadivel, 2012).When any mechanism is used 
to extract relevant and important information 
from web documents or to discover knowledge 
or pattern from web documents, it is then called 
web content mining. Traditional mechanisms 
include: providing a language to extract certain 
pattern from web pages, discovering frequent 
patterns, clustering for document classifica-
tion, machine learning for wrapper (e.g., data 
extraction program) induction, and automatic 
wrapper generation (Liu & Chen-Chung-Chang, 
2004; Muslea, Minton, & Knoblock, 1999; 
Zhao et al., 2005; Crescenzi, Mecca, & Me-
rialdo, 2001; Liu, 2007). All these traditional 
mechanisms are unable to catch heterogeneous 
web contents together as they strictly rely on 
web document presentation structure. Existing 
extractors also are limited with regards to finding 
comparative historical and derived information 
from web documents. Creating more robust 
automatic wrappers for multiple data sources 
requires incorporating efficient techniques for 
automatic schema (attribute) match, some of 
which techniques are presented in Lewis and 

Janeja (2011). Methods for testing the quality of 
extracted and integrated information can also be 
incorporated in the future (Golfarelli & Rizzi, 
2011). Some sample queries that may not be 
accurately answered by existing systems are:

1.  Provide a comparative analysis of products 
including sales, comments on four retail 
store web sites in the past 1 year.

2.  List all 17” LCD Samsung monitor selling 
around Toronto with price range less than 
$200.

In Annoni and Ezeife (2009), a model 
for representing web contents as objects was 
presented. They encapsulate web contents in 
object-oriented class hierarchies which would 
enable catching heterogeneous contents to-
gether in a unified way without strictly relying 
on web page presentation structure, using six 
web content data types.

Contributions

This paper proposes a two level mining process 
based on object oriented data modeling of web 
contents and focuses on the first level mining. 
The first level mining extracts and classifies 
web content data using content object hier-
archies defined by (Annoni & Ezeife, 2009) 
in their OWebMiner system, and stores these 
data into database table. Second level mining 
is similar to traditional data mining process in 
an object oriented dataset and is outside the 
scope of this paper. This paper focuses on the 
first level mining and proposes an architecture 
called WebOMiner (standing for Web Object 
Miner) for extraction and mining of web 
contents using object-oriented model similar 
to those defined in the OWebMiner sytem of 
2009. Our architecture has 4-modules: crawler 
module, cleaner module, extractor module and 
miner module. We developed algorithms for 
crawler module, used the freeware software 
“HTMLCLEANER-2.2” (Sourceforge.net, 
2010) for cleaner module, extend and complete 
the algorithms for the extractor module initially 
proposed by OWebMiner system of 2009, by 



International Journal of Data Warehousing and Mining, 8(4), 1-21, October-December 2012   3

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

using an innovative algorithm for miner module 
that generates and uses non-deterministic finite 
state automata (NFA) for mining web content 
objects to enable automatic content extraction, 
discovery of web object hierarchies and scal-
ability. The five specific contributions made by 
the WebOMiner system that were not handled 
by the OWebMiner system of 2009 are:

1.  Identification of data blocks and regions 
from DOM trees of extracted html files 
of web pages which are to be integrated 
and mined for content, using only the 
tag information of the DOM tree with 
no vision-based context structure, is a 
contribution of this paper. The initial draft 
proposal by OWebMiner system of 2009 
relies on DOM tree of web document and 
uses “vision based context structure” for 
data x-coordinate and y-coordinate location 
of webpage features, web document zone, 
data’s width, height and center location, 
and data presentation features (such as 
style, type, fonts and spaces) to identify 
data blocks. Extracting the x-coordinate 
and y-coordinate information from DOM 
tree for automatic extraction is not easily 
feasible. Within DOM tree all related data 
are structured as data block but in flat array 
data structure used by OWebMiner of 2009, 
content data lose their relationships. It is 
important to extract related data together or 
create clear separation between data blocks 
and data regions which contain the blocks.

2.  The work in the 2009 system did not discuss 
use of the separator element in content or 
presentation object extraction. Our work 
in this paper defines the use of separator 
element for identification of data block and 
data region in our problem context.

3.  They did not define the object classes, size 
of object classes, object class hierarchy, 
object class dependencies, and functional-
ities of object classes. They only classify 
the web content elements (such as text, 
list, forms, product) but did not associate 
object types with contents, nor discuss 
how to control the creation of expensive 

objects. In this work, we generate NFA 
for each content type so that can be used 
to identify specific contents in the DOM 
tree during tuple extraction.

4. They did not address the issue of associating 
leaf level tags with specific contents. A leaf 
level tag contains important information 
about the associated content. It is important 
to associate leaf level tags before assigning 
an object to a content type. For example 
in a data block there are three image tags 
as shown:

<imgid= “line”src=	“http://................”alt = 
“line”	/>              (1)
<imgid= “monitor”src=	
“http://...............”alt = “monitor”	/>        (2)
<img	src	=	“http://.........................”alt= 
“add”/>              (3)

Here, the HTML tags at lines (1) and (2) 
have three tag attributes: “id,” “src,” and “alt.” 
Line (3) has two attributes: “src” and “alt.” Tag 
attributes are variable inside a tag and each at-
tribute should have a value. First image tag of 
line (1) is a line separator as identified from the 
value of attribute “id” and “alt,” second image 
tag of line (2) is for “monitor” as identified from 
“id” and “alt” attribute and the third image tag 
is for “Add to Cart” hyperlink identified from 
“alt” attribute. If we do not care about tag at-
tribute of a source image, we will not be able 
to identify the image we want. We resolve this 
problem by analyzing tag attribute in this paper.

5.  They did not address the issue of prevent-
ing noisy data entry into database table. 
Their algorithm does not refine contents 
before entering into the database table. We 
address this issue by cleaning noises from 
data tuple.

Outline of the Paper

First, we present the related work while we then 
present the proposed WebOMiner architecture 
and the NFA generator-based miner algorithm. 
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Afterwards we present the experimental results. 
Conclusions and future work are presented at 
the end of the article.

RELATED WORK

In order to mine data on web documents, the 
HTML files are usually converted to pre-parsed 
documents in a DOM (document object model) 
tree by many systems (Zhao et al., 2005; Annoni 
& Ezeife, 2009). In a DOM tree, tag and tag at-
tributes are represented with nodes that specify 
the hierarchical relationships between tags. 
IEPAD (Chang & Liu, 2001) is one of the first 
information extractor systems that generalizes 
extraction patterns from unlabeled web pages. 
It is a learning wrapper that discovers repetitive 
patterns from web pages that are well encoded 
using a data structure called PAT trees, which 
is a binary suffix tree. Wargo system (Raposo 
et al., 2002), internally relies on two wrapper 
programming languages: Navigation SEQuence 
Language (NSEQL) for specifying navigation 
sequence and Data EXTraction Language 
(DEXTL) for specifying extraction pattern. 
DEByE (Laender, Neto, & da Silva, 2002) is 
an interactive tool that receives as input a set 
of example objects taken from a sample web 
page and generates extraction patterns. Web 
Data Extraction System (WICCAP) (Zhao & 
Ng, 2004) uses Web Data Extraction Language 
(WDEL), a scripting language. Main problem 
with wrapper language-based extraction system 
is their reliability on diversified, non-standard, 
non-popular wrapper languages. There are two 
existing approaches for building DOM tree 
(Jupiter Media, 2007); using tags alone and 
using tags along with visual cues (Baumgart-
ner, Flesca, & Gottlob, 2001; Chriisment et al., 
2004). HTML is a flexible mark-up language 
and page designer’s error in using tag is mostly 
accepted. So, DOM tree building by using the 
tag alone requires HTML code cleaning to 
ensure the HTML page is well formed (that is, 
has all opening and closed tags) before build-
ing the tree.

The OWebMiner System Related 
to Proposed System WebOMiner

Annoni and Ezeife (2009) proposed the idea 
of encapsulating heterogeneous web contents 
into object class hierarchies to extract and mine 
web contents in a comprehensive, derived and 
historical way. All papers discussed so far in 
this related work of web content extraction rely 
on the web content presentation tree structure 
and extract only limited targeted facts from 
the web page. In this 2009 paper, an object-
oriented paradigm to model web data to capture 
both content and presentation objects of a web 
document was proposed with these two major 
contributions for web content extraction: (A) 
They define and give a framework of object-
oriented data model and (B) They give the idea 
of how to extract web objects from the web 
page. They give a high level algorithm called 
OWebMiner() for web object extraction and an 
algorithm called ProcessPresentationSibling() 
for presentation (e.g., web page tag structure) 
object extraction process. Their anticipated 
use of presentation objects is to associate them 
with content objects for mining process. Their 
proposed framework for object-oriented data 
model is based on the following concepts:

1.  Related documents share same space and 
web page presentation tag structure. The 
web document segmentation work uses 
DOM tree, data location features (e.g., 
WebZoneCenterX and Y values, width, 
height) and data presentation features to 
distinguish data blocks.

2.  Proposed to not evaluate all HTML tags 
because all HTML tags are not always 
meaningful. They observed that main 
HTML tags (e.g., non-empty tags such as 
<	table	>, <	link	>, <	form> tags) have 
impact in content and presentation and 
pre-formatting and in-line tags such as <	
pre	>, <	br/	> should not be evaluated. 
They rely on DOM tree of web document 
and use “vision based context structure” 
for defining data x-coordinate and y-
coordinate location of webpage features, 
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web document zone, data’s width, height 
and center location, and data presentation 
features such as style, type, fonts and spaces 
to identify data blocks. They define the web 
document zone to represent the entire web 
document as an object named WebZone 
object, which is divided into three zones: 
HeaderZone, BodyZone, and FootZone. 
They classify WebElement into six web 
content types of Text, Image, Form, Plug-in 
content, Separator element, and Structure 
element all of which are in an object class 
hierarchy. Their main algorithm OWeb-
Miner() basically takes a set of webpages 
(WDHTMLFile) and for each WDHTML-
File, line (A) of the algorithm extracts all 
the content and presentation objects into 
two separate object arrays according to their 
DOM hierarchical dependencies. Line (B) 
stores web objects into the database. Line 
(C) mines the extracted contents from the 
database. Process begins with the root of 
the DOM tree of the web page, “<html>.” 
When it hits series-1, it calls algorithm 
PrecessContentSibling() to start extrac-
tion of content objects and continues until 
it hits series-2. ProcessContentSibling() 
algorithm inputs DOM tree, a pointer 
called “TTag” which indicates current tag 
to process in the DOM tree, ContentObjec-
tArray[] and a variable “indTag” which is a 
global index for labeling content objects per 
zone. The algorithm recursively traverses 
DOM tree block-level tags by depth-first 
search until it hits non-block level tag and 
resets “TTag” pointer to represent current 
processing tag. If depth-first search hits 
a non-block level tag, it processes all its 
siblings into an array called “tagArray.” For 
all non-block level tags in “tagArray,” the 
algorithm then associates a content object 
to tag value. Otherwise, it recursively 
calls itself to advance “TTag” pointer. The 
algorithm finally returns the ContentOb-
jectArray[] with full content objects from 
body zone of web page. This related work 
layed down conceptual object model and 

initial algorithms but detailed and scalable 
implementation of this automatic content 
extractor was still needed.

THE PROPOSED 
WEBOMINER SYSTEM

The proposed WebOMiner system aims at 
developing an automatic object oriented web 
content extraction and mining system for inte-
grating, mining heterogeneous contents that are 
also derived, historical and complex for deeper 
knowledge discovery. The problem to be solved 
and the proposed solution are given.

Problem Definition 3.1.: Given a number of 
product list web pages of retail stores (e.g., 
Figure 1) as defined in Example 1 in the 
previous sections, extract the information 
specified into the database for comparative 
mining and querying.

Proposed Solution 3.1.: For the specific do-
main of B2C websites, we have selected 
to mine the most common data-rich web 
page, the product list page which usually 
contains a brief list of all or specific types 
of products. There is a set of product list 
pages in a B2C website, and such a product 
list page is defined as follows:

Definition 3.1.: A B2C web site w of a domain 
d	is	made	up	of	a	number	of	product	list	
pages	where	each	product	list	page	(e.g., 
Figure	1),	p	is	defined	as	a	page	that	con-
tains	a	set	of	tuples	t	of	type	α	identified	
as	one	of	the	instance	types	in	domain	d.	
Product	list	page,	p,	contains	a	set	of	data	
blocks	that	are	arranged	in	different	data	
regions	including	product,	navigation,	and	
noise	blocks.

Definition 3.2. A Data Region r:	usually	con-
tains	similar	categories	of	data.	Advertise-
ment	data	region	contains	hyperlinks	with	
a	set	of	services.	Main	product	data	region	
contains	a	set	of	data	blocks.

Definition 3.3. Each Data Block B:	is	hyper-
linked	(by	“MORE	INFO”)	with	separate	
product	 details	 page	and	 contains	 some	
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key	information	like	image	of	the	product,	
product	name,	product	number,	brand	or	
manufacturer,	product	price	and	a	hyper-
link	for	shopping	the	product.	This	infor-
mation	is	defined	as	instances	or	objects	
of	a	distinctive	type.

Data Region and Block 
Identification

A data region contains data blocks and is en-
closed by one too many block level tags. There 
is no easy way to identify these data regions and 
blocks. In this paper, we define the following 
for purposes of identifying data regions and data 
blocks of a web page stored as a DOM tree. If 
T represents a DOM tree of an entire web page 
tags including contents, then, it contains a set 
of data regions. The data regions are disjoint 
and are sub-trees of T. We observe that a data 
region or data block can be within any block 

level mark-up tag but usually lies within tags 
like <	div	>, <	table	>, <	tr	>, <	span	>. This 
set is not complete and intersects with non-
block level tags. Observation of positive page 
tag structure is helpful to identify the region 
and data block. We denote the region and data 
block by the set notation ‘{‘, ‘}.’ In our case, 
we use <	div	> and <	table	> tags as region 
and data block tags respectively. A data region 
in DOM tree consists of a set of data records 
(defined as tuple in this paper) and all data re-
cords in a region, in general, represent similar 
set of data and are contiguous in a data region. 
In the context of web content, a data block Bi is 
usually a text string, image-file, price as string 
(of type long) representing distinctive related 
instance. For example, a product data record 
can be represented in a nested tuple as:

Product (title: string, image: image-file, 
difSize (product number: integer, brand: 
string, price:real)). This product data format 

Figure	1.	Data	blocks	and	data	regions	of	a	product	list	page
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is not unique and can be different in mark-up 
encoding and in nested formation for different 
data regions and web page structures of the 
same B2C domain. There may also be some 
additional noise contents like ‘Add- to-Cart-’ 
in data blocks which may need to be cleaned 
up. For example, the same product data can be 
in the following format in the web page:

{{<	image	>{}{<	title	>,{}, <	number	>,	
<	brand	>,	<price	>}}}

We define a data block as data tuple when 
a data block’s nested relation is collapsed to 
a flat relation and any unwanted instances 
like separator object for nesting are removed 
(cleaned) inside a data block. For example, 
when we collapse the instances of the data 
block and clean-up the internal nested noise 
block, image block and any cascading block, 
the resultant data tuple is:

<<	image	>,	<	title	>,	<	number	>,	<	brand	>,
	<	price	>> We used the notation ‘<’ and ‘>’ 
to denote a data tuple t. We define the data 
tuple as:

Definition 3.4: A tuple t :is	a	domain	content	
type	dom(t)	which	consists	of	a	set	of	dis-
tinct	related	instances	of	atomic	or	basic	
type,	B = B1, B2, B3, .	.	.	Bk	in	flat	mark-up	
encoding	 relation.	 A	 mark-up	 encoding	
is	a	pair	of	mark-up	tags	open-tag	‘<>’	
and	close-tag	‘<	/	>’	respectively.	Mark-
up	 encoded	data	 instances	 reside	 in	 the	
leaf	level	of	tree	type	encoding	and	each	
instance	 or	 attribute	 of	 a	 tuple	 can	 be	
encoded	differently	to	distinguish	them,	or	
unrelated	catalyst	instance	(e.g.,	decora-
tive	<	img	>)	may	be	used	to	highlight	the	
importance.	A	tuple	t	denoted	by	notation	
can	be	written	as	t = B1, B2, B3, .	.	.	Bk.	In	
the	context	of	web	content,	Bi	is	usually	a	
text	string,	image-file,	price	representing	
distinctive	instance.

Thus, the nested data block product given 
can be converted to a flat tuple with the schema:

Product <	title: string,	image: image−f	
ile,	productnumber: integer,	brand: string,	
price:real	>.

Tuple Formation from Data Block

We observe that a product list webpage contains 
six basic types of content data blocks, which 
are Product data block, List or Navigation 
data block, Form data block, Text data block, 
Decorative/Singleton data block and the Noise 
/ Advertisement data block. We need to identify 
data tuples from these content data blocks. 
Product data block is an important data block 
in product list page. Related information of 
a typical product data block are: an image of 
the product, the name or title of the product, 
product number, brand, and price. Additional 
information like rebate in tagged price, brief 
description of the product, etc. may exist and 
not necessarily all pages of the domain contain 
all the information. These information or ele-
ments are found as either ordered or un-ordered 
list and in flat or nested HTML tag encoded 
relation. The set format of product data block 
in nested relation is denoted as:

{<	image	>,{<	title	>,	<	number	>,	.	.	.,	
<	brand	>,	<	price	>}}. Some pages may 
contain less information like: {<	image	>,	
<	title	>,	<	brand	>,	<	price	>}.

These information need to be identified 
and assigned respective object (i.e., product 
object for product element, text object for text 
element, etc.). We redefine the use of separator 
object to identify data regions and data blocks. 
Therefore, in object view, placed in content 
objects, proposed product tuple (e.g., a flat 
product data block after cleaning) looks like 
Figure 2. We used separator element/object and 
classified separator element in two categories: 
open-separator, denoted by set notation symbol 
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‘{‘ and close-separator denoted by ‘}’ symbol 
and the product data can be represented as:

{<	image	> {<	title	>,	<	specification	>,	
<	price	>}}.

For tuple formation of this data block, it 
needs to flatten/collapse and keep all object 
instances at the same level. So, interior set 
notation should be deleted and the outer set 
notations are replaced by the tuple notations 
‘<’ and ‘>.’ It also needs to clean up the noise 
block, null block, cascading set notations within 
the data blocks to build it as a tuple. For tuple 
identification, we use a Non-deterministic 
Finite state Automata (NFA) based approach 
of pattern matching.

Extracting Contect Tuple 
Types Using NFA

An NFA is a finite state machine where the 
number of states is finite and for each pair 
of states (qi) and input symbol (si), there may 
be several possible next states resulting from 
consuming input symbol or without consum-
ing any input symbol but due to epsilon or null 
input transition (є). In order to build an NFA 
for correctly extracting product tuples from all 
B2C product list pages, a comprehensive list of 
representative web page product schemas drawn 
from what can be seen as a set of positive pages 
for this B2C domain is needed. Thepositive 
sites for the domain (such as those of Future 
shop, Best Buy, CompUSA, etc.) are the only 
suggested input from the user and the system 
would crawl the relevant parts (e.g., product list 
pages) of these web sites to discover the object 

database schemas for the objects or entities of 
interest. In this case, the discovered object da-
tabase schema consists of the different product 
schema representations for a product list page 
of a B2C web site. For example, the initial ten 
representations discovered from structures of 
the product list pagefrom such web sites are:

Product	(title:string,	image:image-file,	
prodNum:string,	brand:string,	price:long);
Product	(title:string,	image:image-file,	
prodNum:string,	price:long);
Product	(title:string,	image:image-file,	
brand:string,	prodNum:string,	price:long);
Product	(title:string,	image:image-file,	
brand:string,	price:long);
Product	(title:string,	image:image-file,	
price:long);
Product	(image:image-file,	title:string,	
prodNum:string,	brand:string,	price:long);
Product	(image:image-file,	title:string,	
prodNum:string,	price:long);
Product	(image:image-file,	title:string,	
brand:string,	prodNum:string,	price:long);
Product	(image:image-file,	title:string,	
brand:string,	price:long);
Product	(image:image-file,	title:string,	
price:long);

Thus, to extract product tuple instances 
from the DOM tree representation of any B2C 
web site, a product tuple NFA has to be built 
to recognize any of these schemas and any 
such matching tuple is found and sent to the 
product content object class. Similarly, and 
secondly, a List tuple NFA is built to extract 
any list tuple conforming to the <<	link	>,	<	
title	>,	<	link	>,	<	title	>,	<	link	>,	<	title	>,	

Figure	2.	Content	objects	of	a	product	data	block
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	<	link	>,	<	title	>	.	 .	 .	>. The third NFA is 
for the Form object NFA for recognizing and 
extracting form tuples that may conform to the 
schema: <<	form	>,	<	text	>,	<	text	>,	<	text	
>	.	.	.	>. The fourth NFA generated is the Text 
NFA for extracting Text tuples, which may 
contain raw texts in the web page or a bag of 
text describing something. The text tuple may 
contain a set of text objects with the following 
schema: <<	text	>,	<	text	>,	<	text	>,	<	text	>,
<	 text	>	 .	 .	 .	>> . The segmentation of this 
text instance needs further research in case of 
problem domain that contains bulk text or text 
corpus. The fifth NFA generated is the Noise/
Link NFA for recognizing and extracting noise 
tuples which are a set of hyperlinks with image 
and have the schema: <<	link	>,	<	image	>,	
<	link	>,	<	image	>	.	.	.	>>. The sixth NFA 
is for identifying singleton tuples. A Singleton 
tuple can be anything for presentation purpose. 
Sometimes, some stand alone attractive images 
with or without links are used in web pages for 
better representation or to make the presenta-
tion attractive. This tuple can be represented by 
<<	image	>> or <<	link	>, <	image	>>. So, 
a singleton tuple may have some intersection 
with Noise/Link tuple. The NFAs for recog-
nizing all these six content types are shown in 
Figure 3. These six NFAs are built from a set 
of rules that generally apply to entire identified 
positive pages of the domain being mined and 
are continuously refined with new discovery. 
Figure 3 shows the six automatically generated 
NFAs for recognizing i) product tuple, ii) list 
tuple, iii) form tuple, iv) text tuple, v) noise 
tuple and vi) singleton or separator tuple. The 
algorithm for generating the NFAs is given as 
Figure 4. An example execution of the NFA 
algorithm along with the WebOMiner system 
is given in the previous sections with solution 
to Example 1.

The Proposed WebOMiner 
Framework

The proposed architecture for extraction and 
mining of web contents using object-oriented 
model, which is called “WebOMiner” is shown 

as Figure 6. The algorithm implementation of 
this system is given as Figure 5.

Summary of the Modules of the 
WebOMiner System

The WebOMiner system shown in the algo-
rithm of Figure 5 consists of six modules that 
are called by the main algorithm sequentially. 
The modules labeled A to E form the first 
phase of mining, which begins with input data 
that is a set of domain web site http addresses 
or URLs (universal resource locator), and the 
output is the integrated object database that is 
mined in phase F for the second level mining. 
The second level mining consists of answering 
all types of comparative queries of objects in 
these web sites and can include specialization or 
generalization queries along object hierarchies, 
frequent pattern and sequential pattern mining 
querying, separate or combined object content 
querying, historical or derived object content 
querying. A summary of the functions of each 
of the modules is discussed next.

a.  The Crawler Module: We developed a 
mini-crawler algorithm that crawls through 
the WWW to find targeted web pages given 
as input, streams entire web document 
including tags, texts and image contents 
and it then creates a mirror of original 
web document in the local computer in a 
directory. Our crawler module discards the 
comments from the HTML document. This 
crawler module calls the SiteMapGenera-
tor.generate method, which takes a URL 
string as input and outputs HTML file in 
local machine and also outputs an ArrayList 
of Nodes having tags and contents of HTML 
file. Node information is then written into 
the output HTML file.

b.  The HTML Cleaner Module: This 
module is responsible for making the 
HTML file from the first step well formed 
by inserting missing tags at appropriate 
locations, removing inline tags <	br/	>, 
<	hr/	>, inserting missing “/” at the end 
of un-closed <	image	> tags, cleaning up 
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unnecessary decorative tags. The result is 
a refined HTML page in local directory. 
This module is accomplished with the web 
based program, HTMLCLEANER-2.2 
(Sourceforge.net, 2010).

c.  Content Extractor Module creates the 
DOM tree from HTML page and extracts 

the contents from the DOM tree, assigns 
respective class object type as per pre-
defined object classes to the contents and 
sets information into objects and finally 
puts objects into ArrayList. It also identifies 
the data regions and data block and uses 
separator objects to segment the respective 

Figure	3.	NFAs	for	six	web	content	types	(product,	list,	form	text,	noise,	singleton)
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data of a data block from other data blocks. 
We use Java DOM package to create and 
parse DOM tree of the webpage. The pro-
posed WebOMiner() algorithm line-C calls 
OWebMiner.BuildDOMTree() method 
which is given as Figure 7.

We modified the 2009 OWebMiner’s 
ContentWebObjectScan() algorithm in order to 
catch body zone content objects according to 

their hypotheses for identifying the beginning 
and end of body zone of a web document and 
to set series-1 and series-2 pointers in the DOM 
tree but using tags. This is now the ContentO-
bjectArray() function called by the DOM tree 
builder. The 2009 OWebMiner suggests using 
two tag series (a set of at least five or more <a> 
or <area> sibling tags to distinguish the bound-
aries between the header, the body and the foot 
zones of a web document. An <a> or <area> 

Figure	4.	Algorithm	GenerateSeedNFA	for	generating	candidate	NFA
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Figure	5.	The	WebOMiner	main	algorithm

Figure	6.	WebOMiner	architecture	for	object-oriented	web	content	mining
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tag in an HTML file represents navigation URL. 
They observed that a set of first five or more 
sibling <a> tags indicate the starting of body 
zone and is called series-1. The last set of five 
of more sibling <a> tags indicate the end of the 
body zone and is called series-2. Moreover, 
they indicate that if the search for series-1 goes 
over half of the DOM tree size, then, the web 
document does not have a header zone and 
series-1 is empty. Also, if the search for series-2 
from the first half of the DOM tree to its end 
returns null, the web document does not have 
a foot zone. The ContentObjectArray() algo-
rithm calls ProcessContentSibling() for identi-
fying the data regions and data blocks, which 
is also a modified version. Our modification of 
this algorithm is to reflect the identification of 
data regions and data blocks using separator/
singleton element. The result of this module is 
the extracted ContentObjectArray[] of the web 
page DOM tree.

d.  Call MineContentObject.Identify-
Tuple(): This module takes as its input 
ContentObjectArray[] from the module C 
and extracts different tuple types to place 
in their separate containers. This algorithm 
generates Seed NFA pattern for data blocks 
from positive pages. It extracts objects 
of all tuples by matching them with the 
refined NFAs and storing identical tuples 
(e.g., product record object tuples, list 
tuples) into appropriate TupleList. It then 
counts tuples and checks requirements for 
all tuple categories and if they satisfy the 

minimum requirement count for that block 
type, it stores the objects into the database. 
The MineContentObject() algorithm inputs 
the entire populated ContentObjectArray[] 
and outputs categorized content objects 
using separator objects and set minimum 
requirement counts for correctly identify-
ing data blocks. For example, for product 
block, the minimum requirement count 
can be set to 3, meaning that data block 
is expected generally to have at least 3 
product tuples. Tuple squeezing is also 
performed in this module before storing 
it in the database. Tuple squeezing is used 
to generalize tuples of the same data block 
so that pattern of any tuple containing 
varying length pattern can be represented 
in the same category. We use LinkedList 
data structure to squeeze this tuple without 
disturbing its data representation order.

e.  Call CreateDBTable(): This module is 
responsible for using the data warehouse 
star schema approach to integrate and store 
data records into a database table. It accepts 
as its input the generated tuple ArrayList 
from module D with company names and 
creates an integrated data warehouse fact 
table with a set of dimension tables. The 
algorithm for this module is shown as 
Figure 8. Once the integrated databases 
are built the second level mining of step 
F can be done at a later stage. This paper 
focuses on the first level mining involving 
steps A to E.

Figure	7.	OWebMiner.	BuildDOMTree	algorithm
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APPLICATION OF THE 
WebOMiner SYSTEM

Example 1

Given a product list web page of a retail B2C 
web site like CompUSA sample with 6 products 
given as Figure 1, using the WebOMiner system, 
extract all types of information like: (i) Those 
related to data records such as product image, 
product brand, product id, short description, 
product price. (ii) Navigation information such 
as link URL, link id or name. (iii) Advertise-
ments such as product advertised, image, URL 
links to related website. The extracted informa-
tion will be stored in the database for future 
comparative mining and querying.

SOLUTION 1: The proposed WebOMiner 
system 1 implemented in JAVA runs in 
both Unix and Windows based environ-
ment (with NetBeans or Eclipse) to store 
the extracted data from the web page in a 
DBMS like Oracle tables. The directory 
where the system is run requires having 
the following files:WEBOMINER.jar, 
htmlcleaner-2.2.jar, ojdbc6.jar and the 
downloaded and cleaned web page to be 
extracted which is stored as cleanHTML#_.
html. The algorithm would download the 
pages when provided the link and the 

cleaned page clean-HTML#_.html was 
obtained after running steps A and B on 
Figure 1. Note that all cleaned web pages 
to be extracted are currently stored in 
cleanHTML#_.html (e.g., CompUSA_.
html). The Unix command for initiating 
the extraction of the cleanHTML#_.html 
page is given:

java–cp WEBOMINER.jar:htmlcleaner-
2.2.jar:ojdbc6.jar webominer.Main.

This command has the effect of going 
through steps C to E of the WebOMiner algo-
rithm using the input file cleanHTML#_.html. 
Step C would build the DOM tree from this 
clean HTML file as well as build the Conten-
tObjectArray[] of this page. Figure 9 shows the 
generated DOM tree of the running example 
(i.e., of the web page of Figure 1).

Next, the algorithm traverses the DOM 
tree of Figure 9 to generate the ContentObjec-
tArray[] as follows. This algorithm starts stor-
ing content objects into the ContentObjectAr-
ray[] until it hits the Foot zone by identifying 
series 2. Here, series-1 is set to TTag (current 
pointer at DOM tree) at line 7, which is a “<div>” 
tag (region node). The algorithm at some point, 
calls CheckTagObject() which creates an 
OpenSeparator object and stores it into the 

Figure	8.	Algorithm	CreateDBTable.insertData()
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ContentObjectArray[]. TTag is then set to the 
next child tag “<div>” at line 8 (data block 
node) and similarly stores another OpenSepa-
rator object into ContentObjectArray[]. The 
TTag is again set to its child node “<a>” at line 
9 and the algorithm recursively calls itself. 
Since it is a non-block level tag, the algorithm 
stores respective “<link>” followed by “<im-
age>” objects for all five siblings (line 9 to line 
17) into ContentObjectArray[]. Line 19 ends a 
data block and the algorithm stores a closing 
separator object into the ContentObjectArray[]. 
Similarly, the algorithm starts another data block 

which ends at line 33. Line 34 ends this data 
region. Line 35 starts with another data region 
that ends at line 192. Line 58 and 69 are two 
text data blocks “SHOP BY PRICE” and “SHOP 
BY BRAND” as shown in left pane of Figure 
1. These embedded tags and contents are hidden 
in Figure 1. Similarly, lines 105, 113, 121, 131, 
139, and 147 are six monitor data blocks em-
bedded into hidden tables of the figure.

When the algorithm hits line 193, it gets 
series 2 pointer and returns the populated 
ContentObjectArray[] to the main algorithm 

Figure	9.	DOM	tag	tree	of	CompUSA.com	web	document	for	Figure	1
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WebOMiner(). Two partial snapshots of this 
ContentObjectArray[] are given in Figure 10.

Line-D of our main WebOMiner algorithm 
mines populated ContentObjectArray[] for 
identification of data blocks and their classifi-
cation to make contents ready for database 
entry. Line-D starts with calling our mining 
algorithm MineContentObjects(). It inputs 
populated ContentObjectArray[] and outputs a 
set of content patterns ready to input into da-
tabase table for content integration. It scans 
ContentObjectArray[] for open and close 
separator object and identifies candidate tuples 
by matching key objects and minimum required 
count. It then refines separator objects by delet-
ing themselves. At the same time, this algorithm 
generates Seed NFA pattern for data blocks.). 
GenerateSeedNFA() automatically generates 
candidate NFA by second pass iteration through 
all objects of an identified effective extraction 
of data from ContentObjectArray[] and wide 
range of other pages from WWW. It inputs all 
data structure of algorithm IdentifyTuple() as 
global and works with satisfied Enumeration 
type to create its seed NFA. The algorithm 
identifies the tuple type from PatternTable and 
looks for any existing Seed NFA for that tuple 
type. If it does not exist, it starts creating a new 
NFA by scanning objects and creating NFA 
state along with appropriate transition between 
states as per NFA generation algorithm of 
Figure 4. In case of our running example data 
tuple shown in Figure 10 of the ContentObjec-
tArray snapshot, since the existing Seed NFA 

is null, the algorithm creates the starting state 
‘q0’ and refers ‘qc’(current state) to ‘q0’ as per 
line 2. For <link> object at cell 9 it creates 
another state ‘q1,’ which it refers to as next to 
the header state ‘q0.’ It stores <link> object into 
‘q0’ and refers ‘q1’ as ‘qc’ according to line 2.3. 
This ensures a transition from ‘q0’ to ‘q1’ for 
<link> object. In the second iteration it scans 
<image> object of cell 9, creates state ‘q2,’ refer 
it as next to ‘q1,’ store object into ‘q1’ and refer 
‘q2’ as ‘qc’ per line 2.3. This process continues 
until the last <image> object of the tuple at cell 
17. Since it is the last object, the last state is 
denoted by ‘F’ as per line 2.4.1. The next step 
is the refinement of the generated Seed NFA as 
per definition of the NFA patterns for different 
tuple types shown in Figure 3.

Line 2.0 of our mining algorithm MineCon-
tentObjects() uses a function SqueezeTuple() 
which basically squeezes the tuple length to 
represent their general pattern. For example our 
running example nevigation tuple is as follows:

〈 <link>, <img>, <link>, <img>, <link>, 
<img>, <link>, <img>,<link>, <img>, 〉

The length of this tuple is unknown with 
a set of repeated tags <link> and <img>. These 
repeated tags follow a general pattern. We can 
squeeze these tuples with their common pattern 
of a link tag followed by a title text tag as 
( , )< > < >∑ link img j
n

3
. Lines 2.1, 2.2, and 

2.3 extract objects of all tuples by matching 

Figure	10.	Snapshot	of	ContentObjectArray[]
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with refined NFA and storing identical tuples 
into TupleList. The MineContentObject() 
counts tuples and checks required support count 
for all tuple categories and if they satisfy the 
support, stores objects into relational database. 
This leads to extracting web content data into 
six database tables stored in Oracle Sqlplus. 
The six created tables are: 1. Product(product 
id, brand, image, prod number, price, text, 
company name); 2. Company(company id, 
company name); 3. List type (List type id, list 
type); 4. List (list id, link, text, company name, 
list type); 5. Text (text id, text, company name); 
6. noise (noise id, link, image, company name). 
All these data have been extracted by the We-
bOMiner system so that when several web 
pages are extracted, some comparative ana-
lytical queries and mining could be performed. 
The WebOMiner.jar contains currently about 
36 .JAVA files including Main.JAVA (for algo-
rithm 1) and those for steps A to E of this al-
gorithm.

FUTURE WORK ON THE 
CURRENT SYSTEM’S 
IMPLEMENTATION

This is the very first effort for mining web 
contents using object oriented model. There is 
plenty of room for improvement of our system 
in the future. Limitations of the current system 
and future work as identified are stated as:

• Crawler Module: Current crawler module 
can take one URL string at a time for extrac-
tion and mining of web contents. Further 
improvement is required in the future for 
automatic identification of positive web 
pages from the web. Present implementa-
tion of this module is designed aiming to 
work for basic functionalities as crawler 
with the functionality to download data 
stream from the targeted web pages into 
the local computer and cleaning of the web 
page comments from it. For robustness and 
scalability, we need to improve the cur-
rent crawler module to handle all kinds of 
situations from the web. We are currently 

extending it to generate object schemas 
of positive B2C web pages automatically.

• Cleaner Module: Currently, we are using 
open source software “HTMLcleaner-2.2” 
for cleaning the web pages. Development 
of an independent cleaner module may 
improve the systems performance and 
usability in future.

• Extractor Module: One major problem 
with the extractor module is its inability to 
handle long tag attribute values. A reason-
able way to handle long HTML tag attribute 
value is needed that are currently blasting 
the DOM Tree creation. We need to find 
out a way to reduce the tag attribute value 
length without loss of resources from it. 
A reasonable solution by finding any al-
ternative way to create DOM from other 
platforms may solve the problem. Another 
noticeable limitation of this system is its 
limited capacity to handle noise contents 
from the web page. More research is re-
quired to handle noise from data tuples.

• Miner Module: We introduced the idea 
of using NFA for mining web contents in 
this paper. This NFA has two fold uses: 
Generation of extraction pattern for con-
tents and generation of database schema, 
cardinalities to create tables and to store 
contents into relational database. In this 
paper, we generated extraction pattern 
but generation of database schema from 
the generated NFA is pending to develop. 
Another limitation is the use of pattern 
table for classification of tuples from the 
ContentObjectArray. Implementation of 
any automatic classification using co-sign 
or other similarity algorithm will eliminate 
the use of semi-automatic use of pattern 
table and squeezeTuple algorithm from the 
miner module.

EXPERIMENTS AND 
PERFORMANCE ANALYSIS

We created simplified mirror of six popular B2C 
web sites (e.g., futureshop.ca, compUSA.com, 
bestbuy.ca, walmart.ca, shopping.com, dell.
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com as of July 2010) for empirical evaluation 
of our system using different page structures. 
Our system is implemented in Java program-
ming language. We then ran our system in 32-
bit Windows Vista Home Premium operating 
system at Intel Due Core 2.26 GHz, 3.00 GB 
RAM Sony machine for each of these mir-
ror web sites for empirical evaluation of our 
WebOMiner system. The source codes for the 
program are available in the code directory and 
the document USER_MANUAL.txt provides 
information on how to compile and execute 
the system. We use the standard precision and 
recall measures to evaluate the web content 
retrieval accuracy and effectiveness of our 
system. Precision is measured as the average 
in percentage for the number of correct data 
retrieved divided by the total number of data 
retrieved by the system. Recall is measured 
as average in percentage for the total number 
of correct data retrieved divided by the total 
number of existing data in the web document. 
The results of the retrieval by our WebOMiner 
system is tabulated in Table 1. From Table 1, it 
could be seen that the WebOMiner is effective 
for correctly extracting detailed data from web 
documents since the precision for measuring 
accuracy of extraction (total records retrieved 
correctly / total records retrieved) is 176/176 
or 100%. The recall is total records retrieved 
correctly/total records in the page, which is 
176/185 or 96%.

CONCLUSION AND FUTURE 
WORK

We argue that there is need for a system capable 
of per- forming deeper knowledge discovery 
consisting of comparative analysis of such 
product features as prices, answering historical 
and derived queries about products and other 
data on web pages. We propose an approach 
for solving this complex data extraction that is 
based on the object oriented data model, which 
would utilize six class content types that can 
be linked through class inheritance hierarchies. 
We propose a system called WebOMiner (Web 
Object Miner) for this purpose, which has in-
troduced some good features that would allow 
for future robustness and scalability. We have 
demonstrated that this first implementation 
phase of our system is effective for extracting 
web contents and storing them in database tables 
for querying and mining. Future improvement 
on the proposed system includes: the crawler 
module needs to create the functionality for more 
automatic selection of the targeted documents 
from the web, create automatic object database 
schemas of each web site as well as the object 
data warehouse schema of integrated web site 
schemas, cleaner module needs to handle long 
tag attributes (Chaudhuri et al., 2003). Complex 
attributes can be handled with content type 
“structure” and the NFA for the structure content 
type can be included for this type. The object 
oriented data model has been implemented with 

Table	1.	Accuracy	of	web	content	extraction	from	web	pages	

Website Data Records

Product List Noise Text Total Correct

www.futureshop.ca 10 13 4 0 27 27

www.compUSA.ca 18 21 8 2 49 47

www.bestbuy.ca 7 10 4 1 22 21

www.walmart.ca 2 4 2 - 8 8

www.walmart.ca 2 4 2 - 8 8

www.shopping.ca 40 4 4 - 48 47

www.dell.ca 14 13 4 - 31 28
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relational database management system through 
nested relations and JAVA classes. Future work 
should also consider implementing this in an 
object oriented DBMS. Another DOmilestone 
wrapper generation system DEPTA (Zhai & 
Liu, 2006, 2007) builds M tree to analyze web 
document and uses single web page for wrapper 
generation like our WebOMiner system. Future 
extensions of the system are ongoing research.
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