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Abstract
Data objects which differ significantly from the remaining data objects are referred to as outliers.

Density-based algorithms for mining outliers are very effective in detecting all  forms of outliers,
where data objects with fewer neighbors are likely to be outliers than are those with more neighbors.
However, existing density-based algorithms engage in huge repetitive computation and comparison
for every object before the few outliers are detected. Expensive computations might make scalability
of  these  techniques  to  important  applications  like  quick  fraud  detection  unfeasible.  This  paper
proposes LSC-Mine algorithm based on the distance of an object and those of its knearest neighbors.
In  addition,  data  objects  that  are  not  possible  outlier  candidates  are  pruned which  reduces  the
number of computations and comparisons in LOF technique resulting in an improved performance.

1. Introduction
Data mining is a non-trivial process of identifying valid, potentially useful and understandable

patterns in data [6].  Most data mining tasks have concentrated on finding frequent patterns while

discarding the less frequent ones, but the less frequent patterns that are usually eliminated contain

another group of objects often described as nuisance, noise or outliers. Outliers are observations that

deviate from other observations within the same group to arouse suspicion that they were generated

using a different  mechanism [7].  In many data mining applications identifying exceptions or rare

events can often lead to the discovery of interesting and unexpected knowledge in areas such as credit

card fraud detection, cellular phone cloning fraud and detection of suspicious activities. Some existing

algorithms in machine learning and data mining have only tolerated outliers in whatever problems

those  algorithms  are  solving  [12].  ROR  in  [1]  removes  identified  outliers  before  any  further

processing is done on the data. The problem of locating outliers in a large dataset is like finding

needles in a haystack. The difficulty of identifying outliers has resulted in different definition and
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techniques for mining them. Knorr et al. [12, 13] described an object O in dataset T as a DB(p,D)-

outlier if at least  fraction p of the objects in T lies at a distance greater than D from O. Ramaswamy et

al. [16] however, described an outlier as an observation that has the greatest distance from all other

observations when the calculated distances are ranked. In [4], an outlier is viewed as an observation

with the highest local outlier factor within a given neighborhood. The local outlier factor is a measure

of the distribution or density of objects around a particular point. A high local outlier factor means

that the neighbors are far away, whereas a low local outlier factor indicates nearer neighbors. In this

paper,  outlier  mining  algorithms  are  grouped  into  4  categories;  distribution-based,  depth-based,

distance-based and density-based outlier mining techniques. We concentrate on density-based outlier

mining techniques with a proven ability of efficiently identifying all forms of outliers [4].

1.1. Related Work

Distribution-based techniques are mostly found in statistics where standard statistical distributions

(e.g. Normal, Poisson, Student t etc) are used to fit data points. Outliers are objects that show different

characteristics from the rest of the data objects [5,  7].  Distribution-based methods require upfront

knowledge of the statistical distribution of the data, and are available mostly for single variable data.

In depth-based techniques, data objects are organized into layers with the expectation that shallow

layers  are  more  likely to  contain  outlying data  than  are  deep  layers.  Ruts  et  al.  [15]  developed

ISODEPTH for computing 2-D depth contours.  In [11], an algorithm robust against collinear points

is developed to address the major drawbacks of ISODEPTH. Depth-based methods are supposed to

work for high dimensional data but in practice they do not work for more than three dimensions. 
Knorr et al. [12, 13] proposed the distance-based outlier concept to address the problems of the

earlier outlier mining techniques. A distance-based outlier is described as ‘fraction of data objects

with distance greater than the minimum outlier distance’. The choice of the minimum outlier distance

is left to the discretion of the miner. The nested-loop and the index–based algorithms proposed for

mining distance-based outliers have a time complexity of O(kN2) which is linear in the number of

dimensions but quadratic in data size.  In [15], a new definition for outliers is proposed which does

not require the user to specify the minimum outlier distance which also allows outliers to be ranked.

In [2], a distance-based outlier that takes into account weighted neighborhood distances is proposed.



Outliers are data objects with larger weights computed using the Hilbert space filling curve algorithm.

The proposed algorithm scales linearly in both dimensionality and data size. 
Breunig et al. [4] claim that every object has some degree of “outlierness” in it and that being an

outlier  is  not  just  a  binary property.  The  degree  of  outlierness  called  local  outlier  factor  (LOF)

depends on the remoteness of an object with respect to its surrounding neighborhood. Outliers are

objects that tend to have high LOF values. The LOF algorithm is able to detect all forms of outliers

including those that could not be detected by the distance-based algorithms. In [10], a micro-cluster-

based algorithm for finding top-n local outliers is proposed. The pruning of the clusters based on the

computed bounds reduces the number of LOF value computations but it  still  relies on computing

reachability distances and local reachability densities for every object in the data set. The notion of a

semantic outlier  that  integrates semantic knowledge of the underlying data  is  presented in  [8].  A

semantic  outlier is defined as a data point which behaves differently with other data points in the

same class. The degree of semantic outlying is called semantic outlier factor (SOF). The concept is

very interesting and useful but it works mostly on categorical data and as such can only supplement

the other outlier mining algorithms rather than replace any of them.

1.2. Contributions

This paper proposes LSC-Mine algorithm for mining outliers based on the distances of objects

from  their  nearest  neighbors  without  actually  computing  their  reachability  distances  and  local

reachability densities. In addition, data objects that are not possible outlier candidates are pruned as

soon as they are detected,  making LSC-Mine algorithm less expensive and more efficient compared

to other related outlier mining algorithms described in the literature.

1.3. Outline of Paper
Section 2 presents an example mining of outliers with LOF algorithm to expose the contributions

of the proposed technique.  Section 3 presents LSC-Mine algorithm. Performance analysis of the

algorithms is presented in section 4. Finally, section 5 presents conclusions and future work.

2. An Example Outlier Mining with LOF



Since LSC-Mine algorithm being proposed in this paper is related to LOF algorithm, this section

uses an example to show outlier mining with LOF [4].  In LOF algorithm, outliers are data objects

with high LOF values whereas data objects with low LOF values are likely to be normal with respect

to  their  neighborhood.  High  LOF is  an  indication  of  low-density  neighborhood  and  hence  high

potential of being an outlier. The sequence of steps involved in computing LOF value of an object p

in a dataset are: (1) computing kdistance of p, (2) finding kdistance neighborhood of p where k is a

positive integer called the Minpts, (3) computing  reachability distance of p, (4)  local reachability

density of p,  and (5) computing and ranking of LOF. MinPts is the minimum number of objects

desired to be in a neighborhood.  Let D be a database having four objects denoted as P1, P2, P3 and P4

with distances P1P2 = 4, P1P3 = 3, P1P4 = 7, P2P3 = 5, P2P4 = 6, and P3P4 = 8 obtained using a known

distance function and MinPts (k) = 2. 

Step1: Computing kdistance of p:

The motive for computing kdistance of p is to determine the neighbors of p. In simple terms,  k-

distance of p is the maximum distance from object p when every object in the data set is considered to

have at least kneighbors.  kdistance of p, denoted as kdistance(p) is obtained as follows:

i. First, compute the distances of all objects from P1 using a distance function. The distances are P1P2

= 4, P1P3 = 3, P1P4 = 7 (assumed previously).

ii. Next, select the first 2 distinct minimum distances from P1.  All distances from P1 are ordered and

the first 2 minimum distinct distances are chosen (i.e., Min(P1P2 = 4, P1P3 = 3, P1P4 = 7)).  

iii. Finally, the maximum of the first 2 minimum distinct distances is selected as kdistance of P1.

Thus, kdistance(P1) = max(3, 4), hence, kdistance(P1) = 4. The kdistances of the remaining objects

are similarly obtained.

Step 2: Finding kdistance neighborhood of p 

The kdistance neighborhood of p denoted (Nk(p)), contains every object with distance not greater than

kdistance(p). The rationale for computing the kdistance neighborhood is to find the nearest neighbors

of each object. For instance, kdistance neighborhood of P1 contains P2 and P3 since kdistance (P1) is 4

and the distances of P2 and P3 from P1 are each not more than 4 (i.e., P1P2 = 4, P1P3 = 3)

Step 3: Computing reachability distance of p

The reachability distance of an object p with respect to object o is the distance(p, o) or kdistance(o)

whichever is larger (reachdistk(p,o) = max{kdistance(o), distance(p,o)). The objective is to ensure that



all the objects within a neighborhood are homogeneous. In addition, LOF stabilizes when the objects

within a neighborhood are uniform even if MinPts (k) changes. The fluctuations in the reachability

distances can be controlled by choosing large values for k [4].  The reachability distance of P1 is

computed  as  follows:  First,  identify  kdistance  neighborhood  of  P1 (i.e.,  Nk(P1)  =  (P2,  P3)).  The

reachability distance of P1 is computed with respect to P2 and P3 since they constitute the neighbors of

P1.

For P2 within the neighborhood of P1:    reachdistk(P1, P2) = max(kdistance(P2), distance((P1,P2)) = max

(5,4)  = 5. Since kdistance(P2) = 5 and distance(P1,P2) = 4

For P3 within the neighborhood of P1:           reachdistk(P1,P3) = max{kdistance(P3), distance(P1,P3)}  =

max (5, 3) = 5. Hence, reachdistk(P1,o) = (5, 5), which is  the combination of reachability distances of

the neighbors of P1. 

Step 4: Computing the local reachability density of p

The local reachability density of an object p, denoted lrdk(p) is the inverse of the average reachability

distances from kdistance neighbors of p. It provides a means for comparing reachability distances. 
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The local reachability density for P1 is computed as follows: lrdk(P1) = 1/{(5+5)/2} = 2/10 ,  since (5,

5) constitutes the local reachability distance of P1 and the number of kdistance neighbors is 2. Also,

lrdk(P2) = 2/9, lrdk(P3) = 2/9 and lrdk(P4) = 2 /13.

 Step 5:  Local outlier factor of p
The local outlier factor is a ratio that determines whether or not an object is an outlier with respect to

its neighborhood. The local outlier factor of an object p denoted LOFk(p) is the average of the ratios of

local reachability density of p and that of p’s knearest neighbors.  

2.1. Limitations of the LOF Algorithm

The  major  drawback  of  LOF  algorithm  lies  in  computing  reachability  distances  defined  as

reachdistk(p,o)  =  max{kdistance(o),distance(p,o)).  Computing  reachability  distance  of  p  involves

computing distances of all objects within p’s neighborhood, and each compared with the kdistance of

that neighborhood which is very expensive when MinPts is large. Secondly, LOF has to be computed



for every object before the few outliers are detected. This is not a desirable exercise since outliers

constitute only a small fraction of the entire dataset

3. The LSC-Mine Algorithm
The identified problems are addressed by proposing LSC-Mine based on the original idea of local

outliers. LSC-Mine avoids computing reachability distances and local reachability densities which are

considered  very  expensive  in  LOF.  Instead,  local  sparsity  ratio  derived  from  the  neighborhood

distances  is  computed.  Additionally,  LSC-Mine  prunes  data  objects  that  are  not  possible  outlier

candidates  using  pruning  factor  computed  from the  neighborhood  distances.  The  remaining  data

forms the candidate set on which outliers are determined.  
Definition 3.1:  The local sparsity ratio of an object p denoted lsrk(p) is defined as the ratio of the

cardinality of kdistance neighborhood of p to the sum of all the actual distances in that neighborhood. 
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,where distofNk(P) consists of actual distances of objects in kdistance neighborhood of p. The local

sparsity  ratio  measures  the  concentration  of  objects  around  an  object  p.  Objects  with  low local

sparsity ratios have high potential of being outliers and vise versa.  The final declaration of outliers

depends on the local sparsity coefficient rather than the ratio.  The pruning factor is rooted on the

assumption that the local sparsity ratio of an object p in a dataset should not be less than a similar

ratio computed from the entire data if that object is not an outlier. It gives an upper bound for any

object that is an outlier candidate. 
Definition 3.2:  The pruning factor (Pf) is the ratio of the sum of the absolute neighborhood distances

to the overall sum of the actual neighborhood distances. Mathematically,






)(

)(
|)(|

pNo k

k

k
pNofdist

pN
Pf

Once the pruning factor is obtained, any object with a local sparsity ratio less than Pf is removed since

it cannot be a potential outlier candidate. The pruning can remove more than half of the data thereby

enhancing the performance of LSC-Mine.



Definition 3.3:  The local sparsity coefficient of p denoted LSCk(p) is the average ratio of the local

sparsity ratio of p to that of its knearest neighbors. 
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A high local sparsity coefficient  indicates the neighborhood around an object is  not crowded and

hence  a  higher  potential  of  being an  outlier  whereas  a  low local  sparsity coefficient  indicates  a

crowded neighborhood and hence a lower outlying potential. The formal sequence of steps followed

by the LSC-Mine algorithm for computing outliers is presented in Figure 1. The LSC-Mine algorithm

will compute for each object (1) its kdistance, (2) its kdistance neighborhood, (3) its local sparsity

ratio, (4) its pruning factor, (5) candidate set that is not to be pruned, (6) LSC of objects in candidate

set and finally, (7) rank objects with the highest LSC as strongest outliers. Definitions 3.1 to 3.3 give

the formulars for computing these values.

4. Performance Analysis

The performance analysis of LSC-Mine and LOF algorithms are presented in this section.  All

experiments were performed on a 1.8GHz Intel Pentium 4 PC with 256 megabytes main memory,

running Windows 2000 Professional Edition. The programs are written in Java. Two sets of data are

used to test  the algorithms for correctness  and response time.  The data  for testing correctness is



obtained from the National  Hockey League (NHL) player statistics for 1995 whereas the data for

testing response time was generated.

4.1. Testing for Correctness 
The National Hockey League (NHL) player statistics of 1995 used for this experiment had 805

records with unknown number of outliers. Four fields (name, total  score, plus/minus,  and penalty

minutes)  were chosen from the  statistics  to  constitute  our  data  set.  In addition,  each  record was

assigned a unique identifier for evaluating the results. The experiment was to determine how many

outliers identified using LOF are correctly identified by LSC-Mine. In particular, we were interested

in the number of top-n records determined as outliers, as well as their positional rankings in the two

algorithms. The two algorithms were run using MinPts of 100, 200, 300 and 400.  For MinPts 100 and

200, the two algorithms identified the same records as top 10 outliers with slight differences in their

positional rankings.  LSC-Mine and LOF produced the same top-10 outliers for MinPts 300 and 400. 

4.2 Testing for Response Time

The data generated for testing response time contained 16,000 records with structure similar to

[14] and unknown number of outliers. Two sets of experiments were conducted for response time.

The first was to ascertain the effect of MinPts on response time while the other was to find the effect

of data size on response time for the two algorithms. The execution times for both LSC-Mine and

LOF algorithms were recorded.  The results  of the experimental  runs  are discussed in subsequent

sections.

The  Effect  of  MinPts  on  response  time  was  conducted  using  different  MinPts.   The  results

depicted  in  Figure  2 shows that  LSC-Mine performs better  than LOF with  LOF showing steady

increases in response time with increasing MinPts.  LSC-Mine on the other hand, shows almost a

constant response time with increasing MinPts.

Finally,  the  effect  of  data  size  on  response  time  was  tested  using  MinPts  of  500.  The  two

algorithms  were  run  using  different  data  sizes  and  the  response  time  taken.  The  results  show

irrespective of MinPts LOF and LSC-Mine algorithms perform almost the same with data sizes less

than 2000,  but  as  the data size increases,  the  response  time for  LOF also increases  rapidly. The

response time for LSC-Mine increases steadily as data size increases.  Figure 3 depicts the obtained



results. The difference is the response times the two algorithms will be very remarkable with very

large datasets hence making LSC-Mine a very good choice for warehouse applications.   

5. Conclusions and Future Work

Outlier mining is very important data mining activity, which has not received much attention in

the research community. But finding rare activities such as detecting credit  card fraud or cellular

phone cloning is likely to be more interesting than finding how often a regular customer visits the

ATM. Density-based approach to outlier-mining makes monitoring customer activities  even more

interesting since every customer activity has a potential of being exceptional (outlier).  This paper

contributes an enhancement to the Local Outlier Factor (LOF) algorithm called LSC-Mine algorithm.

LSC-Mine improves upon the response time of LOF by avoiding the computation of reachability

distances and local reachability densities. In addition, data objects that are not likely outlier candidates

are  pruned  as  soon  as  they are  identified.  The  pruning  drastically  reduces  the  number  of  Local

Sparsity Coefficient Computation.  The outlier candidate set is then used as input for calculating local

sparsity coefficient. Experimental results show that LSC performs better than LOF with respect to

response time for all sizes of data and MinPts.  
Areas of future research include finding what fraction of the entire data should be assigned to

MinPts  and the  application  of  outlier  mining  techniques  to  text  data  and  exploring more  on the

application  of  the  outlier  mining  to  spatial  data  and  Web  data.  Application  of  outlier  mining

techniques to spatial data is also very promising.
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